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Abstract9

The number and position of sensors and actuators are key decision variables that dictate the performance of any struc-10

tural health monitoring system. This paper proposes choosing them optimally by using an objective function that11

combines a measure of parameter uncertainty, the expected information entropy, along with the cost of both sensors12

and actuators. The resulting optimization problem over discrete decision variables is computationally challenging,13

but here it is convexified by relaxing them into continuous variables, thus obtaining a significant reduction of the14

computational cost. The proposed approach is applied to ultrasonic guided-wave based inspection and is illustrated15

using two case studies with arbitrary geometries and different materials. The results demonstrate the high efficiency16

and accuracy of the convex optimization in trading-off uncertainty and cost in order to provide optimal sensor config-17

urations in complex structures. As a key contribution, the proposed methodology allows us to include the actuators18

with the sensors in the optimization problem while still maintaining the efficiency of the minimization process. In the19

application to ultrasonic guided-waves, the optimal configurations lead to set-ups where the sensors and actuators are20

coincident in number and position.21

Keywords: Optimal sensor configuration, Optimal actuator configuration, Entropy, Time of flight, Structural health22

monitoring, Guided waves23

1. Introduction24

Efficient and reliable condition-based maintenance requires an accurate and effective diagnosis provided by a suit-25

able structural health monitoring (SHM) system. Such effectiveness depends heavily on the configuration (number and26

location) of sensors and actuators. Inaccurate and biased diagnosis in safety-critical structures may lead to erroneous27

actions such as false positive (also known as Type I error) or false negative (Type II error) alerts [1], which might lead28

to catastrophic economical and safety-related consequences. In order to provide a reliable, yet efficient, configuration29
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for a SHM system, the selection of an optimal sensor and actuator configuration is desirable, that provides a balance30

between the performance of the SHM system and the related cost of sensors and actuators [2]. To this end, several31

approaches have been reported in the literature, which can be broadly categorized into two groups, namely approaches32

using the value of information [3, 4] and those using cost-benefit analysis [5, 6]. The first approach provides the sensor33

and actuator configuration that holds the best balance between cost and information gain of the SHM system. How-34

ever, its main limitation lies in its computational cost, especially in complex real-life engineering applications, such35

as ultrasonic guided-wave based SHM [7]. Alternatively, the second one typically uses performance indexes and cost-36

related information associated to the layout of sensors of the SHM system, which are simultaneously maximized and37

minimized respectively in a multi-objective type of optimization algorithm. This approach, although less informative,38

is more generic and therefore it provides a higher flexibility to adapt to real-world engineering applications.39

The optimal placement of sensor transducers within an ultrasonic guided-wave based SHM system has been ad-40

dressed in the literature for both active and passive sensing diagnosis by maximizing the performance of the systems41

with specific indexes. One such index is the probability of detection, which is typically defined ad-hoc by quantifying42

different features such as the distance of the damage from the sensor [8] or the strain caused by an impact [9]. Another43

one is the area of coverage, which relies on geometrical and physical properties [10, 11], as well as the influence of44

defective sensors [12]. This approach has proven effective in maximizing the coverage of control points [13], assum-45

ing sensor locations as continuous variables [14], and considering different types of sensors [15]. The area of coverage46

has also been combined with numerical, experimental, and analytical information to address the sensor optimization47

in an efficient yet accurate manner [16]. Besides, wave propagation modeling approaches can be used directly for op-48

timizing transducer locations, e.g. by selecting the areas with the largest wave amplitude [17]. Their main limitation,49

however, lies in the computational cost, which can be alleviated if approximation techniques are adopted such as the50

continuous wavelet transform [18]. However, their optimization procedure relies on combinatorial algorithms such as51

genetic algorithms [19, 20], simulated annealing [21, 22], or particle swarm optimization [23] and may, in general,52

give a suboptimal layout with no indication of its accuracy. Additionally, the optimal joint positioning of actuators53

and sensors has been studied in structural applications other than ultrasonic guided-wave based SHM by maximizing54

the controllability [24], observability, or spillover effect [25, 26]. Alternatively, convex optimization [27] techniques55

have been used to provide optimal configurations of sensors and/or actuators in an efficient manner [28–30] using an56

objective function that can be minimized using conventional algorithms for function minimization such as the interior57

point algorithm [31, 32], which is more efficient in terms of computational cost. However, none of them have consid-58

ered the uncertainty present in the data and also in the guided-wave related model, thus limiting its robustness against59

noise or modeling uncertainty.60

Bayesian approaches have been proposed to address the optimal sensor configuration by quantifying uncertainty61

using the Kullback-Leibler (KL) divergence between the prior and posterior distribution as a measurement of the62

information gain [33, 34], the Shannon information entropy of the posterior distribution as a measure of the uncertainty63

of posterior information [35–37], and the mutual information [38, 39] between data and model parameters. In [39], the64
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authors note that all three of these information-theoretic quantities give equivalent optimization problems for optimal65

location placement. More recently, a value of information based cost-benefit analysis for optimal sensor configuration66

in plate-like structures for ultrasonic guided-wave based SHM has been proposed in the literature [7].67

