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Abstract

In this study, we scanned the core of a cylindrical a soil sample (60mm diam-

eter and 100mm height) by X-ray Computed Tomography (CT) producing

300 consecutive 2D digital images with 16-bit gray level depth and a resolu-

tion of 32 microns (image size 676×676 pixels). The aim of this work was to

determine the geometry and spatial distribution of the elements in a sample,

related in this case to pore, solid and gravel, inside each 2D image for the

latter reconstruction of the corresponding 3D approximation of the elements

using the total set of 300 soil images. Therefore, it was possible to determine

the relative percentage of each element present in each 2D image and, corre-

spondingly, the structure and total percentage in the 3D reconstruction. The
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identification of elements in the 2D image slices was very well accomplished

using three standard segmentation algorithms: k-Means, Fuzzy c-Means and

Otsu multilevel. In order to compare and evaluate the quality of results, a

non-uniformity (NU) measure was applied such that low values were indica-

tive of homogeneous regions. Due to the depth of the greyscale of the images,

the results were very similar with comparable statistics and homogeneity (NU

values) among the detected materials of the three algorithms. That suggests

that the pore, solid and gravel spaces were very well identified, and this is

reflected through their connectivity in the 3D reconstruction. Additionally,

the gray level depth was reduced to 8 bits and the same study was under-

taken. In this case, the quality of results was comparable to the previous

ones, as the number of elements and NU values were very close. However,

this also depends largely on the high resolution of the images. Thereby, the

soil sample of this work was very well characterized using the simplest and

most common algorithms for image segmentation thanks to the high contrast

and resolution, and regardless the depth of the grey-level.

Keywords: 3D soil image analysis, X-Ray CT, Realistic 3-D

reconstruction, Porosity, Images segmentation.

1. Introduction

The best description of soils can only be possible when their elements are

clearly identified, quantified and the structure of the soil is well established.

This is a requirement for the functional analysis of a soil sample based, for

2



instance, on the physical, chemical or biological processes that could hap-

pen in its structure [1], [2], [3], [4], [5], [6], [7]. In most of the reported

studies the main interest has been the soil pores; looking at their geometry,

spatial distribution and connectivity, which can be evaluated through the

three-dimensional (3D) volume reconstruction of the sample. However, as

the technology advances, there is a growing interest for the identification of

more discrete elements, such as the soil solid space including primary parti-

cles of varying sizes (e.g. sand grains and gravel).

Nowadays, and due to the available technology, the most preferred approach

for the analysis of soils is to use non-intrusive methods based on X-ray imag-

ing, such that the soil samples are not altered after removal from the field.

Computed Tomography (CT) offers an attractive opportunity for 3D insight

of the inner structure of objects and materials, and it is an interesting al-

ternative as a set of two-dimensional greyscale image slices (2D) of high

resolution (µCT) can be sequentially produced throughout the complete 3D

soil samples [8]. The resolution of the images depends on the quality of the

scan, as well as on the depth of the grey-level that is normally represented

by 8 or 16 bits (high quality of medical images). In this case of study, a set

of 300 2D image slices in TIFF format, with a resolution of 32 microns, an

image size of 676× 676 pixels and 16 bit grey values, were extracted from an

undisturbed soil sample.

The problem posed in this work has to be with the identification of discrete

materials in a soil sample: solid, gravel and pore of each 2D CT image into
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three objects or elements; pores, solids and gravel, in order to quantify them

and determine the internal structure of the soil sample. Once the material

and pores had been identified, they were individually represented in binary

images for quantification. With these results, it was then possible to under-

take 3D reconstruction of the soil sample and its elements, as shown in the

results section.

The grey level of the pixels is the only feature used here as the main informa-

tion into the 2D CT soil images in order to recognize the different materials

and pore spaces in the soil sample. This explains why most of these stud-

ies are based on segmentation methods [9], [10], [11], [12], where a threshold

value can be established such that pixels with values greater than this thresh-

old are related to a material or to a pore space, or vice versa, depending which

group is being analyzed [13], [14], [15]. One of the most popular methods to

find automatically the threshold is the Otsu method, which allows finding n

discrete groups or materials within an image [16], [17]. Among the different

approaches for the detection of objects in 2D soil images are manual methods,

which are realized by an expert or a group of experts who establish the edge

of regions of interest. However, this can be an extremely challenging task due

to the shape and quantity of pores and solids or any type of materials present

inside a soil sample. In these circumstances, a more attractive approach is an

automatic method that estimates the thresholds of grey levels to detect the

different objects. The methods used in this work were the k-Means [18] and

Fuzzy c-Means (FCM) [19] clustering algorithms, as segmentation methods,
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as well as the Otsu algorithm as a multilevel thresholding method [5]. All

these methods were applied directly to the original CT images (i.e. they were

not preprocessed, which is an advantage, as a partial loss of information of

interest is avoided due to this process).

