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Abstract: Reliable verification and evaluation of the mechanical properties of an assembled 14 

layered composite ensemble are critical for industrially relevant applications, but it still 15 

remains an open engineering challenge. In this study, a fast Bayesian inference scheme based 16 

on multi-frequency single shot measurements of wave propagation characteristics is 17 

developed to overcome the limitations of ill-conditioning and non-uniqueness associated with 18 

the conventional approaches. A Transitional Markov chain Monte Carlo (TMCMC) algorithm 19 

is employed for the sampling process. A Wave and Finite Element (WFE)-assisted 20 

metamodeling scheme in lieu of expensive-to-evaluate explicit FE analysis is proposed to 21 

cope with the high computational cost involved in TMCMC sampling. For this, the Kriging 22 

predictor providing a surrogate mapping between the probability spaces of the model 23 

predictions for the wave characteristics and the mechanical properties in the likelihood 24 

evaluations is established based on the training outputs computed using a WFE forward solver, 25 

coupling periodic structure theory to conventional FE. The valuable uncertainty information 26 
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of the prediction variance introduced by the use of a surrogate model are also properly taken 1 

into account when estimating the parameters’ posterior probability distribution by TMCMC. 2 

A numerical study as well as an experimental study are conducted to verify the computational 3 

efficiency and accuracy of the proposed methodology. Results show that the TMCMC 4 

algorithm in conjunction with the WFE forward solver-aided metamodeling can sample the 5 

posterior Probability Density Function (PDF) of the updated parameters at a very reasonable 6 

cost. This approach is capable of quantifying the uncertainties of recovered independent 7 

characteristics for each layer of the composite structure under investigation through fast and 8 

inexpensive experimental measurements on localized portions of the structure.  9 

Key words: Ultrasonic guided waves; Wave and finite element; Bayesian analysis; 10 

Composite structure; Uncertainty quantification; Metamodel 11 
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Nomenclature:  

 

0x : the excitation location   

1x : the monitoring location 

k : the -thk   frequency point of the wave characteristics 

k

meay : the measurements of wave characteristics at frequency k  

L : the propagation distance of the wave 

 H x t   : Hilbert Transform of  x t  


k

t : the difference of time of flight for the excitation frequency k  

θ : the damage characterization parameters 

 
k

modely θ : the wave characteristics predicted by θ  using WFEM scheme 

 x t : time history signal 

K , C and M : the stiffness, viscous damping and mass matrices of the segment 

u : the displacement vector  

F :  the forcing vector 

D : frequency dependent dynamic stiffness matrix 

Q , R , S  and T : subscripts denoting the periodic edges 

x  and 
y : the phase constants  

 x  and  y
: the wavenumbers 

I : the identity matrix 

Θ : vectors of independent input parameters 
 i
θ : -thi  sample generated by using the DoE strategy 

sn : the number of DoE samples 

pn : the number of parameters to be identified 

 G
k
Θ : a vector of training data outputs corresponding toΘ  

  
k

imodely θ : the wave characteristics predicted at  i
θ  

 
k

 θ : metamodel at k  

 
k

f θ : a regression function constructed based on the data 

 
k

 θ : a Gaussian process constructed through the residuals 

2

 k
: the process variance 

  Cov
k

  : the covariance matrix of  
k

   

 
k
Y : a parametric correlation function 

    p q
 θ θ, : the correlation function between training data  p

θ  and  q
θ  

 j : hyper-parameters describing the influence sphere of a point on nearby points  

 
k

  θ , : mean of the Kriging predictor 

 
k

 θ ,S : standard deviation of the Kriging predictor  
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6 

 
k

 
θ : the scattering coefficients predicted by Kriging model at 

θ  

 : all model parameters to be identified 

D : is the available data (i.e. the scattering property estimates) 

M : the model class 

 ,p MD : the likelihood function of the data D  

 p  M : the prior PDF of the parameters 

 ,p  M D : the posterior PDF of the parameters 

 p MD : a normalization factor ensuring that the posterior PDF integrates to 1 

 
k

 
θ : a random variable with zero mean and variance  2

k


θS   

k

 : additional white noise representing the measurement noise and model error  

2

 : the variances of the prediction errors 
k


  

 L : the negative-log likelihood function  

  i
: the target PDF at stage i  

 +1 i
: the target PDF at stage 1i   

 ,jp  M D : intermediate probability distribution 

jq : factor controlling the transition between adjacent probability distributions  

stagen : the total number of TMCMC stages  

 , , 1, , j k jk N : samples from  ,jp M D  at stage j  

 +1, +1, 1, , j k jk N : samples from  1 ,jp  M D  at stage +1j  

,( )j kw  : the plausibility weights  

 ,( )j kCOV w :  the coefficient of variation of the plausibility weights  

tol : a prescribed tolerance  
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1 Introduction  2 

Layered and complex structures are nowadays widely used within the aerospace, 3 

automotive, construction and energy sectors with a general increase tendency [1,2]. Therefore, 4 

the development of strict quality control and nondestructive evaluation procedures to ensure 5 

that the characteristics of the employed layers match the requirements has been a natural 6 

target in the field of composites [3]. The evaluation and verification of the characteristics for 7 

each layer of the assembled layered composite structure remains an open engineering 8 

challenge worth further exploration. Experimental testing is expected to play important roles 9 

in detecting the mechanical properties of composites, assessing system conditions and 10 

reconciling numerical predictions. In this context, inverse techniques ought to be used as 11 

important tools to extract the information about the behavior of a structure directly from 12 

experimental data [4].  13 

Nowadays, wave propagation techniques are often employed for verification and health 14 

monitoring purposes. Guided Waves (GW) can propagate at a long distance in thin 15 

waveguides and are sensitive to structural properties as well as defects [5]. Fast and accurate 16 

identification of the operational properties of such structures through non-destructive 17 

evaluation approaches is a challenging task for the modern engineer due to the lack of robust 18 

modelling approaches. Therefore, the propagation of guided waves in composite structures 19 

has indeed been the subject of intense research in recent years. Traditional analytical methods 20 
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such as the classical plate theory and Mindlin-Reissner plate theory typically employed for 1 

modelling wave propagation in monolayers can only capture the wave characteristics in the 2 

low frequency range for thick and discontinuous structures [1]. Semi-analytical methods such 3 

as the Semi-Analytical Finite Element (SAFE) have been developed later on to address this 4 

issue. While the SAFE method is very time efficient when investigating a material that is 5 

discontinuous in its thickness but continuous in the direction of propagation, it encounters 6 

severe limitations when it comes to materials that are periodic in the direction of propagation 7 

[6]. In contrast, FE based wave methods assume a full 3D displacement field and are therefore 8 

capable of capturing the entirety of wave motion types in the waveguide under investigation 9 

in a very accurate and efficient manner [7,8]. The FE based analysis of wave propagation 10 

within complex periodic structures was firstly presented in [9] based on Periodic Structure 11 

Theory (PST), which was extended to two-dimensional media in [10]. Recently, the Wave 12 

Finite Element (WFE) method [11-13] was introduced to facilitate the post-processing of the 13 

eigenproblem solutions and further improve the computational efficiency of the method. The 14 