To relieve this burden, an efficient method is proposed in this paper to obtain both the optimal number and location68

of sensors and actuators for SHM systems by minimizing a cost-benefit function in terms of Shannon’s information69

entropy and a cost function. This approach extends the work previously developed in [38, 39], which addresses op-70

timal placement of a fixed number of sensors by applying convexification and relaxation techniques to the entropy71

of the pre-posterior distribution, which is based on the model-predicted data rather than experimental data. By per-72

forming a cost-benefit optimization, we find the optimal number, as well as the optimal location of both sensors and73

actuators. Although the methodology presented here is generic and employable within any monitoring field involving74

actuators and sensors for obtaining information relating to a structural, chemical, or biological system, we illustrate75

it here using ultrasonic guided-wave based SHM. This application provides a challenging scenario involving the op-76

timal configuration (number and location) of actuators and sensors over a two-dimensional space in isotropic and77

orthotropic materials. The chosen layout of the sensor and actuator grids and the area of possible damage occurrence78

are customizable, so that they can be adapted to any kind of structure and prior information. Nonetheless, the spa-79

tial resolution of each grid is limited by the size of these devices and their wiring. A high efficiency in obtaining80

the optimal configurations is observed in comparison with existing information-based approaches regardless of the81

complexity of the material, which enhances the use of this methodology in complex, real-world applications.82

The remainder of this paper is organized as follows: Section 2 describes the proposed entropy-based convex opti-83

mization methodology for the configuration of actuators and sensors configuration; Section 3 illustrates the method-84

ology through two case studies using two different plate-like structures; Section 4 provides a discussion of the impact85

of the proposed method on ultrasonic guided-wave based SHM. Finally, Section 5 provides concluding remarks.86

2. Methodology87

2.1. Optimal placement for a given number of sensors and actuators88

Let x j
i (n,θθθ) ∈ R denote a deterministic model prediction for parameters θθθ of an arbitrary quantity of interest89

(QoI) at discrete time n (e.g. time of flight of an ultrasonic wave or acceleration at a material point) at the i-th sensor,90

assuming that the input excitation is provided by the j-th actuator. We assume that N observations will be available for91

this QoI, denoted by DN = {y j
i (n) ∈R, n = 1, . . . ,N}, when the sensors are installed. These observations could come92

from an experiment or simulation that is repeated N times, or n could be interpreted as an instant of time within a QoI93

time-history [35, 36]. The deterministic model prediction and the actual QoI are related by introducing a stochastic94

prediction-error term that accounts for the discrepancy between the model output and the actual observation [40], as95

follows:96

y j
i (n) = x j

i (n,θθθ)+ e j
i (n) (1)
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The uncertain prediction error is assumed to be modeled as a zero-mean Gaussian distribution with standard deviation97

σe ∈ R by applying the Principle of Maximum Information Entropy, which gives a distribution that has the largest98

uncertainty for specified first and second moments. Any other choice of distribution would have less uncertainty99

without any additional information [40, 41]. If the actual number of sensors and actuators installed are denoted by Ng
s100

and Ng
a , respectively, then the predicted data for a specified sensor and actuator configuration is:101

p(DN |θθθ) =
Ng

a

∏
j=1

Ng
s

∏
i=1

N

∏
n=1

p(y j
i (n)|θθθ) (2)

where the prediction errors in Equation (1) are chosen to be independent stochastically, that is, if we know one102

prediction error, it provides no information about the others. Next, two grids of sensor and actuator positions of103

Ns and Na points, respectively, are chosen to provide possible locations of these devices. The actual locations of104

the sensors and actuators are then selected by activating binary variables denoted by Ψ
(i)
s ∈ {0,1} and Ψ

( j)
a ∈ {0,1},105

respectively, where 0 and 1 correspond to the absence and presence of a sensor or actuator at the i-th and j-th locations106

of their respective sets of grid points. Thus, we can rewrite Equation (1) as:107

p(DN |θθθ) =
Na

∏
j=1

Ψ
( j)
a

Ns

∏
i=1

Ψ
(i)
s

N

∏
n=1

p(y j
i (n)|θθθ) (3)

Assuming a large number of data points N [35, 36], the posterior PDF of the model parameters θθθ given the data108

DN and a particular actuator and sensor configuration specified by ΨΨΨa and ΨΨΨs respectively, can be asymptotically109

approximated as [36]:110

p(θθθ |ΨΨΨa,ΨΨΨs,DN)∼=
[detQ(ΨΨΨa,ΨΨΨs,θθθ)]

1
2

(2πσ̂e)
1
2 NaNs

exp
[
− 1

2σ̂e
2 (θθθ − θ̂θθ)T Q(ΨΨΨa,ΨΨΨs,θθθ)(θθθ − θ̂θθ)

]
(4)

where θ̂θθ is the MAP (maximum a posteriori) value of the posterior distribution in Equation (4) and111

Q(ΨΨΨa,ΨΨΨs,θθθ) ∈ RNθθθ×Nθθθ (Nθθθ : the number of uncertain model parameters considered in the predictive deterministic112

model x j
i (θθθ)) is given by [42]:113

Q(ΨΨΨa,ΨΨΨs,θθθ)∼=
Na

∑
j=1

Ψ
( j)
a

Ns

∑
i=1

Ψ
(i)
s

{
N

∑
n=1

(
∇θθθ x j

i (θθθ)∇
T
θθθ x j

i (θθθ)
)}

=
Na

∑
j=1

Ψ
( j)
a

Ns

∑
i=1

Ψ
(i)
s P j

i (θθθ) (5)

