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Multipartite entanglement in a Josephson junction laser
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We analyze the entanglement in a model Josephson photonics system in which a dc voltage-biased Josephson
junction couples a collection of cavity modes and populates them with microwave photons. Using an approximate
quadratic Hamiltonian model, we study the Gaussian entanglement that develops between the modes as the
Josephson energy of the system is increased. We find that the modes in the system fall into a series of blocks,
with bipartite entanglement generated between modes within a given block. Tripartite entanglement between
modes within a given block is also widespread, though it is limited to certain ranges of the Josephson energy.
The system could provide an alternative route to generating multimode microwave entanglement, an important
resource in quantum technologies, without the need for ac excitation.
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I. INTRODUCTION

Combining superconducting cavities with a dc-biased
Josephson junction (JJ) provides a highly tunable source of
nonclassical microwave photons. When a voltage V is applied,
a single Cooper pair can generate one or more photons with a
total energy up to 2 eV [1]. The strong nonlinearities arising
from the JJ and the ultrastrong couplings that can be achieved
lead to squeezing and photon blockade [2], while also en-
abling multiplets of up to six photons to be generated by a
single Cooper pair [3–6]. Such devices can also be harnessed
to amplify the photon number of an input signal [7] or to re-
alize quantum thermodynamic systems such as thermometers
[8] or heat engines [9]. When a tunneling Cooper pair gen-
erates photons in different modes, the simultaneous creation
process can lead to entanglement. Recent experiments probed
the entanglement generated in this way in two modes [10] and
theoretical work has explored how three or more modes can
be entangled by having their photon energies sum to that of a
Cooper pair [11].

While systems where the bias voltage is chosen to drive a
single resonant photon creation process involving one or more
microwave modes have been extensively investigated, rather
less attention has been devoted to more complex cases where
the existence of multiple equally spaced modes means that
more than one process is simultaneously resonant [12]. One
system that exploits simultaneous resonances is the Josephson
junction laser (JJL) [13–16]. The JJL contains a set of equally
spaced cavity modes, ωn = nω1, where ω1 is the fundamental
mode and n is an integer, to which a dc bias voltage is applied

*Current address: Faculty of Engineering, University of Notting-
ham, Nottingham NG7 2RD, UK.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

that is chosen to produce a Josephson frequency resonantly
matching a higher harmonic: ωJ = 2eV/h̄ = pω1, with p an
integer greater than one. Thus a tunneling Cooper pair can
resonantly excite many different photon combinations; some
important examples include creating one photon in mode p,
a photon in each of two modes m and p − m, or a photon in
mode 2p with the simultaneous annihilation of a photon from
mode p.

Exactly which modes are excited is determined by the
interplay between the strongly nonlinear dynamics of the
JJ, the Josephson energy, which acts as an effective drive
strength, and dissipation. As the strength of the drive is in-
creased, the system reaches a threshold where it undergoes a
transition in which the fundamental mode becomes strongly
excited, displaying laserlike behavior [13], and the discrete-
time-translational symmetry set by the Josephson frequency
is broken [15].

Above the transition, all of the cavity modes become ex-
cited in the JJL, leading to a spectrum that forms a comb with
peaks spaced by the cavity free spectral range, ω1. In contrast,
below the transition, only those cavity modes with frequencies
that are an integer multiple of ωJ are activated, producing a
sparser frequency comb. In the terminology of quantum cas-
cade lasers, the symmetry-unbroken regime gives a harmonic
frequency comb, while the symmetry-broken one produces a
dense frequency comb [17]. Very recent experimental work
demonstrated the formation of the dense comb spectrum in
the JJL [16]. The fact that only a dc bias is required makes the
JJL a simple, low-power route to frequency comb generation
in the microwave regime [16].

In previous work, we used a classical (mean-field)
approach to investigate how the time-translational symmetry-
breaking transition occurs in a simple model of a JJL system
[15]. However, the couplings generated between multiple
modes in the JJL suggest that it should be a very promising
system to look for entanglement. Indeed, Gaussian entangle-
ment has already been explored in experiments on JJ-cavity
systems [18–20], though these used microwave tones at dif-
ferent frequencies to excite the modes rather than a simple
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FIG. 1. (a) Schematic of a coplanar waveguide cavity supporting
a set of harmonic modes that are equally spaced in frequency. The ap-
plied dc voltage (V) and the Josephson Junction (JJ) together produce
a strongly nonlinear drive that also couples the modes. (b) Simplified
circuit of the system consisting of an LC oscillator for each mode, all
in series with each other and the JJ.

dc bias. Furthermore, large-scale entanglement is well known
in frequency comb systems in the optical regime [21,22], has
been predicted in vibration frequency combs [23], and has
also been very recently found in the microwave frequency
regime as well using a bichromatically pumped superconduct-
ing circuit [20].

In this paper, we go beyond mean-field descriptions, devel-
oping an approximate Gaussian description of the quantum
state of the multimode JJL which enables us to explore the
entanglement produced by the dc-biased JJ. We find that
entanglement emerges well below the transition and charac-
terize the patterns of bipartite and tripartite entanglement that
emerge. We also find that the choice of voltage controls the
nature of the entangled steady states that emerge, with high
voltages producing many independent entangled mode pairs
and lower voltages instead entangling the modes into larger
families.

The outline of this paper is as follows. We introduce our
model of the Josephson-laser system in Sec. II and then,
in Sec. III, describe how an approximate effective Gaussian
Hamiltonian can be derived by expanding around a fixed point
of the system’s classical dynamics. We check the validity of
our approximate Gaussian approach using a simplified three-
mode system in Sec. IV and then explore multimode bipartite
entanglement in Sec. V. We investigate tripartite entanglement
in Sec. VI and then present our conclusions in Sec. VII.