WFE method for 2D structures was introduced in [14]. Ultrasound computations with the PST 15 

and the WFE have recently been exhibited in [15]. 16 

More recently, WFE scheme was used to identify the characteristics of each individual 17 

layer of a composite structure through experimental measurements on the entire structure [1]. 18 

The method can account for structures of arbitrary complexity. Excitations with both low and 19 

high frequency can be employed for inverting the structural problem. However, it is worth 20 

mentioning that there is a mismatch between the level of information in the detailed 21 

https://www.sciencedirect.com/topics/engineering/individual-layer
https://www.sciencedirect.com/topics/engineering/individual-layer
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theoretical model of uncertain accuracy as well as the relatively sparse information in the 1 

incomplete set of noisy test data, which produces an ill-conditioned and often nonunique 2 

inverse problem [16]. As a result, the solution that simply minimizes the residual of the 3 

measurements and prediction may not exist or is highly unstable due to a small amount of 4 

inevitable measurement noise.  5 

Beck and Katafygiotis gave an appropriate statistical framework [17] for properly 6 

handling the uncertainties due to ill-conditioning and non-uniqueness associated with the 7 

inverse problem, which has been widely considered a candidate for easing the ill-posedness of 8 

the problem [18-24]. In the campaign of structural identification, another advantage of 9 

Bayesian statistical framework is that uncertainties due to endogenous factors that has been 10 

widely accepted can be appropriately considered [25, 26]. The framework is not only to give 11 

more accurate results for identification but also to provide a quantitative assessment of this 12 

accuracy [27].  13 

Bayesian statistics have been widely applied in GW-based inverse problems. A number of 14 

new damage detection approaches incorporating Bayesian system identification framework in 15 

tandem with various technologies such as the Spectral Finite Element (SFE) method as well 16 

as advanced signal processing techniques, etc. were proposed by Ng et al. [28-31]. Bayesian 17 

approaches were developed to identify the damage location and wave velocity based on the 18 

time-of-flight (ToF) of the scattered waves [32,33]. In [34], the Bayesian framework was 19 

proposed to detect and quantify multiple flaws in structures by using the Extended Finite 20 

Element Method (XFEM) as the forward solver. A Bayesian method was used to statistically 21 
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characterize the uncertain parameters in an ultrasonic inspection system from limited signal 1 

measurements to enhance the confidence on the probability of detection curve [35]. The 2 

sparse Bayesian learning approach [36,37] and multilevel Bayesian approach [38] were also 3 

utilized to deal with uncertainty in the context of ultrasound-based damage identification. A 4 

new crack size quantification method was presented based on in-situ Lamb wave testing and 5 

Bayesian method in [39]. The authors of [40] proposed a Bayesian approach for investigating 6 

the effects of manufacturing variability on the wavenumber identification of beams with 7 

evenly attached resonators produced from Selective Laser Sintering. In [41], a new Bayesian 8 

inference approach was proposed for damage identification based on analytical probabilistic 9 

model of scattering coefficient estimators and ultrafast wave scattering simulation scheme.  10 

The novelty of this study is that it aims at recovering the mechanical properties of the 11 

layered structure through the acquired propagating wave characteristics in a Bayesian 12 

inference framework. It allows quantifying the uncertainties associated with the recovered 13 

results of mechanical properties and avoiding ill-conditioning as well as non-uniqueness 14 

associated with the conventional approaches. In the procedure of Bayesian inference, the 15 

stochastic simulation approaches such as MCMC tools usually require running the forward 16 

solver repeatedly. The computational cost of stochastic simulation is proportional to the scale 17 

of the FE model, the frequency points of the propagating wave characteristics as well as the 18 

dimension of the identification parameter set, etc., which can eliminate the appropriateness of 19 

available approaches due to the expense of carrying out an exhaustive number of runs. Worse 20 

still, FE modelling, wave predictions using forward solvers, as well as stochastic simulations 21 
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are usually implemented in different software and languages (MATLAB, ABAQUS, ANSYS, 1 

etc.), which means that interfacing between different environments is an additional challenge 2 

in Bayesian uncertainty quantification. 3 

To address this critical issue, the WFE scheme coupling periodic structure theory to 4 

conventional FE, being several orders of magnitudes faster than explicit FE modelling, will be 5 

employed to predict the wave propagation characteristics as forward solver. In addition, a 6 

cheap and fast Kriging metamodel, which provides a surrogate mapping between the 7 

probability spaces of the model predictions for the wave characteristics and the parameters to 8 

be recovered, will be employed to approximate the training outputs computed using the WFE 9 

scheme as a function of model parameters. The uncertainty of wave characteristics predicted 10 

by the metamodel as well as the overall prediction error are also properly accommodated in 11 

the likelihood function of Bayesian inference. Numerical and experimental studies indicate 12 

that the Transitional Markov chain Monte Carlo (TMCMC) algorithm [42] in conjunction 13 

with the WFE-assisted Kriging model can estimate the posterior Probability Density Function 14 

(PDF) of the updated parameters efficiently. It should be stressed that the proposed 15 

methodology is completely baseline-free with the only information required being the number 16 

of layers comprising the composite structure.  17 

The paper is organized as follows: In Section 2, the FE computational scheme for 18 

predicting wave propagation in multilayered structures is presented. The experimental 19 

protocol for extracting wave properties is also introduced in this section. A fast Bayesian 20 

inference scheme incorporating WFE-aided metamodeling is presented in Section 3 to 21 
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effectively recover the structural and material characteristics for the structure under 1 

investigation. The procedure is verified by recovering the mechanical characteristics using 2 

numerical and experimental examples in Section 4. Conclusions are eventually drawn in 3 

Section 5.  4 

2 Wave Properties Extractions 5 

2.1 Wave characteristics computation through a WFEM Scheme 6 

The composite structure under consideration comprises a number of layers which may be 7 

of arbitrary anisotropy. The identifiable properties include the thickness as well as the 8 

material characteristics of each individual layer. A robust wave model which is expressed in 9 

terms of the material characteristics to be recovered can provide a good understanding and 10 

also form the basis of a characterization process for a mechanical system. Given the forward 11 

wave model, system identification can be implemented by fitting it to that from experimental 12 

testing. The review presented in this section is heavily borrowed from [14]. 13 
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 1 

Fig. 1: Caption of the periodic segment of a composite panel of arbitrary layering modelled 2 

within the WFE scheme. Periodic edges are noted as Q , R , S  and T . 3 

 4 

It is stressed that the investigated case studies in this work are spatially continuous in 5 

the x and y directions. The WFE scheme can also deal with structures of fixed periodicity in a 6 

straightforward manner through condensation of the internal Degree of Freedom (DoF). For 7 

the periodic segment of a composite panel of arbitrary layering modelled within the WFE 8 

scheme shown in Fig. 1, the mass and stiffness and damping matrices of the periodic segment 9 

M , K  and C  are extracted through standard FE modelling. Following the analysis presented 10 

in [14], the time-harmonic equation of motion of the segment assuming arbitrary damping can 11 

be written as:  12 

  2i k k   K C M u F  (1) 13 

where F  is the vector of the nodal forces. Then the dynamic stiffness matrix can be written as: 14 
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 2i k k   D K C M  (2) 1 