114

where matrix P j
i (θθθ) = ∑

N
n=1 ∇θθθ x j

i (θθθ)∇
T
θθθ x j

i (θθθ) ∈RNθθθ×Nθθθ and ∇θθθ x j
i (θθθ) denotes the gradient vector x j

i (θθθ). Notice that115

in Equation (4), the dependence on data DN is only through the MAP values θ̂θθ .116

When the optimal sensor and actuator configuration is being determined, data DN will not be available, so a117

pre-posterior analysis is necessary where an expectation of the information entropy of the posterior in Equation (4) is118

taken, which is a measure of the posterior parameter uncertainty that also accounts for it being conditional on unknown119
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future data that will be collected by the sensor network. The expectation of the posterior entropy is with respect to the120

data DN as predicted probabilistically by the model in Equation (1).121

An approximation was introduced in [36] that avoids such computationally demanding Monte Carlo simulation122

of samples for DN , as follows. Assuming large N, the MAP values θ̂θθ of the model parameters are replaced by the123

nominal values θθθ 0 of the model parameters defined by their prior distribution p(θθθ 0), which describes the designers’124

uncertainty about appropriate values of the model parameters. The entropy-based objective function can then be125

expressed as [36]:126

h(ΨΨΨa,ΨΨΨs) =−Eθθθ 0 [logdetQ(ΨΨΨa,ΨΨΨs,θθθ 0)] (6)

The problem of optimal sensor and actuator placement now becomes the minimization of this pre-posterior measure127

of parameter uncertainty over discrete variables Ψ
(i)
s and Ψ

( j)
a , where ∑

Ns
i=1 Ψ

(i)
s = Ng

s and ∑
Na
i=1 Ψ

(i)
a = Ng

a .128

Next, based on the idea in [28, 38, 39], the variables Ψ
(i)
s and Ψ

( j)
a in Equation (6) are relaxed into contin-129

uous variables zi and w j in the interval [0,1]. Therefore, the function Q now can be expressed as Q(w,z,θθθ 0) ∼=130

∑
Na
j=1 w j ∑

Ns
i=1 ziP

j
i (θθθ 0) with w j ∈ [0,1] and zi ∈ [0,1]. Equation 6 is then of the form of f (X) = −EX [logdet(X)],131

where X is a positive semidefinite matrix that is linear in the continuous variables, and therefore the function is con-132

vex in the domain of these variables [27]. Thus, the original combinatorial optimization problem is transformed into a133

continuous convex optimization problem with respect to z ∈ [0,1]Ns and w ∈ [0,1]Na that is readily solved numerically134

using classical convex minimization methods [28, 39] such as the interior-point algorithm:135

minimize
w,z

h(w,z) =−Eθθθ 0 [logdetQ(w,z,θθθ 0)]

subject to 0≤ w j ≤ 1, j = 1, . . . ,Na

0≤ zi ≤ 1, i = 1, . . . ,Ns

Na

∑
j=1

w j = Ng
a

Ns

∑
i=1

zi = Ng
s

(7)

Note that h(w∗,z∗), corresponding to the optimal values in Equation (7) for each w∗j ∈ [0,1] and z∗i ∈ [0,1], provides a136

lower bound of the minimum of h(ΨΨΨa,ΨΨΨs) in Equation (6). If any w∗j or z∗i is not at its boundary value of 0 or 1, then137

the solution to Equation (7) is not directly applicable in its continuous form in practice since the sensors or actuators138

can only be present or absent at each grid point, i.e., w j and zi need to be either 1 or 0. In this case, the variables139

can be rounded to their closest binary value while ensuring that the constraints ∑
Na
j=1 w j = Ng

a and ∑
Ns
i=1 zi = Ng

s are140

still satisfied. This gives a binary solution (ΨΨΨ∗a,ΨΨΨ
∗
s ) where h(ΨΨΨ∗a,ΨΨΨ

∗
s ) is an upper bound of the exact minimum of141

h(ΨΨΨa,ΨΨΨs). If these upper and lower bounds are close, then (ΨΨΨ∗a,ΨΨΨ
∗
s ) can be taken as a near-optimal placement142

solution.143
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2.2. Optimal actuator and sensor configuration: cost-benefit analysis144

Building on the problem of optimal actuator and sensor placement formulated in the previous sub-section, the opti-145

mal number of sensors and actuators may also be addressed by introducing a monotonically increasing dimensionless146

cost function s(n) : [1,(Na +Ns)]→ [0,1] that quantifies the cost of adding n devices into the SHM system. Note that147

the cost function includes both actuators and sensors in the same function, which is appropriate for our application of148

interest, ultrasonic guided-wave based SHM, where a piezoelectric (PZT) transducer can be used as either a receiver149

or emitter. However, s(n) can be defined differently in other applications where sensors and actuators may have dif-150

ferent costs. For efficient optimization, we choose variable n to be real, lying in the interval n ∈ [0,(Na +Ns)]. Since151

the objective function in Equation (7) is monotonically decreasing with respect to n [43], i.e. the more devices that152

are added to the system, the less entropy (pre-posterior parameter uncertainty) is obtained, and s(n) is monotonically153

increasing, we can define a new convex minimization problem as follows:154

minimize
w,z,n

h∗(w,z,n) =−Eθθθ 0 [logdetQ(w,z,θθθ 0)]+η · s(n)

subject to 0≤ w j ≤ 1, j = 1, . . . ,Na

0≤ zi ≤ 1, i = 1, . . . ,Ns

Na

∑
j=1

w j +
Ns

∑
i=1

zi = n

(8)

where η > 0 is used to establish a particular trade-off between information gain and cost. We choose s(n) : [1,(Na +155