The main challenge for this kind of problems is to find the “ideal borders”

between the elements or segments present within the images. Unfortunately,

or luckily, dozens of methods have been developed that could be used to

detect the elements in a CT soil image. However, each method has its own

advantages and limitations, where a particular method was developed in or-

der to overcome the deficiencies of the others. Consequently, the solution

depends on the characteristics of each application, as well as on the type and

quality of the scanner for the image acquisitions, the contrast between the

grey levels, the noise, the resolution, the depth of the pixels (8, 12 or 16 bits),

among others. That is, a solution is always related to the particularities of

the set of CT images of the study. That is to say, the model has to be adapted

for different sets of images. Besides, the images with manual segmentation

(ground truth) are rarely available for the algorithms validation.

As the technology evolves and the quality of the CT images improves, the

defy is to better characterize the complex structure of the soils. This requires

detecting, not only the solid-void spaces, but also other elements that could

help to reach a more accurate description of the soil, allowing a better mod-

elling and understanding of its complexity, what is intended in this work.
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Therefore, the main goal of this work is the detection and quantification of

solid, gravel and solid-void in real soil CT scan images. In this work, we use

three standard algorithms; k-Means, Fuzzy c-Means and Otsu multilevel, as

the results are of great quality for the soil sample studied and the quality

of images available. Besides, the depth representation of grey levels was re-

duced from 16 to 8 bits, and the same tests were realized in order to evaluate

if the quality of results could be maintained or if there was loss of informa-

tion. According to results, it was possible to verify that this was the case and

the results remained practically unchanged except for the slight differences

in micro and medium pores for the two different levels of depth. Namely,

the size, the shape, the homogeneity and the number of elements had a high

degree of agreement. The number of elements was determined directly from

the segmentation results, the size by the number of pixels of each object, the

shape by a comparative analysis of results among the different methods, as

well as the continuity between two consecutive 2D images. Additionally, a

3D reconstruction by element identified was made from the binary images for

the 16 and 8 bits depth. Finally, the homogeneity, or the degree of unifor-

mity, was calculated using a NU measure applied to each particular region,

object or group. Both final comments reinforce the quality of the results.

This document is structured as follows. Section 2 contains the features of a

soil sample, the set of 300-2D real images used in this study, the reduction

from 16 to 8 bits grey level depth, the image segmentation algorithms, the

Non-Uniformity measure and the procedure applied for the detection and
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quantification of the main elements in the images. Section 3 provides the

segmentation results when applying three standard methods, the quantities

of elements in each CT image, the NU values per each 2D soil image, and

the 3D reconstruction using the 300-2D binary images of the dataset. Be-

sides, this section includes a comparison and discussion about the results and

according to the different segmentation methods, the homogeneity of the el-

ements represented by the NU values, the resulting 3D CT soil images and a

comparative analysis between the results with 16 and 8 bits. Finally, section

4 contains the main conclusions of this work.

2. Materials and methods

2.1. Study area and soil sampling

In this work, an intact soil sample (60mm diameter and 100mm height)

was collected from La Herreria located in the low land mountain area of

Sierra de Guadarrama [20]. It represents a highly degraded type of site as a

result of the livestock keeping. Soil sample was extracted from the first layer

(Horizon A) being the result of biological alteration with roots resulting in

fertile soil. This layer is moderately acid, with 2% of organic matter, 0.8%

of Fe2O3 and sandy texture [21].

X-ray CT scanning was performed using a Phoenix v|tome|x m 240 kV sys-

tem (GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany)

at the Hounsfield Facility, University of Nottingham, UK. The scanner con-

sisted of a 240kV microfocus X-ray tube fitted with a tungsten reflection
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target and a DXR 250 digital detector array with 200 µm pixel size (GE

Sensing & Inspection Technologies GmbH, Wunstorf, Germany). A maxi-

mum X-ray energy of 140kV and 200 µA was used to scan the soil core. A

total of 2400 projection images were acquired over a 360◦ rotation. Each

projection was the average of six images acquired with a detector exposure

time of 200 ms and the resulting isotropic voxel edge length was 32 µm.

Reconstruction of the projection images to produce three-dimensional (3D)

volumetric data set was performed using the software datos|rec (GE Sensing

& Inspection Technologies GmbH). The reconstructed CT volume was visu-

alized and quantified using VG StudioMAX R©2.2 (Volume Graphics GmbH,

Heidelberg, Germany). The algorithms used in this work were implemented

in Matlab running in a PC at 2.6 GHz with a processor Intel Xeon ES-2640

v3 CPU and 16 GB of RAM.

The 3D image of the soil sample used in this work is represented by 676 ×

676×300 voxels; Fig. 1 shows a complete 3D image of the soil sample. From

this sample, 300 slices were made through 2D CT images with a resolution

of 676×676 pixels, and a grey level depth of 16 bits. The 2D original images

were in *.TIFF format and Fig. 2 shows some of them.