The entries for each DoF, of every node laying on the same edge of the segment, say edges Q , 2 

R , S  and T , are placed in the mass and stiffness matrices so that the vector of displacements 3 

can be written as:  
T

; ; ;Q R S Tu u u u u . Therefore, Eq.(1) may be written as:  4 

 

QQ QR QS QT Q Q

RQ RR RS RT R R

SQ SR SS ST S S

TQ TR TS TT T T

     
     

         
    
         

D D D D u F

D D D D u F

D D D D u F

D D D D u F

 (3) 5 

Using the Floquet theory for a rectangular segment and assuming a time-harmonic response, 6 

the displacements of each edge can be written as a function of the displacements at a single 7 

edge. Taking edge Q  as the edge of reference, we have: 8 

 R x Qu u  (4a) 9 

 S y Qu u  (4b) 10 

 T x y Q u u  (4c) 11 

with x  and 
y  the phase constants which are related to the wavenumbers  x  and  y

 through 12 

the relation:  13 

 i x xd

x e
 

  (5a) 14 

 
i y yd

y e





  (5b) 15 

The displacement vector can therefore be written as: 16 

 




 

  
  

   
   

   
      

Q

xR

Q

yS

x yT

Iu

Iu
u

Iu

Iu

 (6) 17 

Assuming no external excitation, equilibrium along edge Q  implies that:  18 
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  1 1 1 1 0      

 
 
 

 
 
  

Q

R

y x x y

S

T

F

F
I I I I

F

F

 (7) 1 

Eventually, substituting Eqs.(6) and (7) into Eq.(1), we end up with the eigenproblem: 2 

  1 1 1 1 0
x

y x x y Q

y

x y


   



 

   

 
 
 

 
 
 
 

I

I
I I I I D u

I

I

 (8) 3 

which can be written in the form:  4 

 

     

   

1

1

1 1 1 1

0

QQ RR SS TT QR ST x RQ TS x

QS RT y SQ TR y QT x y Q

TQ x y SR x y RS x y

 

   

     





   

       
 
       
 
  
 

D D D D D D D D

D D D D D u

D D D

 (9) 5 

Various methods exist for the solution of the eigenproblem. In this work the scenario in which 6 

the frequency and the wavenumber towards y  direction are considered as fixed will be 7 

adopted. For each set of fixed k ,  y
 the entirety of  x  values are sought and values for 8 

intermediate k ,  x  and  y
 can be found by interpolating on the known results. For a set of 9 

fixed k ,  the non-linear eigenvalue problem of Eq.(9) is reduced to: 10 

  2

2 1 0 0x x Q   A A A u  (10) 11 

where 12 

 

 

 

 

2

2

, 2

1

, 0

,

QT y QR ST y SR

j QQ RR SS TT QS RT y SQ TR

RS y RQ TS y TQ

j

j

j

 



 

    



        


   

D D D D

A D D D D D D D D

D D D D

 (11) 13 

The above quadratic eigenproblem can also be converted as shown in [43] into an ordinary 14 

linear generalized eigenproblem of twice the size, by defining a new vector  y Qz u : 15 
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 0 1 20

0 0

Q Q

y
     

      
     

A u A A u

I z I z
 (12) 1 

with I the identity matrix. The propagating wavenumbers are then calculated as: 2 

 
 log

i
x

x

xd


   (13a) 3 

 
 log

i
y

y

yd


   (13b) 4 

The process of correlating the computed wavenumbers for each frequency and each direction 5 

of propagation is straightforward [14]. The corresponding phase and group velocities for each 6 

computed wave can be extracted as:  7 

  
d

d

=
k

p

g

k

model

k

c

c

y









 








θ  (14) 8 

which form the matrix of angle and frequency dependent modelled data. The Lamb wave 9 

types of interest can directly be identified through their corresponding waveforms contained 10 

in the eigenvectors Qu . It should be noted that the above approach can account for 11 

calculations with regard to structures having their material principal axes not aligned with the 12 

system coordinates. Energy skewing (phase velocities and group velocities having different 13 

propagation angles) can also be accounted for as described in [44], but inclusion of these 14 

phenomena is out of scope for the current manuscript and will not be investigated in the 15 

elaborated case studies.  16 
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2.2 Experimental process for extracting wave characteristics  1 

The primary focus of this study is to recover structural parameters of layered composites 2 

by experimentally observing local wave data measured on the assembled layered structure. As 3 

a result, the measurements serve as the basis of making inference about the parameters of a 4 

mathematical model. The required data to be extracted and later fed into the structural 5 

identification process of this study are the wave phase or group velocities of specific wave 6 

types propagating within the laminate under investigation. A number of methods can be 7 

employed for exciting and measuring specific wave propagation modes within a composite 8 

structure, such as piezoelectric transducers or non-contact laser actuation in the ultrasound 9 

frequency range. A major advantage of employing wave-based identification is that velocities 10 

can be measured locally, therefore providing a full description of the structural properties 11 

within a specified desired area. This is in contrast to global non-destructive approaches (i.e. 12 

modal methods) which struggle to robustly identify local structural properties especially with 13 

regard to multilayer structures. The information can be collected either through standard 14 

portable ultrasound equipment or through permanently bonded actuators and sensors attached 15 

on the structure under investigation. 16 

In this paper, ultrasonic data are obtained from two different sources: (1) numerical 17 

simulations using finite element models, and (2) real experiments by making use of standard 18 

equipment, e.g. arbitrary waveform generators and oscilloscopes. In (1), sensors can be placed 19 

at any arbitrary node of the mesh of the structure. This enables a high number of virtual 20 
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sensors to be used, which in turn demands an efficient, accurate, and rigorous method to 1 

extract the wave dispersion characteristics, e.g. by a two-dimensional Fourier transform (2D-2 

FFT) [45]. Oppositely, in (2), a limited number of sensors can be placed in the structure in 3 

practice, and therefore a different approach to obtain group velocities is used by means of a 4 

Hilbert transform [46]. 5 

2.2.1 Phase velocity extraction for numerical measurements  6 

The 2D-FFT is a technique used to obtain dispersion characteristics of multimode signals 7 

[45]. It requires N measurements from sensors evenly spaced along a line, i.e. simulating a B-8 

Scan. Given the flexibility that a finite element model provides, virtual sensors are placed 9 

relatively closed to each other so that a high amount of data is collected. The resolution of 10 

such 2D-FFT depends, among other factors, on the number of sensors used in the B-Scan. As 11 

a result, the dispersion characteristics of the guided waves are obtained by means of 12 

wavenumbers   and frequencies k . Finally, phase velocities are calculated by dividing the 13 

angular frequencies by the wavenumbers: 14 

 
k

mea ky



  (15) 15 
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 1 

Fig. 2: Excitation signal at 0x x  (below) and the received signal at 1x x  (above) with their 2 

corresponding envelopes as computed by the Hilbert transform.  3 

 4 

2.2.2 Group velocity extraction for experimental measurements  5 

For extracting the wave propagation velocity of different modes, excited in the 6 

experiments, the established Hilbert transform [46] will be employed. Assume that the 7 

waveguide is excited at a specific central frequency k  at a location 0x x  and the signal is 8 

monitored at a location 1x x , after which the signal has travelled over a distance of 1 0-L x x . 9 