Ns)]→ [0,1] as a dimensionless cost function formed using interpolating monotonic cubic splines [44] due to their156

ease of implementation and versatility in mimicking almost any monotonically increasing cost function. The function157

s(n) takes a value of 0 when there is the specified minimum number of sensors and actuators, and the value of 1 for158

the specified maximum number of them. As for the minimization in Equation (7), the convex optimization problem159

in Equation (8) may be addressed with standard convex minimization algorithms such as the interior-point algorithm.160

Hence, both the optimal placement and optimal number of actuators and sensors are simultaneously obtained in a very161

efficient, yet rigorous, manner.162

2.3. Bayesian damage localization using ultrasonic guided-waves163

Our presented approach for selecting the optimal sensor and actuator configuration is utilized here for ultrasonic164

guided-wave based SHM for damage localization in a plate-like structure [45]. The damage position is inferred using165

an ellipse-based model inverse problem and the ToF (time of flight) of the scattered wave from the damage to the166

sensors. The observations at each sensor are compared with the predictions of a ToF model, which in this case is167

defined as:168

x j
i =

√(
Xd−X j

a

)2
+
(

Yd−Y j
a

)2

Va−d( f ,α)
+

√(
Xd−X i

s

)2
+
(

Yd−Y i
s

)2

Vd−s( f ,α)
(9)
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a j (X j
a ,Y

j
a )

αa si (X i
s ,Y

i
s )

αs

d (Xd ,Yd)

X

Y

Figure 1: Graphical representation of the paths followed by the guided-waves emitted by the actuator a j , which interact with the damage d and are
acquired at the sensor si. The gray points represent the space of possible sensor/actuator positions.

where (Xd ,Yd) ∈ R2 are the coordinates of the damage position, (X j
a ,Y

j
a ) ∈ R2 are the j-th actuator transducer coor-169

dinates, (X i
s ,Y

i
s ) ∈ R2 are the coordinates of the i-th sensor transducer, and Va−d( f ,α) and Vd−s( f ,α) are the wave170

propagation velocities of the actuator-damage and damage-sensor paths defined by the angle α , respectively. Figure 1171

depicts the geometrical characteristics of the paths from an arbitrary actuator to a sensor (selected from the possible172

sensor/actuator positions), passing through the damage position. In general, the velocities depend on the frequency of173

excitation f , the wave mode under investigation, and the direction of the path with respect to the material orientation.174

Assuming that the situation involves an orthotropic material, such as a composite laminate, these velocities can be175

approximated by modeling the velocity profile with respect to the angle for a given frequency. Here, the velocity is176

assumed to be distributed elliptically in space as in the case of angle-ply laminates, as follows [46]:177

V ( f ,α) =
√

V 2
x +V 2

y =
√
(a · cos(γ))2 +(b · sin(γ))2 (10)

where the parameter angle γ relates to the physical angle α [46] as follows:178

γ = arctan
(a

b
tan(α)

)
;

{
αa = arctan

(
Yd−Y j

a

Xd−X j
a

)
, αs = arctan

(
Y i

s −Yd

X i
s−Xd

)}
(11)

where αa and αs denote the geometrical angle formed by the actuator-damage and damage-sensor paths, respectively,179

and a and b denote the two main axes of the velocity ellipse. Therefore, the set of uncertain parameters of the ToF180

model for orthotropic materials are the damage coordinates in addition to a and b, so θθθ = {Xd ,Yd ,a,b}. Alternatively,181

the set of parameters can be simplified if an isotropic structure (e.g. an aluminum plate) is considered. Then, the set182
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of parameters would be θθθ = {Xd ,Yd ,V}1.183

3. Case studies184

In this section, the optimal actuator and sensor configuration methodology is applied to plate-like structures with185

irregular, but realistic, geometries motivated by the shape of wing skin panels of standard commercial aircraft, as186

suggested in Figure 2.187

Figure 2: Top view of the central part of standard aircraft. Two typical skin panel geometries (A and B) with irregular geometries are highlighted
in the right wing. Units expressed in meters.

3.1. Description of structures and definition of problem188

Two thin-walled structures, named panels A and B, as depicted in Figure 2, are considered in this case study.189

Additionally, it is assumed that there exist two possible panels for each geometry A and B, denoted as panels A1, A2,190

B1, and B2, where the number refers to different materials. Panels A1 and B1 are made of aluminum alloy 2024-T351191

with 2 mm. On the other hand, panels A2 and B2 are made of a quasi-isotropic T800-M913 carbon fiber laminate with192

[-45/902/45/0]s stacking sequence and 1.5 mm thickness. The mechanical properties of both materials are shown in193

Table 1.194

The guided-wave mode assumed for health monitoring of the aluminum sheets (panels A1 and B1) is the A0 mode195

at 300 kHz, whose group velocity is 3000 m/s. In case of the composite plates (panels A2 and B2), the S0 mode196

is chosen at 150 kHz, whose group velocity is angle-dependent following an elliptical profile defined by its major197

axis a = 7549 m/s and its minor axis b = 6030 m/s, as shown in Figure 3a. The wave propagation velocities for198

both aluminum and composite materials are related to their mechanical properties and obtained by computing their199

dispersion curves at different angles using the Dispersion Calculator [47]. Note that the only information needed to200

1Note that both velocity terms are the same under the assumption of isotropic materials and damage concentrated within a bounded region, i.e.
V =Va−d =Vd−s.
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Table 1: Mechanical properties of both the aluminum structure and one layer of the composite material.