II. MODEL

The system we consider is schematically illustrated in
Fig. 1. It consists of a microwave cavity which supports a set
of harmonic modes in series with a JJ. The dc-bias voltage V
and the JJ together lead to an effective ac drive with frequency
ωJ = 2eV/h̄, which acts on the cavity modes while also cou-
pling them together [24]. A cavity containing N modes can be
described by a Hamiltonian [11,15,24,25],

Ĥ (t ) =
N∑

n=1

h̄ωnâ†
nân − EJcos

[
ωJt +

N∑
n=1

�n(â†
n + ân)

]
, (1)

with EJ is the Josephson energy and ân is the annihilation
operator for the nth mode with angular frequency ωn = nω1,
with ω1 the fundamental, where we assume the modes are
equally spaced [16]. The �n(â†

n + ân) terms capture the dis-
placements of the cavity modes, with �n =

√
2e2/(Cωn) the

corresponding zero-point mode displacements for a cavity
with capacitance C [24]. The leakage of photons out of the
cavity modes is accounted for by using a Lindblad master
equation [5,11,15,26,27] to describe the evolution of the sys-
tem’s density operator,

ρ̇ = − i

h̄
[Ĥ (t ), ρ] +

∑
n

γn

2
J [ân]ρ, (2)

where J [ân]• = 2ân • â†
n − â†

nân • − • â†
nân, γn is the loss

rate of mode n and we have assumed that the surroundings
of the cavity are at zero temperature [28].

Following [15], we will assume a hard cutoff in the number
of modes, N , and a constant loss rate γn = γ [13,14]. In
real devices, the behavior will inevitably be more complex.
Indeed, one typically expects variations in the damping rate to
eventually become important as the mode index is increased
[29], leading to an effective decoupling of high-frequency
modes, but the details of how this occurs will depend on
precisely how the JJL is engineered and we will not attempt
to describe it here.

We consider a voltage so that the Josephson frequency
matches the pth mode of the system, ωJ = ωp + δ = pω1 + δ,
with δ a possible small detuning. This choice of Josephson
frequency means that a whole range of different photon gen-
eration and exchange processes will simultaneously become
resonant in the multimode system [12,15]: from a process
where a single photon is created in the p mode at lowest order,
all the way up to cases where p photons are generated in the
fundamental mode [3,5]. Assuming that the damping is weak
so that resonant processes dominate the dynamics, we obtain
an effective time-independent Hamiltonian by transforming to
a rotating frame using

Û (t ) = exp

[
i

N∑
n=1

n(ωJ/p)â†
nânt

]
,

and then make a rotating wave approximation (RWA) by
neglecting terms that oscillate rapidly in time [5,15,24,25].
After some algebra, the Hamiltonian can be expressed in the
compact form [15],

ĤRWA =
N∑

n=1

h̄δnâ†
nân − ẼJ

2

[
Z �q

p (�̂x) + H.c.
]
, (3)

where x̂n = 2i�nân, �q = (1, 2, . . . , N ), ẼJ =
EJ exp[−∑N

n=1 �2
n/2], H.c. is the Hermitian conjugate,

and δn = −(n/p)δ. The Z functions are multidimensional
functions with an appropriate number of arguments,
Z �q

p (�̂x) = Zq1,q2,...,qN
p (x̂1, x̂2, . . . , x̂N ). They provide a compact

description for a normally ordered power series of the mode
raising and lowering operators, taking the form of analytic
continuations of multidimensional Bessel functions [12].
The formulation in terms of Z functions is useful as they are
straightforward to manipulate analytically (e.g., differentiate)
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and they are easily evaluated numerically when they take
complex number (rather than operator) arguments. Although
they are described in detail in Refs. [12,15], we also provide
a short summary of the properties of the Z functions in
Appendix A for completeness.

III. GAUSSIAN EFFECTIVE HAMILTONIAN

Previously, we analyzed the mean-field dynamics of the
system using a coherent-state ansatz in which the modes are
assumed to be in coherent states described by time-dependent
complex amplitudes [15]. This leads to an approximate de-
scription of the average amplitudes of the modes which evolve
according to a set of coupled classical equations of motion. To
investigate entanglement, we must necessarily go beyond this
simple picture, but the complex couplings between multiple
modes makes a full quantum description extremely challeng-
ing, even numerically, for all but the simplest of cases. We
therefore develop an effective quadratic Hamiltonian descrip-
tion for the system [27], obtained by expanding about a
fixed point of the classical dynamics, keeping only terms of
quadratic order, thereby assuming the modes are in a Gaussian
state.

The quadratic Hamiltonian allows us to describe squeez-
ing, as well as quantum correlations between the modes
[30,31]. Based on tests of the corresponding quadratic Hamil-
tonian for a simpler single-mode system [27], we expect
the Gaussian approximation to work well when the quantum
fluctuations are relatively small. This requires small zero-
point uncertainties for the modes [27] (i.e., �1 � 1, which
is the case for standard microwave cavities [2,32]), parameter
regimes where the classical dynamics of the system has a
single fixed point [12], which is the case below the symmetry-
breaking transition, and that the system should not be too close
to a dynamical transition (i.e., a bifurcation in the classical
equations of motion). We further check these expectations
against numerical solutions of the full quantum dynamics for
a three-mode system in Sec. V.

To obtain the approximate Gaussian Hamiltonian of the
system, we need to expand (3) about a fixed point of the
classical amplitude dynamics. The fixed point amplitudes of
the modes, �α = (α1, . . . , αn), were analyzed in [15], where
it was shown that they are the solutions of the set of the
simultaneous equations,

αn = − 2i

h̄γn

∂HRWA(�α)

∂α∗
n

, (4)

with HRWA(�α), the classical Hamiltonian of the system,
obtained from Eq. (3) by replacing the raising and lower-
ing operators by the corresponding amplitudes [15,27], e.g.,
â(†)

n → α(∗)
n .