2.2. Reduction from 16 to 8 bits in the grey depth level

As most of the images in digital image processing hitherto are given in 8

bits, the grey level depth of the images of this work were changed from 16 to

8 bits. The objective was to evaluate if a decrease in number of grey values
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Figure 1: 3D representation of the soil sample.

(a) (b) (c) (d)

Figure 2: Four examples of 2D original images of the soil sample. a) Im 000, b) Im 001,
c) Im 002 and d) Im 299.

influenced the quality of segmentation results. Hence, the grey values were

changed simply by dividing the grey level of each pixel by 28, and rounding

when necessary.

2.3. Algorithms for the segmentation of images

A 2D image is defined in the X1 ×X2 bi-dimensional space where there

is a grey level, in most of the cases, in others it could be any color space,

associated to each position or pixel. These grey values can be considered as

a third dimension L such that the images are defined in X1×X2×L, know-

ing that X1 and X2 depend on the spatial resolution of each image and are
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generally given in pixels more than in dimensional magnitudes, whereas L

depends on the grey value depth of the image that is commonly represented

by 28 or 216 integer grey values. Therefore, representing an image by the

set of pixels (P1 × P2) we get a three-dimensional discrete space defined in

P1×P2×L, where P1×P2 represents the image size. In this case the pixels

have a constant base (p1×p2) and a variable height that depends on the grey

value, a value in the [0, (216 − 1)] interval for 16 bits depth for example.

Now, when there is only one object and the background in an image, both

elements in the P1 × P2 × L space, they are represented by different grey

values. For example, in Fig. 3a there is a simple image of 1× 2× 28. In this

case, the recognition of one object from the other is realized by identifying

a point of separation of objects (pso), or a level, to separate the height of

the space in two groups, as shown in Fig. 3c, one with the darker grey levels

(usually the background and illustrated as Object 1 in the Fig. 3c) and the

other with the lighter grey levels (the object of interest or Object 2 in Fig.

3c). A similar situation happens when there are more than two objects in an

image; the grey scale, or the height of the space, has to be divided according

to the number of objects to identify. See Fig. 3b and 3d for the case of four

objects. The segmentation methods are used to determine the pso as in the

examples of Fig. 3. In a real image the pixels of an object could be a space

not totally connected. This is the case for the pores in the soil images where

they appear as isolated objects in the 2D or 3D images [22].
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Figure 3: Two simple images and identification of objects by division of the L dimension.
a) Image of 1×2×28, b) Image of 1×4×28 c) Identification of two objects, d) Identification
of four objects.

If the images are defined in X1 × X2 × L, the segmentation process can

be interpreted as a function that transforms this space into another simpler,

that is,

f : X1 ×X2 × L→ X1 ×X2 × l (1)

where X1 and X2 represent two spatial dimensions, L the grey scale and l a

reduced set of clusters or groups, that is, l = 0, 65535 for L = 216. See Fig. 4

where each group is related to a range of grey values, that is, gi ⊂ [0, 65535]

for 16 bits and i = 1, . . . , c. The total range of the groups did not necessarily

represent the totality of the grey scale and it depends strongly on the appli-

cation and on each particular image. Therefore, at the end all the grey values

within a group gi are associated to one particular object. The elements of a

particular object can be set white and the rest of elements of the image in
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black in order to evaluate each object in an isolated way. The result, in this

case, is a binary image. However, the elements of each segmented object can

be attributed to a different color such that all the objects can be viewed and

evaluated at the same time.

Figure 4: Greyscale values for L equal to 28 or 216 for 8 or 16 bits respectively.

Two basic principles for image segmentation consist of calculating the centers

or prototypes of the groups (represented by cti in Fig. 4) and the elements

around them to form the different groups or clusters. On the other hand, the

other principle is based on the calculus of thresholds (represented by thi in

Fig. 4) that establish the limits among the groups. The first principle is very

well implemented by clustering methods with the k-Means and the Fuzzy

c-Means (FCM) the most popular algorithms, whereas the second principle

is implemented by multilevel thresholding methods, where Otsu’s method

is the most commonly used. These clustering and multilevel thresholding

methods were used in this work to detect pores, solids and gravel in CT soil

sample images and are described in the following sub-sections.

Both clustering algorithms, k-Means and FCM, are convergent although they

always find a local minimum and there is no possibility to know if a given

solution is, in fact, the global minimum. In fact, the initial state has a great
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influence on the solution. Therefore, the common practice is to execute them

repeatedly although each time using a new random initial condition[23] to

retain the solution with the smallest criterion value. The drawbacks of these

algorithms are the effect of noise, overlapping clusters and the increasing

dimensionality. Fig. 5 shows an example on the procedure using these meth-

ods.