Time histories are initially registered at the excitation and monitoring locations. The signal 10 

envelope is determined at emission, 0x x  and reception, 1x x  while the time delay is 11 

defined by the time difference between the maximal amplitudes of the envelopes. The local 12 

amplitudes of the time history signal  x t  are obtained from the Hilbert Transforms  H x t    13 

of the acquired signals in the time domain:  14 
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 1 x t

X t P dt
t t








   (16) 1 

Thus, the wave-packets corresponding to each mode can be identified in the time-domain 2 

signal, and by applying the Hilbert transform, the time-of-flight (ToF) can be measured with 3 

respect to the maximum amplitude of the wave-packet of interest. As shown in Fig. 2, in order 4 

to obtain the real ToF of a wave-packet from the actuator to the sensor, the difference of time 5 

of flight 
k

t  in both the actuator and the sensor is considered. S0 denotes the first 6 

symmetric mode while A0 denotes the first anti-symmetric mode. Note that Fig. 2 depicts two 7 

signals, one for the actuation and one for reception of GW, which illustrate the estimation 8 

process of the time of flight of both the S0 and A0 wave modes. Therefore, the wave 9 

propagation velocity of each mode 
k

meay  can be obtained from its ToF and its propagation 10 

distance L :  11 

 
k

k

mea L
y

t







 (17) 12 

This procedure can be repeated for the different signals acquired at different excitation 13 

frequencies. In real application, the measurement noise 
k

meay  is inevitable and it should be 14 

modelled as a random variable, to be shown in Eq. (26).  15 

3 Bayesian Inference with a WFE-aided Metamodeling Scheme  16 

Bayesian inference usually requires repeated evaluations of the likelihood function and 17 

consequently numerous runs of the forward solver to predict the model responses, i.e., phase 18 

and group velocities in this study. An expensive stochastic simulation in Bayesian inference 19 

may make the procedure unaffordable. To address this issue, a fast Bayesian inference scheme 20 
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based on WFE-aided metamodeling is proposed in this section and the main procedures are 1 

outlined as follows: 2 

(a) Generation of training inputs Θ   3 

 Generate the sampling points of the parameters       1 2
= , , , s

T
n

Θ θ θ θ  by using proper 4 

design of experiments (DoE);  5 

(b) Creation of training outputs database  G
k
Θ  6 

 Compute the wave properties            1 2
= , , , s

k k k k

T
nmodel model modely y y   Θ θ θ θG  at each 7 

frequency point for each sample input  i
θ  using the WFE scheme; It is worth noting that 8 

the procedure should be repeated for different modes of wave properties at different 9 

frequency points under concern;   10 

(c) Establishment of a metamodel  
k

 θ   11 

 Construct Kriging predictor  
k

 θ  to provide a surrogate mapping between the wave 12 

properties  G
k
Θ  and the sampling points Θ ;  13 

(d) Realization of Bayesian inference formulism  14 

 Formulate the likelihood function by embedding the measured wave characteristics 
k

meay  15 

and those predicted by the metamodel  
k

 θ  in a probabilistic model;  16 

(e) Posterior density estimation with TMCMC  17 

 TMCMC adapted to peaked target PDF is used to estimate the posterior probability 18 

distribution of the identified parameters.  19 
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3.1 Generation of training inputs Θ   1 

To construct a Kriging predictor, it requires initial DoE to generate samples referenced 2 

as the training set. Appropriate DoE plays a vital role in constructing a high-fidelity 3 

metamodel because DoE influences the creation of the most informative training data. A 4 

number of feature values from the experiment ran across the parameter domain are fit with a 5 

metamodel. The term “experiment” herein refers to computer experiments. The selection of 6 

sample points should trade off the accuracy and cost of a metamodel to be constructed. Less 7 

sample points may reduce the accuracy of the metamodel, while more sample points may 8 

improve the accuracy of the surrogate model but increase the computational burden. In real 9 

application, the sample points mainly depend on the problem to be solved, the response 10 

feature values of interest and the selected method of DoE [47].  11 

In this study, the Latin Hypercube Sampling (LHS) which guarantees to spread design 12 

points evenly across each input parameter dimension will be used for the training design 13 

[48,49]. In the context of statistical sampling, a Latin hypercube is the generalization of this 14 

concept to an arbitrary number of dimensions, whereby each sample is the only one in each 15 

axis-aligned hyperplane containing it. LHS aims to spread the sample points more evenly 16 

across all possible values [48,49]. We assume that vectors of independent input parameters 17 

      1 2
= , s

T
n

Θ θ θ θ  with   1pni 
θ  are selected by using the LHS strategy. Here sn  and pn  18 

denote the number of DoE samples and the number of mechanical parameters to be identified. 19 

When sampling a function of pn  variables, it partitions each input distribution into sn  equally 20 

probable intervals, and selects one sample from each interval. sn  sample points are then 21 
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placed to satisfy the Latin hypercube requirements. It shuffles the sample for each input so 1 

that there is no correlation between the inputs. This independence is one of the main 2 

advantages of this sampling scheme. Another advantage is that random samples can be taken 3 

one at a time, remembering which samples were taken so far [49].  4 

3.2 Generating training outputs  
k


G   5 

With the training set at hand, one can then calculate the predicted values of the 6 

metamodel at various sample points in the parameter space by performing an “experiment” at 7 

each of those samples based on the WFE scheme introduced in Section 2.1. The WFE is run 8 

at each point  i
θ  in the training design, yielding a vector of training data outputs 9 

           1 2
= , , , s

k k k k

T
nmodel model modely y y   Θ θ θ θG  with    1p

k

nimodely


θ  denoting responses of 10 

the system at  i
θ , i.e. the wave characteristics in this study. A number of output values 11 

obtained from the “experiment” running across the parameter domain are employed to fit a 12 

Kriging model using the ooDACE toolbox [50,51].  13 

3.3 Establishment of the metamodel  
k


 θ   14 

Basically, for any input vector θ , the Kriging predictor of the wave characteristics at an 15 

arbitrary frequency 
k

  is composed of two parts [51]:  16 

      = +
k k k

f   θ θ θ  (18) 17 

where  
k

f θ  denotes a regression function constructed based on the data which are usually 18 

pre-scribed in real applications, and  
k

 θ  denotes a Gaussian process constructed through 19 
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the residuals. The idea is that the regression function captures the largest variance in the data 1 

(the general trend) and that the Gaussian Process interpolates the residuals.  2 

For a set of sn  samples       1 2
= , , , s

T
n

Θ θ θ θ  in pn  dimensions,    =  G
k k
θ , while 3 

the Gaussian stationary process  
k

   has a zero mean and the covariance matrix 4 

modeled as [51]:  5 

     2Cov
k k k     Y  (19) 6 

where 2

 k
 is the variance and k

Y  is a parametric correlation function defined by:  7 
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where      , 1,2, , ,
p q

sp q nθ θ  denotes the correlation function parametrized by a set 9 

of hyperparameters, which can be identified by maximum likelihood estimation [50,51]. 10 