Encoding the fixed point amplitudes in the vector, �x0 =
(2i�1α1, . . . , 2i�NαN ), and expanding about the classi-
cal fixed point to second order, we obtain the Gaussian
approximation to the RWA Hamiltonian,

ĤG−RWA(�̂x) =HRWA(�x0) + (x̂ − x0)∇HRWA(�x0)

+ 1

2!
(x̂ − x0)T Hess[HRWA(�x0)](x̂ − x0), (5)

where Hess indicates the Hessian matrix. Note that the gra-
dient and Hessian are calculated in an expanded basis with
2N components since each mode contributes two degrees of
freedom [27]. We distinguish vectors that span all 2N degrees
of freedom by representing them in boldface, in contrast to
nonbold vectors (e.g., �x0) which here contain N components;
thus, for example, x̂ = (x̂1, x̂†

1, x̂2, x̂†
2, . . . , x̂N , x̂†

N ).
We proceed by displacing to a frame centered on the clas-

sical fixed point [27] by defining ρ̃ = D̂†(�α)ρD̂(�α), with

D̂(�α) = exp

[
N∑

n=1

(
αnâ†

n − α∗
n ân

)]
.

The master equation for ρ̃ has the same form as Eq. (2),

˙̃ρ = − i

h̄
[ĤQ, ρ̃] +

∑
n

γn

2
J [ân]ρ̃, (6)

but with an effective Hamiltonian ĤQ, which is now purely
quadratic [27] [defined in Eq. (7) below]. This master equa-
tion can now be used to obtain the closed set of equations of
motion for the expectation values of the quadratic operators,
e.g., 〈ânâ†

m〉, 〈ânâm〉. The resulting set of 2N2 + N coupled
linear equations is solved numerically to obtain all of the
second moments of the corresponding Gaussian steady state
from which the squeezing and entanglement properties can
then be determined as we describe below. This set of second
moments fully characterizes the Gaussian steady state (since
the displacement ensures that the first moments are all zero)
and are conveniently collected into a covariance matrix.

Note that the linear coupled equations for the second mo-
ments come quite close to the equations that arise from a
classical stability analysis of the fixed points of Eq. (4), such
as that carried out in Ref. [15]. However, Eq. (6) includes not
just damping, but also quantum noise (which is not captured in
a classical stability analysis) and both ingredients are required
to calculate the moments correctly.

For the on-resonance case (where δ = 0), we exploit the
properties of displaced Z functions (see Appendix B) to obtain

ĤQ = 1
2 (â†)T diag(�)M diag(�)â, (7)

with � = (�1,�1,�2,�2,�3, . . .), diag(�) the diagonal
matrix of the same entries, â = (â1, â†

1, â2, â†
2, . . .) and the

matrix M is defined as

Mab = ẼJ

2

[
Z �q

p+c(�x0) + Z �q
p−c(�x∗

0 )
]
, (8)

where we have introduced the integer

c = (−1)a+1qa + (−1)bqb,

using components of the vector q = (1, 1, 2, 2, . . . , N, N ).
Further progress can be made by focusing on a specific

regime of the classical dynamics. As we showed in Ref. [15],
the classical dynamics displays two different regimes as a
function of EJ. For sufficiently low EJ, there is only one
stable classical fixed point. Then, at a threshold value of EJ,
there is a bifurcation at which the discrete-time-translational
symmetry set by ωJ is broken [15] and additional fixed points
emerge. Here we focus on the below-threshold regime where
the system possesses a single stable classical fixed point.
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For EJ values below the threshold, all processes involve
energy transfer in multiples of h̄ωJ = h̄ωp. This means that
only the subset of the modes with frequencies given by mωJ ,
with m a positive integer, has a nonzero mean amplitude in
the steady state [14,15] (i.e., αn = 0, unless n is an integer
multiple of p). This set of excited modes, which we term
the resonant harmonics, thus form a frequency comb with
spacing ωJ .

The fact that below threshold all processes involve energy
transfer in multiples of h̄ωp and involve, at most, two modes
in the Gaussian approximation, determines which modes can
couple together. Specifically, it means that only those pairs of
modes for which the sum or difference of the indexes is an
integer multiple of p couple together. Hence the full set of
modes naturally divides into a series of blocks describing the
subsets of modes which couple together. For example, mode
1 couples to modes p − 1, p + 1, 2p − 1, 2p + 1, . . . , while
mode 2 couples to modes p − 2, p + 2, 2p − 2, 2p + 2, . . . .
Thus, except in the trivial case where p = 1, there are no
couplings between these two sets of modes and hence they
form separate blocks. Furthermore, all of the pairs of modes
within these two example blocks are linked either by having a
sum or a difference of indexes that is an integer multiple of p,
implying that each of the modes within a block is coupled to
all of the others within the same block.