Figure 5: Segmentation of a digital image for clustering algorithm in the greyscale for 8
bits. a) Original image IO, b) original image IO represented with the grey values in L, c)
array as a transpose vector V T

IO
of the original image for image processing, d) segmentation

(by clustering) results as a transpose vector V T
IS

in two clusters or regions, e) segmented
image IS and f) binary image IB .
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The k-Means algorithm allows the identification of k clusters through a rep-

resentative element given like a center, mean value or a prototype µh of each

cluster. The initial µh are established randomly and a distance is calculated

between them and each data point xi, so that each data point is assigned

to the cluster with the nearest center. Once all the data points were redis-

tributed, the centers or mean values are recalculated. That is,

µ
(k)
h =

∑
x∈Xh

p(x)x∑
x∈Xh

p(x)
, h = 1, 2, . . . , k (2)

and stops when one of the following criteria is satisfied,

• If Jh = min
{µ1,µ2,...,µk}

∑
h=1

∑
x∈Xh

‖x− µh‖2 < ε, then stop, or

• If ‖µ(k)
h − µ

(k−1)
h ‖ < ε then stop.

This algorithm is sensitive to initial conditions and can be affected by the

variation of size in clusters, shapes, densities and outliers. In fact, if the

method is based on the Euclidean measure for the distance calculus, each

cluster is approached by a spherical distribution.

The FCM algorithm minimizes an objective function that depends on a set

of prototypes vj directly related to a given number of c clusters, and the

distance of the prototypes to the whole set of patterns xi. Consider a set

of n unlabeled patterns or data points X = {x1, x2, , xn} in a p dimensional
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space, that is, x1 ∈ Rp, where p represents the dimension and each dimension

represents a feature of the patterns. Based on the Euclidean distance, the

objective function of the FCM algorithm to be minimized is

Jm(U, V ) =
c∑
j=1

n∑
i=1

(µij)
md2ij (3)

where U is the matrix of membership values whose elements are µij, which

represents the membership value of the ith pattern to the jth cluster, V is

the vector of prototypes, d2ij = ‖xi − v(k)j ‖2 is the Euclidean norm where v
(k)
j

corresponds to the prototype of the cluster jth at iteration k and, finally,

m ∈ (0,+∞) is a parameter that controls the fuzziness, usually m = 2.

The membership values, however, have to satisfy the following constraints:

µij ∈ [0, 1], i = 1, 2 . . . , n, j = 1, 2, . . . , c,
∑c

j=1 µij = 1, i = 1, 2, . . . , n and

0 <
∑n

i=1 µij < n, j = 1, 2, . . . , c, and induces a fuzzy partition, represented

by the matrix Mfc of dimension (c× n), and given by

Mfc = {U ∈ Rc×n|µij ∈ [0, 1],∀i, j;
c∑
j=1

µij = 1,∀j = 1, c; 0 <
n∑
i=1

µij < n,∀i = 1, n}

(4)

By using the Lagrange multiplier technique, the previous problem can be

solved as an unconstrained optimization problem that conducts to the fol-

lowing expressions when minimized with respect to the prototypes and to
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the membership values, respectively,

µkij =
1∑c

k=1(
dij
dik

)
2

(m−1)

, i = 1, 2, . . . , n, j = k = 1, 2, . . . , c (5)

vkj =

∑n
i=1(µ

(k−1)
ij )mxi∑n

i=1(µ
(k−1)
ij )m

, j = 1, 2, . . . , c (6)

According to [24], half of the FCM applications are on image analysis.

Thresholding is the most used technique for the image segmentation based

on grey values corresponding to the objects of interest and the background.

The purpose of using the method is to find an appropriate threshold (th) to

separate and object of interest from another. When there are only an ob-

ject and the background, the result is a binary image where pixels with grey

values greater than the threshold represent the object, and the remaining

pixels are associated to the background, or vice versa. When it is necessary

to identify more than two objects, that is, {C1, C2 . . . CK}, where K repre-

sents the number of classes or objects, a threshold has to be identified to

establish the division between each pair of objects, what is known as multi-

level thresholding. The thresholding methods are no parametric algorithms

as they use variance, entropy and minimal error as criteria for classification

and validation on the threshold quality.

The Otsu’s method [5] is one of the most popular algorithms based on the

histogram thresholding, as it allows the calculus of an optimum threshold
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through the variance maximization between classes. This method has been

used across a wide range of different research fields. For example, for the seg-

mentation of medical images; as those of the brain or MRI [25] for the lung

[26], for microcalcifications in mammograms [27], or for the segmentation of

soil images [28], [29], [30], [31].

The Otsu’s method [13] is a non-parametric procedure that finds an optimal

threshold by the variance maximization between-classes in a sweep of the

whole space of grey values and considering as criterion the weighted sum of

variances, that maximizes the separation between cluster means [17]. In that

way, there is no need for previous information about the image to be seg-

mented. According to the principle of operation, the Otsu method works well

with images that have a bi-modal histogram for the image segmentation in

two classes, something quite common in soil images. Therefore, for a digital

1-D image I represented in L grey levels, that is the set {0, 1, 2, , L− 1}, the

histogram can be built using the frequency of grey values according to the

color of the pixels. In other words, H = {f0, f1, . . . , f(L−1)}, where fi denotes

the number of pixels with gray level i whereas N = f0 + f1 + . . . + fi(L−1)

represents the total number of pixels in the image. However, the method is

based on the occurrence probability that, for the ith grey level, is given by

pi = fi/N, pi ≥ 0 and
∑(L−1)

(i=0) pi = 1.