A classical common choice for this correlation function is the exponential correlation 11 

function allowing controlling both the range of influence and the smoothness of the 12 

approximation function [51]:  13 
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θ θ θ θ  (21) 14 

while  j  describes the influence sphere of a point on nearby points for each dimension, i.e., 15 

how fast the correlation drops to zero; the parameter   determines the initial drop in 16 

correlation as distance increases. When 2  , Eq. (21) reduces to the Gaussian correlation 17 

function. These correlation functions only depend on the distance between the two points 18 
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and

p q
θ θ . The smaller the distance between two points indicates the higher the correlation 1 

   
and

p q
θ θ . Therefore, the more the prediction of one point is influenced by the other, i.e., 2 

their function values are closer together. Similarly, if the distance increases the correlation 3 

drops to zero [50,51]. The hyperparameters  j  can be obtained by maximizing a likelihood 4 

function. 5 

Subsequently, the Kriging predictor  
k

 
θ  at a new sample point θ  leads to an 6 

estimate that is a Gaussian random variable with mean  
k

  θ ,  and standard deviation 7 

 
k

 θ ,S , that is:  8 

       
k k k      θ θ θ ,,,N S   (22) 9 

with  10 

             
T

-1

k k k k s sn nf             θ θ θ f, ,f R GY  (23a) 11 

         T
2 -2 1, 1

k k k k k          θ Θ θ θ, ,R RS Y  (23b) 12 

where  13 
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θ θ θ θ θ， ，R   (24a) 14 

            1
= , , , s

k k k k

T
i nmodel model modely y y    θ θ θG    (24b) 15 

        1
= s

s k k

n

n f f 
 
 

f θ θ， ，    (24c) 16 

The details of Kriging surrogate model are omitted and interested readers are referred to [51-17 

55]. It is worth noting that the wave properties are vector-valued functions in terms of 18 

frequency k , which inevitably change when frequency varies.  19 
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3.4 Realization of Bayesian inference formalism 1 

A Bayesian inference procedure is based on the well-known Bayes’ theorem, with its 2 

general formulation given as [17]:  3 

  
   

 

,
,

p p
p

p

 





M M
M

M

D
D

D
 (25) 4 

where    ( )= ,p p p d  


 M M MD D . In above equation,  ,p M D ,  p M  and 5 

 ,p MD  denote the posterior distribution, the prior distribution and the likelihood function; 6 

  denote the value of the model parameters including the calibration parameters θ  and 7 

prediction-error parameters; D  is the available data (i.e. the wave velocity estimates), and M  8 

is the model class.  9 

In the context of Bayesian inference, the statistical inference can be executed by 10 

embedding the “deterministic” structural models within a class of probability models so that 11 

the structural  models give a predictable (“systematic”) part and the prediction error is 12 

modeled as an uncertain (“random”) part [56-58]. As is seen in Eq.(23), the model output at 13 

arbitrary 
θ  is replaced by a Kriging surrogate model, whose output should follow Gaussian 14 

distribution, i.e.,       2

k k k      θ θ θ, ,,N S . To include the valuable uncertainty 15 

information of the predictor,  
k

 
θ  can be replaced by a random value    +

k k   
θ θ , 16 

where  
k

 
θ  is the mean of Kriging predictor and  

k
 

θ  is a random variable with the 17 

variance  2

k


θS . It is worth mentioning here that the statistics of  

k
 

θ  can be directly 18 

determined from Kriging predictor without any assumptions here. As a result, the measured 19 
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wave properties 
k

meay  can be connected with the model parameters 
k

meay  to be identified as 1 

follows [59]:  2 

    +
k k k k

meay       θ θ  (26) 3 

where 
k

  is an additive white noise representing the measurement noise and model error, 4 

modeled by a Gaussian random variable with variance 2

 .  5 

By embedding Eq. (26) into the probabilistic model of 
k

meay , one can obtain that:  6 
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As shown by Eq. (27), the uncertainty of the surrogate model has been readily incorporated in 8 

the likelihood function.  9 

Assume that the wave characteristics over the frequency band   1 2= , ,
k

meay k k k D  are 10 

used as model inputs, then we can formulate the likelihood function  ,p MD  as:  11 

    
2

1

2, =
k

k
mea

k k

p p y  



 θ ,MD  (28) 12 

Here we assume that the measured data at different frequency points are independent. The 13 

Bayesian formalism is kept, which allows for a correct evaluation of the posterior uncertainty 14 

on the parameters 
θ .  15 

According to the Bayes’ theorem, we can condition the prior on the training data and 16 

integrate over the prior distribution of the coefficients to obtain the posterior uncertainties of 17 

the parameters to be identified  2=  
θ , :  18 

       , expp p   M M LD            (29) 19 

with  L  denoting the negative-log likelihood function given by  20 
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As a result, the posterior distribution  ,p  M D  of the identification parameters and 2 

prediction-error parameters can be estimated using TMCMC algorithm [42] introduced in 3 

Section 3.5.  4 

3.5 Posterior density estimation with TMCMC  5 

The posterior distribution  ,p  M D  can be estimated through a Laplace asymptotic 6 

approximation, which utilizes a Gaussian approximation as the posterior PDF. However, 7 

application of this approximation encounters difficulties when the amount of data is small, or 8 

the chosen class of models is unidentifiable. Also, such an approximation requires a non-9 

convex optimization in a high-dimensional parametric space, which is computationally 10 

challenging, especially when the model class is not globally identifiable and there may be 11 

multiple local maxima [60]. In recent years, focus has shifted from analytical approximations 12 

to using stochastic simulation methods in which samples consistent with the posterior PDF 13 

 ,p  M D  are generated. Stochastic simulation can handle more general cases than the 14 

asymptotic approximation approach. In such methods, all probabilistic information 15 

encapsulated in  ,p  M D  is characterized by posterior samples. MCMC simulation methods 16 

were among the most popular methods for solving the Bayesian inverse problem efficiently 17 

[61,62].  18 

In this study, the TMCMC algorithm [42] will be employed to sample the posterior PDF 19 

given in (29). When the support of the posterior PDF in the parameter space has complex 20 
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geometry or when the posterior PDF is very peaked and isolated in a small region in the 1 

parameter space, proper convergence to the posterior PDF can be a serious problem. To 2 

address this critical issue, the TMCMC algorithm has been proposed to choose the proper 3 

adaptive proposal PDF in MCMC methods for accelerating convergence to the posterior PDF. 4 

Compared with the previous approaches, TMCMC has several advantages: (i) it can handle 5 

very peaked or very flat PDFs along certain directions in the parameter space efficiently, 6 

rendering it capable of calculating multimodal posterior PDFs; (ii) it can estimate the 7 

evidence, which is important for Bayesian model class selection [42]. Algorithmic 8 

improvements related to TMCMC can be found in [63,64].  9 

TMCMC adopts the idea of using a sequence of intermediate PDFs such that the last 10 

PDF in the sequence is  ,p  M D . Re-weighting and re-sampling techniques are adopted on 11 

the samples from a target PDF   i
 to generate initial samples for the next target PDF 12 