Composite Longitudinal stiffness Transverse stiffness Shear stiffness Poisson’s ratio Poisson’s ratio Density
T800-M913 E11 [GPa] E22 [GPa] G12 [GPa] ν12 [-] ν23 [-] ρ [kg/m3]

152.14 6.64 4.20 0.25 0.54 1550

Aluminum Young’s modulus Poisson’s ratio Density
2024-T351 E [GPa] ν [-] ρ [kg/m3]

73.1 0.33 2780

address the ToF-based actuator and sensor optimization is the wave propagation velocity, either as a constant value201

for isotropic materials, or angle-dependent in case of orthotropic materials.202
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(b) Cost function used in the design of the SHM system.

Figure 3: Data used in the optimal design of the SHM system. In panel (a), angular dependence of the group velocity of the S0 mode at 150 kHz
(solid line) and its approximation by an ellipse with major axis a = 7549 m/s and minor axis b = 6030 m/s (dashed line). In panel (b), the cost
function s(n) used for the optimization of the number of sensors and actuators made by interpolating cubic splines between a number fixed points,
represented by circles.

A cost function s(n) is arbitarily defined in order to address the proposed combined optimization of the number203

and positions of PZT sensors and actuators (recall Eq. (8)) in the form of interpolating cubic splines with intermediate204

points that defined such a function, as shown in Figure 3b. The interpolating points are represented as circles in205

Figure 3b and are as follows: (0, 0), (30, 0.3), (50, 0.95), (60, 1), in pairs of (n,s(n)) where n is the number of206

transducers. Here, the same cost per unit is used for both sensors and actuators, arising from the nature of guided-207

wave based SHM, which uses PZT transducers for emitting and receiving ultrasonic signals. Additionally, the trade-off208

between information gain and cost, dictated by η in Equation (8), is chosen to be η = |h(w,z)| for the case studies209

presented hereinafter.210
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3.2. Optimal sensor and actuator configuration: panel A211

3.2.1. Aluminum panel A1212

The results for the isotropic plate (panel A1) are obtained using a uniform distribution of possible damage oc-213

currence inside the gray area represented in Figure 4a. The prior uncertainty for the wave propagation velocity is214

quantified by a Gaussian PDF, V ∼N (3000, 402) in [m/s] units. Then, 500 samples drawn from the prior distribu-215

tion of the model parameters θ = {Xd ,Yd ,V} are used in the optimization, along with the previously proposed cost216

function s(n) in Figure 3b. Results from Figure 4a show that the optimal locations for the sensors and actuators are217

the same, generally at the corners, with the same optimal number of ∑
Na
j=1 w j = ∑

Ns
i=1 zi = 6.30 for each device type218

(i.e. n = 12.60, as in Eq. (8)). Note that the total number of sensors and actuators is a real number since the decision219

variables (w j and zi) are continuous in the interval [0,1]. Note also that the results show only the sensor and actuator220

positions with w j ≥ 0.2 and zi ≥ 0.2 to better identify the optimal positions. These thresholds make the sum of de-221

cision variables ∑ j w j = 4.726 and ∑i zi = 4.722 for actuators and sensors, respectively, which are different from the222

optimal numbers of sensors and actuators given above as they consider all the values below the previous threshold.223

In the left corners, both the upper and bottom ones, the results provide two sensors and actuators placed next to224

each other. This behavior can be explained under the assumption of the stochastic independence of the data acquired225

by the sensors, which causes a sensor clustering effect. In this case, the optimal sensor and actuator configuration226

provides an objective function value (recall Eq. (8)) of h∗(w,z,n) = 55.0237. However, such optimal configuration227

cannot be applied in practice, and therefore, a Boolean approximation is selected by rounding off the number of228

sensors and actuators (e.g. 6.30→ 6) for each device type, and selecting the six positions with higher w j and zi229

(see Table 2). This Boolean approximation provides an objective function value of h∗(Ψa,Ψs,n) = 55.0587, which230

represents a remarkably close approximation to the optimal convex configuration. The coordinates of the positions231

above the specified threshold and the corresponding Boolean layout are given in Table 2.232

Table 2: Sensors and actuators above the specified threshold of w j ≥ 0.2 and zi≥ 0.2 along with their corresponding coordinates and the approximate
Boolean solution for the panel A1.

PZT coordinates Relaxed solution Binary solution
PZT No. X [m] Y [m] w [-] z [-] Ψa Ψs

1 −0.900 −0.450 0.984 0.984 1 1
2 −0.800 −0.450 0.489 0.483 1 1
3 0.900 −0.450 0.970 0.970 1 1
4 0.900 −0.200 0.715 0.723 1 1
5 −0.830 0.350 0.986 0.986 1 1
6 −0.825 0.400 0.582 0.576 1 1

3.2.2. Composite panel A2233

In the case of the composite panel A2, the same number of samples and prior distribution of the damage co-234

ordinates (Xd ,Yd) used for the previous case (panel A1) are applied. The prior information of the parameters that235

define the elliptical model of the wave propagation velocity, a and b, are distributed using Gaussian PDFs as follows:236
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(a) Optimal actuator and sensor configuration for panel A1.