For the segmentation of K groups or classes {C1, C2, . . . , CK}, the Otsu

method has to find (k− 1) thresholds, that is T = {t1, t2, . . . , tK−1}, keeping

an order relation t1 < t2 < · · · < tK−1 and ti ∈ (0, L − 1), i = 1, . . . , K − 1.
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For each cluster Ck, the cumulative probability wk and the mean grey value

µk are given by:

wk =
∑
i∈Ck

pi (7)

µk =
∑
i∈Ck

i× pi
wk

, k ∈ {1, . . . , K} (8)

while the whole image mean intensity µT and the between-class variance σ2
B

are given by

µT =
K−1∑
k=1

wk × µk =
L−1∑
i=0

i× pi (9)

and

σ2
B =

K−1∑
k=1

wk × (µk − µT )2 =
K−1∑
k=0

wk × µ2
k − µ2

T (10)

Therefore, the optimal threshold values can be obtained by maximizing the

between-class variance as follows:

(t∗1, t
∗
2, . . . , t

∗
K−1) = max{σ2

B(t1, t2, . . . , tK−1)}, 0 < t1 < t2 . . . < tK−1 < L−1

(11)

through the computation of the normalized histogram (pi, i = 0, 1, 2, . . . , L−

1) the cumulative sums Pi(k) =
∑k

i=0 pi, the cumulative means m(k) =∑k
i=0 ipi for k = 0, 1, 2, . . . , L− 1, the global intensity mean, mg =

∑L−1
i=0 ipi

and the between-class variance σ2
B(k) = [mGPi(k)−m(k)]2

Pi(k)[1−Pi(k)]
.
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2.4. Non-uniformity measures

The region non-uniformity measure can be applied to assess the quality of

segmentation, even when the ground-truth information is not available [32],

[33]. This criterion is calculated as:

NU =
P

T
· σ

2
P

σ2
(12)

where P represents the number of pixels of a pore, a solid or the gravel and

T the totality of pixels in the segmented image, σ2
P and σ2 are the variance

of grey-scale values in the pore, solid and gravel space and total variance in

the simulated greyscale image, respectively.

2.5. Procedure for the detection and quantification of the main elements in

2D CT soil images

The Fig. 6 presents a flow chart illustrating the methodology, and next

there is a detailed description of the proposed methodology to identify pore,

solid and gravel spaces and, for this work, using the standard clustering

algorithms for the image segmentation.

I. Selection of the total set of 2D images of the soil sample (with depth

of 8 or 16 bits).

II. Individual segmentation of the 2D images in three regions with the

algorithms: k-Means, Fuzzy c-Means and Otsu multilevel method.
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III. Generation of the binary images for each of the three identified regions

(pores, solids and gravel).

IV. Calculus of the statistical parameters (number and percentage of pores

and solids, mean value for each region, etc.) for each 2D image.

V. Calculus of the NU values for each segmented region (pore, solid and

gravel) in each individual 2D image.

VI. Evaluation of the segmentation quality based on the NU values; the

closer the NU values to zero, the better the segmentation results.

VII. With the set of binary images for the pores and the solids, stack them

in the corresponding order such that the 3D reconstruction is possible.

VIII. Interpolation between each pair of consecutive 2D binary images allows

completing the 3D approximation of the pore and solid structures of

the soil simple.

3. Computational results and analysis

3.1. Segmentation

Due to the great similarity of results with the three methods, k-Means,

FCM and Otsu, only the segmentation results of the FCM are included in Fig.

7. However, the graphics for the non-uniformity values, the number of pores

and solids, the percentage of pores, solids and gravel, as well as the number

of pores and solids by size are given below, where the differences among the

results can be evaluated. The segmentation results of four original images
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Figure 6: Flow chart that illustrates the detection and quantification methodology of pore,
solid and gravel spaces in 3D CT real soil samples.

with the FCM algorithm in three regions (pore, solid and gravel spaces) are

shown in Fig. 7. The first column (Fig. 7(a, e, i and m)) contains the original

images, the second column (Fig. 7(b, f, j and n)) the binary images of the

pores represented in black color, the third column (Fig. 7(c, g, k and o)) the

binary images of the solids in black color and the fourth column (Fig. 7(d,

h, l and p)) the binary images of the gravel in black color. In order to have

a more quantitative estimation on the quality of the segmentation results,

the NU measure was applied to every object of interest in every 2D image of

the total set of 300 images of the soil sample using the three segmentation

methods (k-Means, FCM and Otsu). The results are presented according to

21



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7: Original images with depth of 16 bits (a) Im 000, (e) Im 001, (i) Im 002, (m)
Im 299. Binary images segmented with the FCM algorithm: (b, f, j, n) pore spaces
represented in black color, (c, g, k, o) solid spaces represented in black color, (d, h, l, p)
gravel represented in black color.
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the depth of the image. Therefore, Fig. 8 contains the results for the images

with a depth of 8 bits, whereas Fig. 9 contains the results for a depth of 16

bits. In these images the NU values of each object of interest (pores, solids

and gravel) are plotted independently.