 +1 i
 in the sequence. As an evolutionary strategy, the TMCMC algorithm starts by 13 

constructing a series of intermediate probability distributions iteratively [42,65,66]:  14 

      , , , 0, ,    
jq

j stagep p p j nM M MD D            (31) 15 

where
0 10 1

stagenq q q     . The process mentioned in the above starts by generating 16 

samples from the prior probability distribution    0 ,p   M MD , followed by a series of 17 

sampling operations for each intermediate stage 0, , stagej n . Given the jN  samples 18 

 , , 1, , j k jk N  from the intermediate probability distribution  ,jp M D  at stage j , one can 19 

generate +1jN  samples  +1, +1, 1, , j k jk N  from the next PDF  1 ,jp M D  at stage +1j  based 20 
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on the plausibility weights of the jN  samples drawn from  ,jp M D  with respect to the 1 

probability distribution  1 ,jp M D  [42,65,66]:  2 
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In order to avoid the repetition of identical elements in the new sample, MCMC steps are 4 

applied to disturb the sample while keeping the same distribution. The Metropolis-Hastings 5 

algorithm is used to draw the proposals for the MCMC steps: a Gaussian distribution around 6 

the previous point of the Markov Chain. Its covariance is estimated from the samples , j k  at 7 

the stage j . A factor   is introduced to control the step size. The choice of jq  in Equation 8 

(32) controls the transition between adjacent probability distributions, which in turn controls 9 

the convergence rate and effectiveness of TMCMC. The Coefficient of Variation (CoV) of the 10 

plausibility weights  ,COV ( )j kw  at stage j  is a good indicator of the smoothness of this 11 

transition. The choice of the 1jq  value is controlled automatically by the TMCMC algorithm 12 

so that the  ,COV ( )j kw tol  , where tol  is a prescribed tolerance. Interested readers can be 13 

referred to [42,61,62] for more details of TMCMC.  14 

4 Case Studies  15 

4.1 Numerical validation  16 

The accuracy of the proposed algorithm is firstly demonstrated through a numerical 17 

simulation of a non-isotropic composite structure comprising three layers, two isotropic ones 18 

and one orthotropic. Identification of mechanical properties is to be sought in both principal 19 

directions. The mechanical properties of each layer are shown in Table 1. The structure is 20 
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assumed to be excited by a broadband chirp signal at a 2 MHz central frequency with a range 1 

from 1 Hz to 4 MHz during 4µs. A plane strain Abaqus/Explicit model with free boundary 2 

conditions and a mesh size of 25 µm is used to extract the ultrasonic signals at 161 3 

consecutive sensing points, which are spaced 0.25mm, as can be appreciated in Fig. 3. Note 4 

that the material properties of layer no. 3 are modified to represent both principal directions of 5 

the structure so that two simulations are run representing the X and Y directions. The 6 

dispersion curves obtained by applying the 2D-FFT allow us to obtain the phase velocities 7 

(see Section 2.2) in the main directions (X and Y) as shown in Fig. 4.   8 

 9 

Table 1: Mechanical properties of different layers of the composite structure 10 

Layer No. Mechanical properties Values  

 

 

Layer 1 

Young’s modulus  1 GPaE  200 

Poisson ratio  0.1 

Density  3

1 kg/m  500 

Thickness  1 mm  0.5 

 

 

Layer 2 

Young’s modulus  2 GPaE  50 

Poisson ratio  0.1 

Density  3

2 kg/m  2000 

Thickness  2 mm  0.9 

 

 

 

Layer 3 

Young’s modulus  3 GPaxE  100 

Young’s modulus  3 GPayE   150 

Poisson ratio  0.1 

Density  3

3 kg/m   1000 

Thickness  3 mm  1.3 

 11 
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 1 

Fig. 3: Schematic of the waveguide of the numerical study. 2 

  

(a) B-Scan in X-direction (b) Wavenumbers at X-direction 

  

(c) Phase velocities for the symmetric (d) Phase velocities for the symmetric 
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and antisymmetric Lamb wave modes 

of the orthotropic layered structures at 

X direction 

and antisymmetric Lamb wave modes 

of the orthotropic layered structures at 

Y direction 

Fig. 4: Example of a B-Scan acquired at X direction in (a) along with its corresponding 2D-1 

FFT in (b). Besides, wave propagation velocities of the numerical study in X and Y directions 2 

are shown in panels (c) and (d), respectively. The diamonds represent the measured velocities 3 

of the S0 mode while the circles depict the velocities of the A0 mode. 4 

The parameter vector set to be identified includes  1 2 3 3 1 2 3, ,x yE E E E   θ , , , , . Three 5 

thousand training points are generated for the parameter                 1 2 3 3 1 2 3, ,
i i i i i i i i

x yE E E E   θ , , , ,   6 

 1,2, ,3000i   using LHS. For each sampling point, the wave properties corresponding to 7 

frequency band shown in Fig. 4 were calculated as training outputs using WFE scheme. The 8 

training inputs and outputs are then used for constructing Kriging model between wave 9 

properties and the parameters to be identified. The lower and upper bound of the parameters 10 

are introduced in Table 2. Then the Bayesian inference is performed by setting the TMCMC 11 

parameters as 0.1tol  , 0.2  and 5000jN , resulting in 13 stages in total. The model and the 12 

posterior evaluation are entirely written in MATLAB code. We performed the Bayesian 13 

inference problem for all scenarios on a multicore server with Intel® Xeon® W-2123 14 

Processor (8.25M Cache, 3.60 GHz) and 32GB of RAM. Based on the WFE-assisted 15 

metamodeling scheme, the mechanical properties of the composite structure can be recovered 16 

within several minutes. From the analysis, one can draw the following conclusions:  17 
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 Fig. 5 presents the convergence diagram of the TMCMC algorithm at different stages, 1 

which demonstrates that the proposed algorithm is rather efficient. The histogram of the 2 

stochastic samples of the final stage is shown in Fig. 6 accompanied by the kernel density 3 

estimation. Results identified using TMCMC including the Most Probable Values (MPV), 4 

the mean value and the Coefficient of Variance (COV) are presented in Table 2. As seen 5 

in Table 2, the discrepancy between the mean values and the actual values of the 6 

mechanical properties of the second and the third layers are less significant. The 7 

magnitude of the COV of all identified parameters is around 5-6%. However, a relatively 8 

large uncertainty and discrepancy are observed for the mechanical properties of the first 9 

layer. Such phenomenon may be attributed to the uncertainty involved in the velocity 10 

extracted from the guided wave measurements, approximation using surrogate-kriging 11 

modelling, the incompleteness of the information available used for the Bayesian inverse 12 

problem, and the complexity nature of the problem. Also, the number of parameters to be 13 

identified will also affect the accuracy as it has been well recognized that the performance 14 

of MCMC decreases with increasing number of random variables.  15 

 The deterministic method proposed previously [1] is also employed to identify 16 

 1 2 3 3 1 2 3, ,x yE E E E   θ , , , , . As a deterministic inverse wave and finite element approach, 17 