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.201 0.332

0.687

0.209

0.216

0.764

0.265

0.201 0.332

0.687

0.209

0.216

0.764

0.265

X coordinate [m]

Y
co

or
di

na
te

[m
]

(b) Optimal actuator and sensor configuration for panel A2.

Figure 4: Optimal actuator and sensor configuration for the panel geometry A assuming different materials and prior distributions of the damage
occurrence. (a) depicts the case for aluminum alloy 2024-T351 and a uniform prior over the gray inner polygon, and (b) shows the same geometry
and prior uncertainty of potential damage occurrence in case of the composite laminate of layup [-45/902/45/0]s. Red and blue numbers represent
the value of actuator and sensor decision variables (w j and zi), respectively.

a∼N (6030, 402) and b∼N (7549, 402), with both expressed in [m/s] units. Figure 4b shows the optimal actuator237

and sensor configuration using the s(n) defined in Figure 3b, which gives an equal optimal number for sensors and238

actuators of 5.33. Note that the transducers are distributed differently from those in the isotropic case, appearing239

at intermediate zones of the structure. The angular-dependent wave propagation profile (see Figure 3a) drives the240

optimal positioning of the transducers, hence highlighting the importance of carrying out optimal sensor and actuator241

configuration studies for structures with different materials, even if they share the same geometry. The seven sensors242

that appear in Figure 4b are listed in Table 3 considering again the threshold values w j ≥ 0.2 and zi ≥ 0.2, and they243
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lead to an objective function evaluation of h∗(w,z,n) = 99.6435, which is a lower bound. Given the stochastic nature244

of the objective function and that several PZTs have similar w and z values, the practical solution using a Boolean245

approximation is addressed by exploring the combinations of PZT 3 and 6 (i.e. the ones with highest w and z values)246

with the rest of transducers listed in Table 3. The best sub-optimal Boolean approximation corresponds to the six sen-247

sors and actuators specified in Table 3 and results in h∗(Ψa,Ψs,n) = 100.2577. Note also in Figure 4b that PZT 4 and248

5 are close to each other and that with this approximation one of them is dropped, hence avoiding sensor clustering.249

Table 3: Sensors and actuators above the specified threshold of w j ≥ 0.2 and zi≥ 0.2 along with their corresponding coordinates and the approximate
Boolean solution for panel A2.

PZT coordinates Relaxed solution Binary solution
PZT No. X [m] Y [m] w [-] z [-] Ψa Ψs

1 −0.500 −0.450 0.201 0.201 1 1
2 0.900 −0.450 0.332 0.332 1 1
3 0.900 −0.200 0.687 0.687 1 1
4 −0.890 −0.240 0.209 0.209 0 0
5 −0.885 −0.190 0.216 0.216 1 1
6 −0.825 0.410 0.764 0.764 1 1
7 −0.400 0.242 0.265 0.265 1 1

3.3. Optimal sensor and actuator configuration: panel B250

3.3.1. Aluminum panel B1251

The results for the isotropic plate with the geometry B that are shown in Figure 5a are obtained in this case252

using a prior damage distribution of possible occurrence over the gray polygon with two concentrated areas. Thus,253

the a priori information of the Xd coordinate is represented as a bimodal Gaussian distribution consisting of the254

weighted summation of two Gaussian PDFs, Xd ∼ {1/2N (−0.6,0.22) + 1/2N (0.6,0.22)} with units expressed in255

meters, while the Yd is uniformly distributed, both within the bounded area represented in Figure 5a. Furthermore,256

the wave propagation velocity V is equally distributed as specified in Section 3.2.1 using the same number of prior257

samples to evaluate the objective function. As observed from the results shown in Figure 5a, the sensors and actuators258

above the previously specified thresholds (w j ≥ 0.2 and zi ≥ 0.2) are again coincident and concentrated at the corners259

of the plate, especially at the bottom left and upper right ones, with an optimal number of 6.35. Table 4 summarizes the260

optimal positions along with their corresponding coordinates for the convex optimization problem, which provides an261

objective function evaluation of h∗(w,z,n) = 54.2611. Correspondingly, the Boolean solution using the six actuators262

and six sensors shown in Table 4 results in h∗(Ψa,Ψs,n) = 54.3951, which again represents a remarkably close263

approximation to the convex solution.264

3.3.2. Composite panel B2265

Finally, the composite panel with the B geometry is assessed in order to identify the optimal positions for both sen-266

sors and actuators. The prior information of the damage coordinates is the same as the one specified in Section 3.3.1,267

while the wave propagation velocity related parameters a and b are defined as in Section 3.2.2. Using 500 samples268
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(a) Optimal actuator and sensor configuration for panel B1.
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(b) Optimal actuator and sensor configuration for panel B2.