Figure 8: NU values corresponding to the objects of interest (pores, solids and gravel) in
each one of the 300 images of the soil sample with depth of 8 bits.

As can be observed in Fig. 8 and Fig. 9, the NU values for the three objects

of interest are very close to zero, that is, only in a few cases for the solids does

the NU values exceed 0.1. Although the results for the depth of 8 bits show

a greater variation, they are still very small and with NU values comparable
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Figure 9: NU values corresponding to the objects of interest (pores, solids and gravel) in
each one of the 300 images of the soil sample with depth of 16 bits.

to those of the depth of 16 bits. That means that the segmented regions

are very homogeneous with the lowest and more stable values for the pore

spaces, so these are the most homogeneous regions with NU values ranging

between 0.03 and 0.05. The NU values for the solid spaces are less stable

and present some peaks, the higher one located between the images 50 and

70. This phenomenon is explained by the fact that there exist several white

solid spaces in the original images that clearly differs from the rest, and this

reduces the homogeneity of the segmented regions of solids.

According to the results in Fig. 8, the calculated NU values for the three

24



segmentation methods are very close, with more important variations in some

images for the k-Means and Otsu methods, even though the NU values are

very low in all cases. These results are closer for the three methods in the

totality of images with 16 bits depth with the exception of the k-Means for

the pore spaces that gives globally higher values. On the other hand, the

NU values for the results regarding the pores and the gravel with depth of

16 bits show some correlation, as can be seen in Fig. 9.

3.2. Number of pores and solids

Once the pore, solid and gravel spaces were identified in the 300-2D im-

ages and their homogeneity was through the NU values, with very good

results as shown in Fig. 8 and Fig. 9, the pores and solids were counted in

every single 2D image and the results are plotted in Fig. 10 for the images

with depth of 8 bits and in Fig. 11 for a depth of 16 bits. In this last case the

results are very similar as can be appreciated in the graphs. On the other

hand, the results for the images with depth of 8 bits are more variable but

with comparatively close values. For the 2D images with depth of 16 bits,

the number of pores ranges approximately from 2100 to 3100, and the num-

ber of solids from 3600 to 5000, as can be seen in Fig. 11. The graphs of the

results using the different methods are very close, so they can be considered

similar. On the other hand, the reduction on precision by reduction on the

depth from 16 to 8 bits of the 2D images, results in an increase of variations

on the quantifications of the number of elements. See Fig. 10. This is a
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Figure 10: Total number of pores and solids in each individual 2D image of the soil sample
with depth of 8 bits.

Figure 11: Total number of pores and solids in each individual 2D image of the soil sample
with depth of 16 bits.

consequence of the loss of micropores due to the thicker discretization, on

the one hand, and the separation of the pores due to the discretization of the

intermediate gray levels in some pores, on the other hand.
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3.3. Size of pores and solids

Simultaneously to the identification of the pores and solids, the number

of pixels of each object was determined so its corresponding size could be

calculated. Due to the great quantity of objects and variations in size, these

were divided in three groups as shown in Fig. 12 to Fig. 15. The correspond-

ing groups are pores or solids represented by: one pixel, two to 100 pixels and

more than 100 pixels. Besides, these are divided by the depth of the images,

that is, for 8 bits or 16 bits. Observing Fig. 12 and Fig. 13, the number

Figure 12: Total number of pores with size: a) of one pixel, b) 1 < pixels ≤ 100, and c)
100 < pixeles (images with depth of 8 bits).

of pores of one-pixel size varies between 580 and 900, the number of pores
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Figure 13: Total number of pores with size: a) of one pixel, b) 1 < pixels ≤ 100, and c)
100 < pixeles (images with depth of 16 bits).

of intermediate size varies from 1500 to 2100 and the bigger ones between

110 and 160. Generally, more small and medium pores were identified with

the k-Means, whereas the FCM and the Otsu methods gave similar results.

Besides, the results were more dispersed when the 2D images with 8 bits

depth were used, which is in agreement with the division of some pores due

to the discretization in a smaller number of grey values.

Similarly, the number of solids are given by size in Fig. 14 and Fig. 15.

As with the pores, the solids were divided in three groups corresponding to

objects of one pixel, two to 100 pixels and more than 100 pixels. The number
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of smallest solids vary between 880 and 1400, the quantity of medium solids

between 2500 and 3600 and the number of bigger solids between 160 and 225.