In the below-threshold regime, the quadratic Hamiltonian
(7) can thus be expressed in block-diagonal form as

ĤQ = Ĥ (0) +
kmax∑
k=1

[
Ĥ (k) + Ĥ†(k)

]
, (9)

where kmax = (p − 1)/2 for p odd and p/2 for even p. The
individual Hamiltonian blocks are defined by

Ĥ (k) = 1
2 [�s(k)]†T B(k) �s(k), (10)

with the components of the vector �s(k) alternating between
annihilation and creation operators, ânp+k and â†

np−k , with

n = 0, 1, 2, . . . [i.e., �s(k) = (âk, â†
p−k, âp+k, â†

2p−k, . . .)]. The
ellipsis (. . . ) indicates that the pattern is continued outwards
to include the highest mode number in the sequence that
exists given the finite mode number N , determining the sizes
of the blocks. The k = 0 block, Ĥ (0), describes the reso-
nant harmonics and is obtained using a slightly modified
vector of operators with a zero as the first term, �s(0) =
(0, â†

p, âp, â†
2p, . . .) [33]. When p is even, the k = p/2 block

coupling together the “half-resonant” harmonics (i.e., n =
p/2, 3p/2, . . .) has distinct dynamics due to the fact that many
of the mode labels become degenerate. For example, âk and
â†

p−k act on the same mode.
The matrices that define the mode-mode couplings in-

volve second derivatives of the classical Hamiltonian eval-
uated at the fixed point [15,27] and take the form B(k) =
diag[ ��(k)] B diag[ ��(k)], with diag[ ��(k)] the diagonal ma-
trix with entries (�k,�p−k,�p+k, . . .). Up to factors of
�n, the blocks have a universal structure B. Defining
�v = (0,+p,−p,+2p,−2p,+3p, . . .), we can express Bxy =
G(vx − vy), where G(n) = −(ẼJ/2)[Z �q

p+n(�x0) + Z �q
p−n(�x∗

0 )].
The value of p (determined by the Josephson frequency,

ωJ = pω1) controls how many noninteracting subsystems the

dynamics divides into. Within each Hamiltonian block, almost
all of the information is contained in the coupling matrix B.
The specific blocks labeled by k differ only in their sizes (set
by N and p) and by the factors �n. Couplings are produced
between all pairs of modes within a given block: they take the
form of either two-mode squeezing (producing or destroying
photon pairs with frequencies that sum to an integer multiple
of ωJ ) or beam-splitter interactions where photons are ex-
changed between a pair of modes with frequencies that differ
by an integer multiple of ωJ .

IV. BIPARTITE ENTANGLEMENT
IN A THREE-MODE SYSTEM

We start by exploring entanglement within a simple three-
mode (N = 3) system where it is relatively straightforward
to check our assumptions about the validity of the Gaussian
analysis by comparing it with numerical calculations involv-
ing the full RWA Hamiltonian. We consider the case where
p = 2 so that for low values of EJ, up until a threshold at
EJ = E th

J , only mode 2 has a nonzero fixed point amplitude α2,
obtained from solving Eq. (4). Above the threshold, all three
modes become strongly excited, breaking the time-translation
symmetry [15].

In the subthreshold regime, the quadratic Hamiltonian
[Eq. (9)] contains two blocks (k = 0, 1) and can be written
as

ĤQ = 1

2
[�2â†

2 �2â2]

[
g(0) g(2)

g(−2) g(0)

][
�2â2

�2â†
2

]

+ [�1â†
1 �1â1 �3â†

3 �3â3]

×

⎡
⎢⎢⎣

g(0) g(1) g(−1) g(2)
g(−1) g(0) g(−2) g(1)
g(1) g(2) g(0) g(3)

g(−2) g(−1) g(−3) g(0)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�1â1

�1â†
1

�3â3

�3â†
3

⎤
⎥⎥⎦, (11)

where [12,15] g(n) = G(2n) = −(ẼJ/2)[Z (1)
1+n(2i�2α2) +

Z (1)
1−n(−2i�2α

∗
2 )]. Both blocks in the Hamiltonian include

single-mode squeezing terms (of the form â†â† + ââ),
while the k = 1 block also couples modes 1 and 3. Both
two-mode squeezing and beam-splitter-type interactions are
generated (they take the form â†

1â†
3 + â1â3 and â†

1â3 + â1â†
3,

respectively). In both cases, the resonant mode (mode 2)
mediates the interaction by playing the role of an effective
classical pump within the Gaussian approximation. As the
threshold is approached from below, fluctuations in modes 1
and 3 grow, diverging at the threshold.

To benchmark the Gaussian approximation, we use the
QUTIP package [34] to solve Eq. (6), but with an appropriately
displaced version of ĤRWA instead of the quadratic approx-
imation ĤQ, and similarly displaced loss terms J [ân + αn].
Simulating three modes on a standard PC is facilitated by
exploiting certain features of the Z functions to save com-
puter memory, as described in Appendix B. We truncated the
Hilbert space so that the maximum number of photons in the
displaced picture is 27, 5, and 25 for the three modes, re-
spectively. The steady-state properties are obtained by taking
an ensemble average of 1000 Monte Carlo trajectories prop-
agated long enough to ensure that the steady-state behavior
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FIG. 2. Comparisons of the Gaussian approximation and a nu-
merical solution using the full Hamiltonian [Eq. (3)] for N = 3,
p = 2. (a) Amplitude fluctuations about the fixed point in each of the
three modes quantified using the corresponding occupation number
in the displaced frame. The Gaussian model (lines) is compared with
the numerical solutions (crosses) for modes 1 (red, top), 2 (green,
bottom), and 3 (blue, middle). (b) Squeezing (see the main text for a
detailed definition) from the Gaussian model (line) and numerical so-
lution (crosses). (c) Full (×) and Gaussian log-negativity (•) from the
numerics, with partitions separating out modes 1 (red, top), 2 (green,
very bottom, touching axis), and 3 (blue, overlapping mode 1). The
Gaussian log-negativity for the quadratic model (line) is the same for
partitions separating out either mode 1 or 3, and is always zero for the
third partition. In each case, EJ is scaled to the instability threshold,
E th

J = 1.950 h̄γ /(�1)2. Throughout, �1 = 0.05 with �n = �1/
√

n.

is sampled [35]. The results from these calculations for the
occupation of the modes in the displaced frame, together with
the generation of squeezing and entanglement, are compared
to the results of the quadratic model in Fig. 2. Using a low
value for the zero-point fluctuations, �1 = 0.05, the numer-
ical solutions allow us to test the accuracy of the Gaussian
approximation away from threshold and to determine how and
when it fails as the threshold is approached.