Figure 5: Optimal actuator and sensor configuration for the panel geometry B assuming different materials and prior distributions of the damage
occurrence. Panel (a) depicts the case for aluminum alloy 2024-T351 and a bimodal prior distribution of damage occurrence within the gray areas,
and (b) shows the case for the composite laminate of layup [-45/902/45/0]s and the same prior distribution of potential damage occurrence. Red
and blue numbers represent the value of actuator and sensor decision variables (w j and zi), respectively.

of the prior distribution for the evaluation of the objective function, the optimal number of actuators and sensors is269

n = 10.75, i.e., 5.37 actuators and 5.37 sensors. Figure 5b depicts the optimal layout considering the threshold values270

of w j ≥ 0.2 and zi ≥ 0.2, which distributes both coincident actuators and sensors around the most probable damage271

occurrence areas. Their corresponding coordinates are also listed in Table 5. In this case, the evaluation of the objec-272

tive convex function with the optimal solution provides a value of h∗(w,z,n) = 98.2052. Note that no obvious choice273

can be made for the Boolean approximation in Table 5 given the small w and z values. Therefore, the approximation274

is obtained by exploring the combinations of PZT 1 and 6 (i.e. the ones with the largest w and z values) with the275

13



Table 4: Sensors and actuators above the specified threshold of w j ≥ 0.2 and zi ≥ 0.2 along with their corresponding coordinates and the approxi-
mated Boolean solution for the panel B1.

PZT coordinates Relaxed solution Binary solution
PZT No. X [m] Y [m] w [-] z [-] Ψa Ψs

1 −1.400 −0.400 0.412 0.408 1 1
2 −1.400 −0.450 0.997 0.997 1 1
3 0.900 −0.450 0.261 0.259 0 0
4 1.000 −0.450 0.991 0.991 1 1
5 −1.160 0.450 0.981 0.983 1 1
6 1.300 0.450 0.995 0.995 1 1
7 1.300 0.400 0.517 0.513 1 1

rest of transducers. The best Boolean approximation results to have six sensors and six actuators (defined in Table 5)276

and leads to h∗(Ψa,Ψs,n) = 98.3123, which is very close to the convex solution. Note also in Figure 5b that this277

configuration avoids sensor clustering in PZT 7 and 8 and in PZT 3 and 4 by dropping PZT 3 and 7, respectively.278

Table 5: Sensors and actuators above the specified threshold of w j ≥ 0.2 and zi ≥ 0.2 along with their corresponding coordinates and the approxi-
mated Boolean solution for the panel B2.

PZT coordinates Relaxed solution Binary solution
PZT No. X [m] Y [m] w [-] z [-] Ψa Ψs

1 −1.400 −0.450 0.496 0.496 1 1
2 −0.500 −0.450 0.327 0.327 1 1
3 0.600 −0.450 0.299 0.299 0 0
4 0.700 −0.450 0.210 0.210 1 1
5 −0.668 0.450 0.325 0.325 1 1
6 −0.513 0.450 0.492 0.492 1 1
7 1.300 0.450 0.363 0.363 0 0
8 1.310 0.300 0.343 0.343 1 1

4. Discussion279

4.1. On the case study results280

The proposed methodology for sensor and actuator entropy-based convex optimization has been illustrated for281

ultrasonic guided-wave based inspection. This optimization problem is addressed by relaxing the position-related282

decision variables (w j and zi) from binary {0,1} to continuous [0,1] values, thus transforming the combinatorial ob-283

jective function into a convex one (recall Eq. (8)). This relaxation provides a lower bound for the original minimization284

problem over the binary values. However, the obtained solution cannot be directly translated into an actual optimal285

sensor and actuator layout when any of these decision variables lie within the open interval (0,1). However, an actual286

sensor and actuator configuration may be obtained by selecting the positions that have values close to 1, while avoid-287

ing sensor clustering as much as possible. This clustering effect is obtained due to the assumption of the stochastic288

independence of the predicted data, regardless of how close the positions of the sensor/actuators are [39]. When the289

optimal convex solution provides relatively low w and z values, the best Boolean approximation is not obvious and it290

arises from the evaluation of the objective function considering combinations of sensors and actuators with the largest291
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w and z values. Note that the use of sub-optimal configurations would lead to more uncertain damage localization292

with respect to the optimal one.293

It is also noticeable from the results that both the location and number of the sensors and actuators are coincident294

for the aluminum and composite plates and for the different geometries, because they have the same values of w j and295

zi. Since PZT transducers are able to both emit and receive ultrasonic guided-waves, they can act as both a sensor296

and an actuator and so only half of the PZTs would be needed for the inspection and monitoring of these plate-like297

structures. Furthermore, note that the resulting optimal PZTs in both aluminum plates are located at the corners of298

the plate, irrespective of the different prior distributions of damage considered in the case studies (see Figures 4a299

and 5a). Given that the aluminum plate provides a homogeneous media for the guided-waves to travel and that the300

attenuation is not taken into account, placing the PZTs at the corners allows a greater area to be monitored. In the301

case of the composite structures, the PZTs are spread along the plates with a certain preference for the predominant302

fiber directions due to the higher wave propagation velocity in such directions. Additionally, observe from the results303

for the composite panel B2 (Figure 5b) that the optimal PZTs are located around the most probable damage areas of304

the prior distribution in a triangular pattern.305

The optimal number of sensors and actuators is influenced by the type of material, due to the different as-306

sumptions adopted in modeling the wave propagation velocity. In particular, the optimal configurations for the307

aluminum structures contain more sensors with a lower expected information entropy than those obtained for the308

composite plates. This behavior can be explained by analyzing the objective function in Equation (8), which di-309

rectly multiplies the expected information entropy by the cost given our choice of the penalty term η = |h(w,z,n)|, as310

h(w,z,n)+ |h(w,z,n)|× s(n). To further clarify this behavior, the derivative of the objective function is set to zero so311

that the optimal number of sensors and actuators can be illustrated in cases where the entropy is different, as follows:312