In general, the k-Means and the Otsu method presented larger variations.

Figure 14: Total number of solids with size: a) of one pixel, b) 1 < pixels ≤ 100, and c)
100 < pixeles (images with depth of 8 bits).

3.4. Quantification of pore, solid and gravel spaces

Once the number of pores and solids, as well as their sizes were available,

it was possible to determine their corresponding percentage in each 2D image.

The corresponding results are plotted for each individual 2D image in Fig. 16

and Fig. 17 for a depth of 8 and 16 bits respectively. According to these

results, the percentage of pores varies between 14 and 17%, the percentage
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Figure 15: Total number of solids with size: a) of one pixel, b) 1 < pixels ≤ 100, and c)
100 < pixeles (images with depth of 16 bits).

of solids between 20 and 32% and the gravel space between 53 and 64%.

These results show the homogeneity in the soil studied. Besides, the graphs

of solids and gravel of Fig. 16 and Fig. 17 show an inverse correlation, which

means that as the solids increases within an image, the gravel reduces and

vice versa. This result is independent on the depth of the grey level and the

segmentation method, although the results for a depth of 16 bits are more

clearly defined.
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Figure 16: Percentage of pores, solids and gravel according to the segmentation process
in images with depth of 8 bits.

3.5. Quantification of results with global data

In order to evaluate how close the results were obtained with the k-Means,

FCM and Otsu methods, in this section we analyze the number of elements

and their uncertainty, the magnitude of errors when comparing the segmen-

tation methods and the global percentages. This analysis includes the reduc-

tion on the depth of the 2D images from 16 to 8 bits. As can be observed in

Table 1, the number of pores remains very stable no matter the method or

the depth of the images. The reduction on the depth affected the results of

the k-Means although it improved the results of the FCM and Otsu methods.
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Figure 17: Percentage of pores, solids and gravel according to the segmentation process
in images with depth of 16 bits.

This stability is also observed when considering the mean number of solid

spaces independently of the segmentation method or the depth. However,

for the solid spaces there is a loss in precision about 2.2% in average, and

this is the most important loss identified resulting from the reduction of the

depth of the 2D images. The uncertainties reported in Table 1 are the result

of image processing, as well as the variation of the elements through the total

set of images. This can be seen in Fig. 14 and Fig. 15, or even in Fig. 18

where there are pores that begin, or end, in the first or last image, or pores

only present in some intermediate images.
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Pores Solid
Algorithm \ depth 16 bits 8bits 16 bits 8 Bits

k-means 2606± 10.2% 2642± 13.4% 4256± 11.6% 4239± 14.6%
FCM 2526± 10.5% 2527± 10.1% 4302± 12.3% 4308± 14.2%
Otsu 2527± 11.1% 2559± 09.0% 4427± 12.8% 4444± 14.4%

Table 1: Mean number of pores and solids and their uncertainty according to the segmen-
tation method in the 300-2D images.

In Table 2 there are the relative errors when comparing the k-Means and the

Otsu methods against the FCM. According to the results, the FCM and the

Otsu methods got very similar results for the pores and the k-Means results

were further away. A different situation occurred with the solids as the k-

Means gave closer results to the FCM and the results of the Otsu method

were more distant. Therefore, the values of Table 2 suggest that the better

algorithm from those reported there for the identification of pores and solids

is the FCM, since in both cases there is another algorithm that supports it

with very similar results.

Pores Solid
Algorithm \ depth 16 bits 8bits 16 bits 8 Bits

k-means 3.11 4.35 1.8 1.63
Otsu 0.04 1.25 2.82 3.06

Table 2: Global errors of the k-Means and Otsu methods regarding the FCM method.

The mean percentages of pore, solid and gravel spaces are reported in Table

3 where there is a great agreement between the methods that are not affected

by the reduction on the depth of the 2D images.

Due to the type of soil, which has a very homogeneous structure, it has been
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Pores Solid Gravel
Algorithm \ depth 16 bits 8bits 16 bits 8 Bits 16 bits 8 Bits

k-means 15.62 15.77 24.73 24.67 59.65 59.56
FCM 15.20 15.20 24.91 24.93 59.89 59.87
Otsu 15.21 15.37 25.43 25.51 59.36 59.12

Table 3: Mean percentage of pores, solids and gravel according to the segmentation method
applied to the 300-2D images.

identified with three standard algorithms based on two different segmenta-

tion criteria, obtaining very similar results. However, less homogeneous soil

images may require preprocessing, which induces some loss of information,

the use of more sophisticated and robust segmentation algorithms, or even

the improvement of some existing algorithms with which we can determine

the particularities of the type of soils or samples. As the homogeneity de-

creases, the quality of the results also decreases. This explains why there are

many published works only dealing with the pores identification, and until

recently the interest arose to identify more elements in samples in order to

better characterize the soils.