Figure 2(a) shows the evolution of the fluctuations in the
modes, in the form of their average occupation numbers in the
displaced frame, as EJ is varied from zero up to the thresh-

old. There is very good agreement in tracking the growth
of the fluctuations as EJ increases between the numerics and
the Gaussian model until near the threshold, where divergent
growth in the quadratic solution for modes 1 and 3 becomes
apparent, sharply differing from the much lower (finite) in-
crease seen in the numerical solution.

Figure 2(b) shows how squeezing develops as a function
of EJ. We plot half the smallest eigenvalue of the covari-
ance matrix for the full three-mode system [36] (see, also,
Appendix C). A value below 1/2 indicates squeezing, where
some fluctuations are suppressed below the vacuum level. We
again find good agreement, though the reduction in squeezing
seen in the numerics for the immediate vicinity of the thresh-
old is not captured in the Gaussian approximation.

Figure 2(c) shows the behavior of the logarithmic negativ-
ity, EN , a well-known measure of bipartite entanglement [37].
Bipartite entanglement, by definition, involves partitioning the
system into two subsystems, which can be done in three ways
for N = 3, leading to three sets of crosses in Fig. 2(c). Also
shown is the Gaussian log-negativity, calculated directly from
the covariance matrix (see Appendix C and [38,39]), which
faithfully gives the full log-negativity only when the state is
Gaussian.

In the numerical calculation, we see a small level of entan-
glement between the resonant mode (mode 2) and the others,
together with very slight differences between the cases where
modes 1 and 3 are partitioned off. In the quadratic model,
the resonantly driven mode does not couple to the others [see
Eq. (11)] and so cannot become entangled with them. Modes
1 and 3 can only share entanglement with each other and,
consequently, the values of EN using the Gaussian model are
the same whenever mode 1 or mode 3 is partitioned from the
others.

The most striking feature of Fig. 2(c) is that the Gaussian
log-negativity is significantly below the full value, even well
before the system gets close to threshold. The Gaussian model
leads to a value for the log-negativity which closely matches
the numerically obtained Gaussian log-negativity (except very
near threshold), thus underestimating the true value of the
entanglement. Thus it seems that the entanglement is sensitive
to even the very small deviations from Gaussianity in the state
of the system that occur well-below threshold.

Our numerical calculations thus provide good evidence
that entanglement calculated using the Gaussian model will
provide an accurate estimate of the Gaussian entanglement
in the full system for �1 � 1, provided that one does not
get too close to the threshold. They also suggest that the
Gaussian model will likely act as a lower bound for the full
entanglement.

V. BIPARTITE ENTANGLEMENT IN MULTIMODE
SYSTEMS

We now move on to use the Gaussian model to explore
what happens as more modes are added in the subthreshold
regime. Within the quadratic Hamiltonian [see Eq. (10)], the
modes are divided into blocks, only interacting with modes
within the same block, and hence entanglement is generated
between modes within a given block. The number of blocks
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FIG. 3. Entanglement between mode p − 1 and the others for
(a) N = p, (b) p < N < 2p, and (c) N > 2p. The legends give the
p, N values and the horizontal dashes indicate EN = ln(2), the
maximum entanglement reached in a parametric amplifier. Insets:
Schematics of the intermode couplings generated within Hamiltonian
blocks [defined in Eq. (9)] for (a) p, N = 7, 7, (b) 4,7, and (c) 4,15.
Solid (dashed) lines indicate two-mode squeezing (beam-splitter)
interactions between modes (numbered circles). In (a), the k = 1
space is highlighted. In (b) and (c), only the k = 1 space (which
contains mode p − 1) is shown.

is controlled by p and, for N � mp, with m = 2, 3, . . ., each
subspace can contain up to 2m modes.

As discussed in Sec. III, the blocks in the quadratic
Hamiltonian come in three types: one containing the reso-
nant harmonics (k = 0), another coupling the half-resonant
harmonics (k = p/2, only present for even p), and a set of
“typical” blocks that together include all the other modes. Up
to numerical factors of �n, any two blocks of the same type
and size generate the same pattern of couplings and hence
entanglement.

To understand the extent of the entanglement that is gen-
erated, we thus need to examine the entanglement within
each block type as a function of its size. For each block,
we consider all possible bipartitions of the modes. We varied
(p, N) in order to check typical blocks of up to 12 modes
and blocks of the other two kinds with up to 5 modes. We
found steady-state entanglement, EN > 0, for all possible
bipartitions within a given block (for all block types) for all
EJ > 0, up to the threshold. This means that for any way
of dividing the modes of a block into two groups, there is
entanglement between the two groups, a condition known as
full inseparability [40]. This shows that webs of entanglement
span the full range of modes within each block.

Next we examine the strength of the bipartite entanglement
by looking at the corresponding value of EN . In all the cases
we considered, we found that the entanglement turned out to
be largest when mode p − 1 (which lies within the typical
block with k = 1) is partitioned from the others, and its be-
havior is shown as a function of EJ/E th

J for a range of (p, N )
values in Fig. 3.

Figure 3(a) is for the case where N = p so that the typ-
ical blocks couple only two modes. Modes 1 and p − 1 are
coupled by a two-mode squeezing interaction and hence act
as a nondegenerate parametric amplifier. As one would expect
for a parametric amplifier, EN reaches a maximum value of

ln(2) at threshold [41]. For N = 2p − 1, shown in Fig. 3(b),
we see more complex behavior arising from the fact that mode
p − 1 is now coupled to three others. Values of EN > ln(2)
are achieved only when N � 2p; see Fig. 3(c). We interpret
this as the effect of the frequency comb: entanglement does
not grow beyond the parametric limit until we have two or
more resonant harmonics. Keeping N = qp − 1 and q > 2,
the behavior is fairly insensitive to N and p, leading to a peak
value of EN ∼ 0.85.