[1] is formulated through a least squares method and solved by using Newton-like 18 

iterative scheme. The proposed method in this study significantly outperforms the 19 

deterministic approach [1] as the latter fails to get satisfactory results even for the case 20 

with less parameters to be identified. The deterministic method can cause divergence 21 
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even though the initial guesses are exactly given. As a global optimization approach, the 1 

TMCMC algorithm has an important advantage over local optimization as it avoids the 2 

need for estimating the initial values of the parameters, which is non-trivial in a number 3 

of real engineering problems.  4 

5 
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Table 2: Illustration of the identified results using TMCMC 1 

 

Parameters 

 Results 

Lower 

bound 

Upper 

bound  

True MPV Mean Std COV 

(%) 

 1
GPaE  50 400 200 154.301 157.834 10.799 6.842 

 
1

mm  0.125 1 0.5 0.665 0.650 0.056 8.552 

 2
GPaE  12.5 100 50 42.163 42.177 1.982 4.700 

 
2

mm  0.225 1.8 0.9 0.751 0.752 0.038 5.118 

 3
GPa

x
E  25 200 100 109.350 106.452 6.022 5.657 

 3
GPa

y
E  25 200 150 147.675 144.036 9.011 6.256 

 
3

mm  0.325 2.6 1.3 1.385 1.396 0.092 6.597 

2


  500 600 - 565.025 561.663 7.062 1.258 

 2 

 3 

Fig. 5: Convergence diagram of TMCMC at different stages in the plane of 
2

E  and 
3x

E .  4 
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 1 

Fig. 6: The histogram of the stochastic samples and its corresponding kernel density 2 

estimation for  2

1 2 3 3 1 2 3, , ,x yE E E E      , , , , .  3 

 4 

 The variation of posterior uncertainty with the increase of the wave modes and the 5 

frequency band of the phase velocity are also investigated in detail. Fig. 7 shows the 6 

variation of the posterior COV values with different wave modes involved in the 7 

Bayesian inference: (a) S0 mode in the X direction; (b) S0 and A0 modes in the X 8 

direction; (c) S0 and A0 mode in the X direction, plus A0 mode in the Y direction; (d) S0 9 

and A0 modes in both X and Y directions. To investigate the effects of frequency bands, 10 

part of the frequency band shown in Fig. 2 are considered: (a) first 1/8 frequency band; (b) 11 

first 1/4 frequency band; (c) first 1/2 frequency band; (d) 3/4 frequency band; (e) the 12 

whole frequency band. Both S0 and A0 modes in two directions are used for 13 

identification. Fig. 8 shows the variation of the posterior COV values with the increase of 14 

frequency band. Results show that the performance is not satisfactory when only one 15 



 

36 

 

mode in one direction is available or when the frequency band under concern is too 1 

narrow. The COV values of the extracted mechanical properties display a significant 2 

decreasing trend with the increase of the number of modes and the frequency band 3 

involved for identification. The observations are reasonable and agree well with the 4 

intuition as more modes and wider frequency band of wave characteristics indicate more 5 

information, less uncertainty and higher identification accuracy.  6 

 7 

Fig. 7  Variation of posterior COV of mechanical properties with different modes involved in 8 

Bayesian inference by considering the following four scenarios: (i) S0 mode in the X 9 

direction; (ii) S0 and A0 modes in the X direction; (iii) S0 and A0 mode in the X direction, 10 

plus A0 mode in the Y direction; (iv) S0 and A0 modes in both X and Y directions. The 11 

number 1-8 along the x axle denotes the parameters  2

1 2 3 3 1 2 3, , ,x yE E E E      , , , ,  in order. 12 

 13 
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 1 

Fig. 8: Variation of posterior COV of mechanical properties with different frequency band 2 

of wave characteristics involved in Bayesian inference by considering the following five 3 

scenarios: (i) first 1/8 frequency band; (ii) first 1/4 frequency band; (iii) first 1/2 frequency 4 

band; (iv) 3/4 frequency band; (v) the whole frequency band. The number 1-8 along the x 5 

axle denotes the parameters  2

1 2 3 3 1 2 3, , ,x yE E E E      , , , ,  in order. 6 

 7 

 If explicit FE simulations without using WFE are employed for Bayesian inference, it is 8 

highly non-trivial to achieve the results. For this wave propagation case, the time 9 

consumed by the explicit FE method is approximately 1000 times greater than that of the 10 

WFE scheme in each run. As a result, the computational effort and the required memory 11 

space will increase in an explosive manner compared with the WFE scheme as one has to 12 

carry out a large number of runs of full FE scheme within the stochastic simulation, with 13 

each run involving the calculation of the wave properties at different frequencies. For 14 
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more complicated structures, the curse of computational burden will be even worse. Thus, 1 

compared with an explicit FE solution, using surrogate approximation in tandem with a 2 

WFE scheme can also lead to a drastic reduction in the computational effort. 3 

 4 

4.2 Experimental verification  5 

To investigate the feasibility of the proposed method in real applications, two metallic 6 

specimens, a 1m×1m aluminum sheet of 1.2mm thickness and a composite structure 7 

comprised of a 1m×1m×0.7mm aluminum sheet glued to a 1m×1m×0.8mm steel sheet, were 8 

tested to obtain their wave propagation characteristics. To this end, the first symmetric (S0) 9 

and anti-symmetric (A0) modes were excited at a range of frequencies from 30 kHz to 1MHz 10 

with a step frequency of 10 kHz.  11 

The ultrasonic guided-waves were transmitted using a PZT transducer attached at the 12 

center of the specimens using a 5-cycle sine tone burst centered at each frequency, with an 13 

amplitude of 8 Vpp. The signals were generated at a Keysight 33512B arbitrary waveform 14 

generator, which can be observed in Fig. 9 along with the rest of the experimental setup. The 15 

sensor, placed at 200mm from the excitation point, acquired the GWs that were then digitized 16 

using a DSOX2014A oscilloscope applying a sampling frequency of 9.6 MHz and an 17 

averaging of 32 experiments in order to reduce the system noise. The PZT transducers used in 18 

these experiments consisted of circular discs with radial mode vibration (Steminc part number: 19 

SMPL7W8T02412WL), which produced a circumferentially even excitation along the surface 20 
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of the metallic sheets. The velocity results extracted from the experimental measurements and 1 

the procedure described in Section 2.2 are depicted in Fig. 10. It can be observed in both the 2 

aluminum and composite specimens (Fig. 10a and 10b) that some values of the velocities of 3 

the S0 mode are missing due to the low amplitude of that mode in the acquired signals at 4 

relatively low frequencies.  5 

 6 

 

Fig. 9: Experimental suite used comprising a laptop, an arbitrary waveform generator, and 

an oscilloscope connected to the PZT transducers attached to the metallic specimen. 

 7 
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(a)  (b)  

Fig. 10: Wave propagation velocities of both specimens (a) aluminum and (b) composite. The 

diamonds represent the measured velocities of the S0 mode while the circles depict the 

velocities of the A0 mode.  