3.6. 3D reconstruction of the identified pore spaces within the soil sample

Given the difficulty to differentiate the segmentation results of pores,

solids and gravel through the 2D images, as the k-Means, FCM and Otsu

methods gave very close results; in this section, we include 3D reconstruction

of the pores and solids. Initially, in Fig. 18, we included the larger pores

and solids found in 10 consecutive images and using the k-Means algorithm,

the simplest one. The purpose of this reconstruction is to evaluate the size,

shape and continuity of pores and solids in the set of images. The great
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coincidence of the objects through the images contribute to the validation

of the results. The Fig. 18a shows the continuity of pores in the 10 images

with depth of 16 bits, whereas Fig. 18b the continuity of solids.

(a) (b)

Figure 18: Stack of 10-2D images segmented with the k-Means algorithm. (a) Pores with
size superior to 100 pixels. (b) Solids with size superior to 100 pixels.

After a partial evaluation of the pores and solids in a 3D reconstruction, the

totality of results corresponding to the pores and solids were used to approx-

imate the total soil sample. Therefore, Fig. 19 contains the approximation

of the pores but divided in two groups for a better appreciation, one group

containing the pores with sizes no greater than 100 pixels (equivalent to 320

microns), which is represented in Fig. 19a. The other group corresponding

to the pores with more than 100 pixels and represented in Fig. 19c. Both

images also include the corresponding 3D orthoslice, which allows us to have

an interior view of the 3D reconstruction of the sample and where the pores

can also be evaluated qualitatively. The total 3D reconstructions are based

on the FCM segmentation results and images with depth of 16 bits.
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(a) (b)

(c) (d)

Figure 19: Image of the 3D reconstruction of the porosity using the FCM clustering
algorithm and depth of 16 bits. (a) Pores smaller or equal to 100 pixels and (b) 3D
orthoslice, (c) pores greater than 100 pixels and (d) 3D orthoslice.

A similar reconstruction was made for the solids. The results are provided in

Fig. 20 where the solids were also divided in two groups according to their

size, so solids with 100 pixels or less are represented in the 3D approximation

of Fig. 20a, and solids with size superior to 100 pixels in Fig. 20b. By a

comparative analysis with the Fig. 19 results, the solids have a more regular

form and are also more isolated than the pores since there is almost no

connection between them. The orthoslices also provide an internal view of

the 3D sample and allow a qualitative evaluation of the solids.

The correspondence and continuity of pores and solids through the 2D images
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can be seen as a qualitative criterion to evaluate the results and we can

say that they were correctly identified. Besides, the stability of the results

through the 300 images is an indication that the composition remains with

little changes within the whole soil sample.

(a) (b)

(c) (d)

Figure 20: Image of the 3D reconstruction of the solids using the FCM clustering algorithm
and depth of 16 bits. (a) Pores smaller or equal to 100 pixels and (b) 3D orthoslice, (c)
pores greater than 100 pixels and (d) 3D orthoslice.

4. Conclusions

According to the results, the pore, solid and gravel spaces were very well

identified by the k-Means, FCM and Otsu methods, as the corresponding NU

values were, most of them, inferior to 0.1, which corresponds to very homo-

geneous groups identified in each 2D image of the 300 set of the soil sample.

37



Therefore, the size, geometry and connectivity of the objects between two

consecutive 2D images have a great correspondence, and this is clearly ob-

served through the 3D reconstruction of the soil sample from the total set of

2D binary images representing the pores and the solids. Besides, this repre-

sentation allows visualization of the distribution of pores and solids such that

the porous and solid structures can easily be evaluated. Consequently, the

homogeneity of objects also helped the segmentation process, which has been

examined by three methods in this work providing similar results, especially

for the macro pores and solids, although there are some relative differences

when comparing micro and medium pores and solids, particularly with the

micro pores reaching a difference approximate of 2.2%. These micro pores

and solids (objects of a pixel) will be analyzed more thoroughly in the future

to know what they are: pores, solids or noise.

Additionally, the depth of the original 2D images was reduced from 16 bits to

8 bits and the same test were performed resulting comparable object classifi-

cation and NU values, with objects very well segmented and with very homo-

geneous features. In both cases of pixel’s depth, the segmentation methods

were applied directly to the original 2D images, and the most notorious dif-

ferences were related to micro and medium pores, as there was some loss of

information, showing a size variation between 0 and 8%. On the other hand,

the macro pores and solid space remained practically unchanged keeping the

same size, or the same number of pixels. Similarly, we attribute this result to

the kind of soil and the high quality of the images where a depth of 8 bits and
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the simplest clustering algorithm, as the k-Means, worked very well. Finally,

as the imaging technology advances, X-ray CT in this case, it is likely that

there will be enhanced imaged quality and phase contrast allowing a greater

possibility of better structure/feature definition and, therefore, an increasing

on the number of very well identified objects in soil samples.
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