VI. GENUINE TRIPARTITE ENTANGLEMENT

So far we have found full inseparability in the blocks,
meaning that every part of each block shares some entan-
glement with the rest of the block. We now look to see if
the modes satisfy a more stringent condition: sharing genuine
multimode entanglement. The word “genuine” in reference to
entanglement between N modes means that any decomposi-
tion of the density matrix into pure states must contain at least
one pure state that is N-mode entangled (i.e., it cannot be
written using tensor products of states that span less than N
modes). It stands in contrast [42] to full inseparability between
N modes which can be achieved by taking a statistical mixture
of quantum states, each of which only has entanglement be-
tween two of the modes [18,40].

Genuine tripartite Gaussian entanglement, which is the
relevant property for a system in a Gaussian state, is detected
using the method described in [40]. To look for entangle-
ment involving M modes, we first trace out all other modes,
then choose linear combinations of the mode positions and
momenta: û = ∑

i hix̂i and v̂ = ∑
i gi p̂i, where hi and gi

are numerical factors to be varied and x̂i = (âi + â†
i ), p̂i =

i(a†
i − ai ). The expected variances of û are found as 〈�u2〉 =∑
nm hnhmCx

nm, for C
x

the covariance matrix of positions alone
(see Appendix C), with an analogous definition for v̂. M-
partite entanglement is confirmed if any û and v̂ can be found
such that

〈�u2〉 + 〈�v2〉 < 2 min{Sb}, (12)

where the set {Sb} has one member for each possible biparti-
tion of the M modes and for any particular bipartition,

Sb =

∣∣∣∣∣∣∣
∑

modes on
one side

higi

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∑

modes on
other side

higi

∣∣∣∣∣∣∣, (13)

for example, for the bipartition of three modes as 1|23 S1|23 =
|h1g1| + |h2g2 + h3g3|.

We used this to explore which mode trios were entangled.
If values of �h and �g are found that satisfy Eq. (12), it confirms
that the state contains tripartite entanglement [44]. However,
if no such vectors are found, it does not prove the absence of
entanglement.

It is easy to check if a given state and pair of vectors satisfy
the entanglement condition (12). However, finding suitable
vectors to reveal entanglement is harder. We used a handful of
different SCIPY optimization routines to search [45]. In the first
instance, the Nelder-Mead method was used. If this detected
no entanglement, the Powel method was also attempted. We
expect many of our states to be similar to one another (for
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example, consecutive EJ values for the same system, or N ,
p combinations that produce similar blocks). With this in
mind, before each optimization, we first tried a small library
of vectors that had been found by the optimizer on previous
occasions. In addition to often saving the need for further
optimization runs, this also improved our sensitivity, as the
optimizer would occasionally fail to rediscover previously
effective vectors on its own [43].

In practice, we searched for tripartite entanglement within
the Hamiltonian mode blocks of different types with a range of
different sizes as this allowed us to identify the entanglement
for all p, N values for which such blocks occur. Typical blocks
of all sizes up to 12 modes were sampled as a function of
EJ, as well as the two other block types with up to 5 modes.
Overall, we were able to search for tripartite entanglement
in 38 (p, N) combinations. One pattern that was robust was
that for all of the (p, N) values that we looked at, there
was at least somewhere within the range 0 < EJ < E th

J where
tripartite entanglement was found connecting the three modes
with numbers [k, p − k, p + k] and the alternative set [k,
p − k, 2p − k], for all integer values 0 < k < p/2. That is,
once p and N are fixed, there will be many different trios
of modes that share tripartite entanglement. One such trio
is [1, p − 1, p + 1], another [2, p − 2, p + 2], and so on.
These trios always share tripartite entanglement regardless of
the number of modes, N , or Josephson frequency pω1, as long
as the trios actually exist. However, the specific EJ ranges over
which the tripartite entanglement was found depends on N and
p, as shown in Fig. 4.

We start by surveying the case where N = 2p − 1, shown
in Fig. 4(a). For each (p, N) combination, we consider the
tripartite entanglement in the special mode trios discussed
in the previous paragraph. As already discussed, changing
p while preserving the relation with N (in this case, N =
2p − 1) does not change the structure of the blocks, but only
some of the � values’ scaling processes. This manifests as
the entanglement appearing at approximately the same EJ/E th

J
value across different p values for a given block number. For
example, entanglement appears at EJ/E th

J ≈ 0.45 in the first
block (k = 1, beige).

Figure 4(b) illustrates cases where N = 2p. Here the be-
havior changes because mode 2p is a resonant harmonic,
populated by up-conversion from mode p, and has nonzero
mean amplitude. The inclusion of another nonzero ampli-
tude mode in the fixed point changes the values of the Z
functions appearing in the quadratic Hamiltonian in a way
that suppresses fluctuations in the k = 1 subspace and greatly
delays the transition. We should distinguish two quantities:
first, the lowest EJ at which time-translation symmetry can be
broken in the classical dynamics, and second, the highest EJ at
which it can remain unbroken. The two coincide in Fig. 4(a)
(and all previous figures). However, in Fig. 4(b), the two do
not coincide, and here we take E th

J as the former, which is
the lower of the two values, which ensures that we remain
in the regime with only a single stable fixed point. In this
latter first-order type of transition, a new stable solution to
(4) suddenly appears at some EJ, distant in the phase space
from the other (previously unique) stable solution with which
it typically coexists over a range of EJ values [46]. Numerical
integration is used to find these solutions, as described in [15].