 1 

The mechanical properties of the aluminum sheet and the composite structure include 2 

 1 1alum E θ ,  and  1 1 2 2,comp E E θ , , . For each specimen, 1500 DoE training points 3 

      1 2 1500
= ,

T

Θ θ θ θ  are generated as training samples using LHS, the numerical predictions 4 

of the velocities of the S0 mode and A0 mode are calculated using the WFE scheme in each 5 

computer experiment to formulate the training output data set 6 

           1 1500
= , , ,

k k k k

T
imodel model modely y y    θ θ θG . Here the frequency 

k
  should coincide with 7 

those of the experimentally measured velocities. The training data  
k


G is then used for 8 

constructing the Kriging model reflecting the mathematical relationship between the wave 9 

properties of the S0 and A0 modes and the structural parameters θ , which will be embedded 10 

in the likelihood function for Bayesian inference. 11 

The parameters to be identified include  2

1 1,alum E    ,  and  2

1 1 2 2, ,comp E E     , ,  12 

where 2

  denotes the prediction-error. A uniform prior distribution was used, and the interval 13 
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of these parameters are shown in Table 3.  2

1 1,alum E    ,  and  2

1 1 2 2, ,comp E E     , ,  can 1 

be obtained by using TMCMC. By setting the TMCMC parameters to be 0.1tolCov  and 2 

1000jN  , the Bayesian inference takes 9 and 12 stages to achieve the posterior uncertainties 3 

for two different testing specimen. The evolution of the TMCMC samples through stages in 4 

the plane of   1 1,E  for the aluminum sheet and  1 2,E E  for the composite are shown in Fig. 5 

11(a) and 11(b). It is interesting to see that the samples gradually find the high probability 6 

region with increasing stages. The samples converge to the targeted PDF rapidly. The 7 

identifiability is clear for the TMCMC samples. Furthermore, it agrees well with the intuition 8 

that less stages are required for the first specimen with a smaller number of parameters to be 9 

identified.   10 

 11 

 12 

(a) Aluminum specimen 13 
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 1 

(b) Composite specimen 2 

Fig. 11: Convergence diagram of stochastic samples at different stages in Bayesian inference 3 

using TMCMC: (a)  1 1,E  for the aluminum sheet; (b)  1 2,E E  for the composite. 4 

 5 

The mean values and the COV for the aluminum sheet and the composite structure are 6 

presented in Table 3. Fig. 12 presents the scatterplot matrices of  2

1 1,  ,xE  and 7 

 1 1 2 2, , ,x xE E , respectively. Diagonal entries of Fig. 12 denote the marginal distributions of 8 

the model parameters estimated using kernel histograms. As observed from Fig. 12, the 9 

procedure yields a reasonable capture of the distribution function and all parameters follow 10 

uni-modal posterior PDF. The proposed Bayesian approach is able to provide satisfactory 11 

results, with median values quite close to those provided by the processing factory as well as 12 

identified confidence intervals representing the uncertainties. It is worth mentioning here that 13 

the Bayesian inference problem without activating metamodeling strategy produced no results 14 
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after more than three days’ running of the code. It can be concluded that the WFE-assisted 1 

surrogate estimates provide a very fast estimate, making them suitable for using with the 2 

TMCMC algorithm. Significant gains in computational effort are achieved without sacrificing 3 

the accuracy in the model parameter estimates. However, it is inevitable to discover 4 

discrepancy between the identified mechanical properties and the measured mechanical 5 

properties, especially for the thickness of the plates. The differences can be attributed to 6 

physical uncertainty associated with the manufactured composite structure (e.g. imperfect 7 

gluing of the different layers together) as well as the deviation of the velocity extracted from 8 

noise-contaminated guided wave measurements.  9 

Table 3: Identified results for the aluminum specimen and the composite specimen 10 

Structural type Parameters Interval Identified values  

Lower  Upper  Mean Std COV (%) 

 

 

Aluminum specimen 

 GpaE  20 160 63.122 0.552 0.88 

 mm  0.3 2.4 0.923 0.038 4.2 

2

  100 300 193.441 10.410 5.38 

 

 

 

 

Composite specimen 

 1 GpaE  20 160 58.009 3.611 6.225 

 2 GpaE  50 400 216.765 4.904 2.262 

 1 mm  0.25 2 0.524 0.020 3.838 

 2 mm  0.25 2 0.613 0.016 2.639 

2

  100 200 119.066 7.033 5.907 

 11 
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 1 

(a)  2 

 3 

(b)  4 

Fig. 12: Scatterplot matrices of different parameters of the tested specimens: (a) the aluminum 5 

sheet; (b) the composite specimen. 6 



 

45 

 

5 Conclusions  1 

In this work we have developed and applied a Bayesian identification technique based on 2 

FE modelling and the properties of propagating waves in multilayered structures. The 3 

principal contribution resulting from this work is a robust numerical nondestructive testing 4 

(NDT) procedure for recovering effective structural parameters of layered composites by 5 

WFE-aided metamodeling. The propagation constants for the elastic waves travelling are 6 

realized through the forward WFE scheme in this study which is preferred to predict the 7 

broadband wave properties for layered structures due to its versatility in considering different 8 

numbers of layers and complex material properties in a straightforward manner, without the 9 

need of altering the forward modelling approach. The computational burden of conventional 10 

full FEM analysis scheme is therefore reduced by several orders of magnitude thanks to 11 

adoption of the WFE scheme.  12 

In addition, a cheap and fast Kriging surrogate model built using an experiment design 13 

strategy in tandem with the WFE scheme is used to avoid a taxiing number of simulations for 14 

predicting wave properties and to reduce the computational cost of the repeated likelihood 15 

evaluations, as well as the difficulty of interfacing different software environments in 16 

stochastic simulation. By establishing the relationship between the training outputs and 17 

identification parameters with a statistical method, the Kriging surrogate model removes the 18 

need for a large number of repeated FE runs over the procedure of sampling the posterior PDF. 19 

As a result, the WFE scheme is only required for training the outputs in the construction of 20 
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the Kriging model, and is no longer involved in TMCMC, thus significantly enhancing the 1 

efficiency and applicability of the presented methodology. The valuable uncertainty 2 

information introduced by the use of a surrogate model are also properly taken into account 3 

when estimating the parameters’ posterior probability distribution. 4 

Case studies were presented to verify the efficiency of the proposed practice. The 5 

method is able to extract layer characteristics such as thicknesses and Young’s moduli for 6 

each individual layer and is robust enough to be applied in a broadband frequency range. In 7 

the ultrasound range the wave characteristics are straightforward to extract through the 8 

measured wave envelope. The exhibited scheme was validated through comparison with 9 

experimental results. Satisfactory agreement is observed for the identified structural 10 

parameters. It is emphasized that the proposed wave-based method has significant advantages 11 

compared to modal identification approaches. More precisely the accuracy of the structural 12 

parameters is not altered by the presence of uncertain boundaries since the data is obtained 13 

locally, through single-shot measurements. This is a considerable advantage compared to a 14 

number of stationary and other existing methods, since it can then be applied in situ and 15 

without requiring additional sampling on structural properties. The use of practically 16 

unlimited and user-selected excitation frequencies can effectively increase the number of 17 

identifiable parameters through inverse wave modelling, resulting in a significant increase of 18 

the method’s robustness and applicability in a broadband frequency sense. 19 

 20 
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