0.0 0.2 0.4 0.6 0.8 1.0

(4,7)
(5, 9)

(7, 13)

(9,17)

(10,19)

0.0 0.2 0.4 0.6 0.8 1.0
EJ/EthJ

(3 , 6)
(4, 8)

(5, 10)

0 1 2 3 4
E 1/

(4,9)
(4, 10)
(4,11)

EJ/EthJ

(a)

(b)

(c)

k=1
k=2
k=3
k=4

J 2

FIG. 4. Genuine tripartite entanglement detected (color) or not
detected (pale) as a function of EJ. Black horizontal lines divide the
plot into subplots labeled by their specific (p, N ) values. Each (p, N )
subplot contains individual bars in pairs with [k, p − k, p + k] and [k,
p − k, 2p − k], with k increasing upwards. For example, the lowest
horizontal bar in each subplot represents the mode trio [1, p − 1,
p + 1 ], the next lowest represents [ 1, p − 1, 2p − 1]. As k increases
upwards, it can be read off from the positions of the bars, but as
an aid to the eye, the entangled regions of the same k are colored
consistently. (a) and (b) show tripartite entanglement as a function
of EJ/E th

J for N = 2p − 1 and N = 2p, respectively. The effect of
adding additional modes is shown in (c), using a different EJ scale.

Importantly, this type of transition does not result from a
divergence in the Gaussian fluctuations; these remain finite.

In each of the pairings in Fig. 4(b), we see the same pattern:
entanglement switches on for a while before switching off
again before the threshold is reached. This is most likely
because the amplitude of mode 2p initially grows quadrati-
cally with EJ, so its suppressing effect is not significant until
moderate EJ values are reached. Here there is no instability,
so there is no reason to expect the fluctuations relevant to
entanglement to grow monotonically with EJ [47]. Notice that
“barcode”-like features start to appear in which there is rapid
switching between regions in which entanglement is and is
not detected as a function of EJ. An obvious possibility is that
the optimization procedure cannot always find an appropriate
vector to reveal the entanglement, leaving small gaps.

In Fig. 4(c), we keep p fixed and add modes to the system
one at a time. Going from (p, N) = (4,9) to (4,10), we see
that the new mode has no impact at all on when entanglement
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is found in the k = 1 block (as highlighted by the dashed
lines). Indeed, it has no effect at all on the covariance matrices
relating to the k = 1 block themselves. This is simply because
the newly added 10th mode is not in the k = 1 block (so does
not couple to them), and also is not in the k = 0 block (where
it would move the fixed point). In contrast, going to (4,11),
we see that adding the 11th mode (which is in the k = 1
block) does have an effect (albeit small) on the entanglement
range.

Overall, the most important point is that while the spe-
cific (p, N) values change the ranges of EJ where tripartite
entanglement occurs, they do not alter the general pattern
that entanglement is always found somewhere for the trios [k,
p − k, p + k] and [k, p − k, 2p − k], with 0 < k < p/2. The
values of N and p determine how many blocks are needed to
accommodate all of the modes and the sizes of the individual
blocks (including the number of resonant modes). However,
the basic structure of the mode couplings within a block is en-
capsulated in the matrix B, which is independent of the system
parameters (defined in Sec. III above) and it is presumably this
feature which leads the very general pattern of entanglement
that emerges.

The fact that general statements can be made about which
modes are entangled for a wide range of different mode num-
bers and bias voltages is interesting in its own right. But it also
suggests that the entanglement will be robust. Considering the
trio [1, p − 1, p + 1], the parametric terms creating photon
pairs in the first two and last two modes have �-dependent
prefactors in the ratio

√
p + 1 : 1, yet between (p, N) = (4,7)

and (10,19), there is little change in the pattern of entangle-
ment. Thus, if the � values were perturbed for any other
reason (for example, imperfections in fabrication), it would
not have a significant effect.

Finally, we attempted to apply our methods to quadripartite
entanglement, but did not find any. It is possible that this is
because none exists, but another possibility is that some states
are quadripartite entangled but the numerical solver is less ef-
fective at finding appropriate vectors in the eight-dimensional
search space needed to expose the four-partite entanglement
than in the six-dimensional one needed for tripartite entan-
glement. Numerical searches for genuine entanglement across
many modes have been successful elsewhere, but made use
of genetic algorithms [22], which are more involved than the
methods applied here, which were restricted to SCIPY opti-
mization libraries.

VII. CONCLUSIONS

We have explored the quantum fluctuations and entan-
glement properties of a model JJL system, consisting of a
cavity supporting multiple modes in series with a JJ and
biased by a dc voltage [13–15]. The system differs from the
setups typically used to generate multimode entanglement in
superconducting circuits [18–20], which rely on ac microwave
drives, and was recently used to generate a dc-powered mi-
crowave frequency comb [16]. We found that entanglement
turns out to be widespread in the system, suggesting that
the JJL could be a versatile tool for generating multimode
entanglement without the need for ac drives.

We used an approximate Gaussian Hamiltonian to describe
the system in regimes where the Josephson frequency set by
the bias voltage is resonant with one of the modes and the
Josephson energy is not too high, so that the time-translational
symmetry of the Hamiltonian is preserved and the system
possess a single classical fixed point. The analysis is much
simplified because the system can be described by a simpler
effective Hamiltonian in which the all-to-all mode couplings
present in the original Hamiltonian reduce to a smaller set of
relevant interactions that allow the modes of the system to be
split into discrete blocks (i.e., subspaces), with entanglement
only ever developing between modes within a given block.
In the most extreme case, where the Josephson frequency is
resonant with the highest cavity mode, the system reduces
to a set of parametric amplifiers arising within blocks that
each couple a different pair of modes. In contrast, for values
of the Josephson frequency resonant with lower modes, the
blocks couple more modes and so can play host to more
complicated multimode correlations. Investigating cases with
up to 12 modes within a given subspace, we found that there
is full inseparability between the modes in a given block and,
in many cases, genuine tripartite entanglement.

Extensions of our model to include a soft rather than hard
cutoff in the mode number as well as for scatter in the other
parameter values would be numerically demanding, but oth-
erwise straightforward. However, we would not expect such
effects to lead to significant changes in the behavior as the
basic patterns of entanglement were generic and seem to be
robust across widely different choices of the bias voltage and
the number of included modes. Another possible extension
is to use the quadratic model solutions to apply squeezing
operators to the full equation of motion, enabling a small
Hilbert space to model the higher-order quantum features that
remain after the displacement and squeezing are accounted
for.

The simulation and plotting codes, along with the relevant
data that support the findings of this article, are openly avail-
able [48].
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APPENDIX A: Z FUNCTIONS

The Z functions used in this paper were introduced in [12],
based on higher-dimensional Bessel functions discussed in
[49,50]. We provide the key definitions here to make the text
more self-contained, but refer the reader to [12] for further
details.

The Z functions are defined by

Z �q
p (�̂x) =:

∫ π

−π

dt

2π
exp

[ N∑
l=1

1

2

(
x̂le

iql t − h.c.
) − ipt

]
: (A1)
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with colons indicating normal ordering. The functions are
easily differentiated,

d

dx̂ j
Z �q

p

(�̂x) = 1

2
Z �q

p−q j

(�̂x),
d

dx̂†
j

Z �q
p

(�̂x) = −1

2
Z �q

p+q j

(�̂x). (A2)

APPENDIX B: DISPLACED Z FUNCTIONS

To study the quantum fluctuations of the system about a
fixed point, it is necessary to displace the Hamiltonian. Given
the Hamiltonian (3), this problem reduces to finding a conve-
nient way of displacing the Z functions.

Using Eq. (A1), a displaced Z function can be expressed as
a Z function with additional dimensions with the frequencies
of the displaced modes. For a displacement of all modes,

D(�α)Z �q
p (�̂x) = Z �q,�q

p (�̂x, 2i ���α), (B1)

where the terms following vectors with a comma are appended
to those vectors and ���α is an elementwise product.

We then exploit an identity that enables a Z function to
be expressed as a sum over a product of lower-dimensional Z
functions [12],

Z �q,�q
p (�̂x, 2i ���α) =

∞∑
k=−∞

Z �q
p−k (�̂x) Z �q

k (2i ���α). (B2)

To derive Eq. (8) for the quadratic Hamiltonian, we use (B2)
to express the displaced Hamiltonian, then differentiate the
operator part to second order to find the Hessian. This is
equivalent to identifying the quadratic terms appearing in the
Taylor series of the operator part in (B2).

For numerical simulations, we also make use of displaced
Z functions. These are handled using the series (B2) and
suitably truncating the infinite sum (we find 16 terms more
than sufficient). For small Hilbert spaces, the operator parts
of this sum can be implemented on the computer by way of
filtering an exponential matrix, as described in [12]. However,
for a large state space, our computer does not have enough
memory to exponentiate such a big matrix. To overcome this,
we apply the summation trick as in (B2) a further two times:
so that instead of taking the exponential of the matrix the size
of the full Hilbert space, we instead have a double sum over
tensor products of smaller matrices. The terms in this double
sum are found using the exponentiation, but they are only of
the size of the spaces of the individual modes, so require much
less memory.

APPENDIX C: COVARIANCE MATRIX

The covariance matrix provides a convenient way of rep-
resenting a Gaussian state. This Appendix summarizes some
relevant properties of it to make the present paper more self-
contained. For further details, see, for example, Ref. [39].

A Gaussian quantum state is characterized by its center
of mass in phase space (represented by a displacement vec-
tor) and its spread (represented by a covariance matrix). The
covariance matrix for N modes is a 2N square matrix. Each
entry is the expectation value of a symmetrized operator af-
ter the displacements are subtracted from the state. For the
vector R = (x̂1, p̂1, x̂2, p̂2, x̂3, p̂3, . . . ), the covariance matrix
elements are given by

Cnm = 〈RnRm + RmRn〉 − 2〈Rn〉〈Rm〉. (C1)

Note that our C differs from the σ of [39] by a factor of 2,
leading to similar factors differing between our equations.

For a vacuum state, C is the identity matrix. All physi-
cal covariance matrices must satisfy the bona fide condition.
Defining ω = [ 0 1

−1 0] and � = ω⊕N (N copies of ω put
corner to corner to make a square matrix of size 2N), this
condition requires that all eigenvalues of i�C have modulus
greater than 1.

Up to displacements, C fully characterizes the Gaussian
state. For example, the squeezing of the state is given by half
the smallest eigenvalue of C.

Whether the state described by C is bipartite entangled with
respect to a given bipartition can be found as follows. First,
we time reverse the modes on one side of the partition by
reversing the sign of all momenta on that side [38], which
multiplies the columns and rows of C relating to those op-
erators through by a factor of −1. If this partially reversed
matrix, C

PT
, does not satisfy the bona fide condition, then

there is entanglement connecting the parts on either side of the
chosen partition. The log-negativity measures how strongly
the condition is violated. The eigenvalues of i�C

PT
are found,

{λn}. The log-negativity is −1 times the sum of the logs of all
eigenvalues between 0 and 1,

EN = −
∑

n

ln(λn) for 0 � λn < 1. (C2)

The matrix C
x

used in finding tripartite entanglement is
simply the matrix C with the even columns and rows omitted.
Similarly, C

p
omits the odd-numbered rows and columns.
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