∂
∂n
{h(w,z,n)+ |h(w,z,n)|× s(n)}= 0 ⇒ ∂h(w,z,n)

∂n
×
(

1+
h(w,z,n)
|h(w,z,n)| s(n)

)
︸ ︷︷ ︸

Variation of entropy

=−∂ s(n)
∂n
×|h(w,z,n)|︸ ︷︷ ︸

Variation of cost

(12)

Thus, in case of two alternatives with similar ∂h(w,z,n)/∂n and equal cost s(n), the optimal number of sensors313

is found to be smaller for structures providing lower variation of entropy. This is depicted in Figure 6, where the314

derivatives for the aluminum and composite results in panel A of the case studies are compared. This behavior315

can be interpreted as a penalty for scenarios with higher uncertainty by reducing the amount of relatively unreliable316

information. Alternatively, in cases with lower uncertainty (entropy), the quality of such data is higher and more317

reliable, and hence the proposed approach allows it to use more sensors/actuators.318

4.2. On the ToF model and computational aspects319

The ToF model used in this paper allows the simulation of the time of flight of a scattered ultrasonic guided-320

wave to reach an arbitrary sensor without the need of a transient ultrasonic guided-wave simulation. This model321
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Figure 6: Behavior of the objective function considering two different entropy curves for optimal distributions of sensors for each n, red for the
composite and black for the aluminum for panel A of the case studies in (a), the same cost function in (b), and the intersection of the two members
(plain lines for variation of entropy, and using markers for the variation of cost) of Eq. (12) in (c).

has proven efficiency when dealing with complex materials and structures, providing the propagation characteristics322

are known. It is worth mentioning that the elliptical model of the wave propagation velocity used in this paper is323

only valid for anisotropic structures with quasi-elliptical slowness curves. However, the extension to more complex324

structures could be achieved by finding mathematical expressions that approximate such slowness curves. In addition,325

the optimization framework does not account for sensor and actuator malfunctioning, multiple damage scenarios, or326

the geometry of the structure except for the area of potential damage occurrence and its spatial prior distribution. Note327

that the robustness of the proposed methodology is expected to be further enhanced should the aforementioned factors328

be taken into account. An observation from the case studies is that the definition of such prior information is a key329

aspect, as it can drastically change the optimal sensor layout, at least in the composite structure. Despite its flexibility,330

the ToF model entails several limitations with regards to the physics of the guided-wave propagation as it does not331

account for attenuation or wave interaction with different types of damage. Therefore, it is desirable for future work332

to investigate a physics-based wave propagation model that is continuous and differentiable (e.g. by approximating333

a finite element model using a surrogate model such as a polynomial chaos expansion [48]), so that the gradients of334

Equation (5) can be applied.335

Nevertheless, the computational efficiency of the proposed approach is remarkable as compared to other ap-336

proaches in the literature that approximate the optimal binary solution. The optimal designs of the case studies in337

Section 3 have been obtained in approximately 300 - 400 seconds of runtime (equivalent to 75 - 120 objective func-338

tion evaluations) in an Intel i3 2-core computer with 8 Gb of RAM, depending on the type of material and the prior339

distribution. In contrast, other approaches that use approximation methods such as the forward sequential sensor340

algorithm [7], take several hours to obtain a suboptimal sensor layout, assuming a fixed distribution of actuators.341

Therefore, the runtime needed to address the joint search for sensors and actuators would be significantly longer, thus342

highlighting the benefits of the proposed approach in practice. This efficiency encourages the use of the proposed343
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methodology in industrial applications where structures with large and arbitrary geometries and complex materials344

are used, such as in the aerospace industry. In addition, the use of information-theoretic approaches entail a more345

robust damage detection that is expected to reduce the number of false alarms and their economic impact.346

Finally, note that the proposed method relies on the assumption of a large number of data N → ∞, so that the347

posterior distribution can be approximated as Gaussian, ultimately justifying the use of the MAP parameter values [35,348

36]. However, this hypothesis causes the model to lose some information about the model error and its uncertainty.349

Therefore, a more rigorous method would be to use the mutual information between data and model parameters as350

objective function given by [38, 39]:351

I(DN ,θθθ) = H(DN)−H(DN |θθθ) (13)

where H(DN) is the entropy of the data and H(DN |θθθ) is the conditional entropy. Note that the first term involves a352

large number of evidence calculations p(DN), which is known to be computationally demanding [49] and could make353

the problem impractical.354

5. Conclusions355

An entropy-based approach for optimal sensor and actuator configuration (number of devices and their position)356

is proposed in this paper. The methodology exploits the convexity of a relaxed optimization problem where the357

discrete variables in {0,1} are relaxed to continuous variables in [0,1], allowing it to be addressed with standard358

continuous-variable minimization algorithms at relatively low computational cost. The efficiency and versatility of359

the optimization method in addressing structures with arbitrary geometries and complex materials is illustrated using360

two case studies based on ultrasonic guided-wave based inspection. The following conclusions can be drawn:361

• The proposed convex optimization method produces a lower bound of the objective function using continuous362

optimization variables, which are then approximated by Boolean variables to give a near-optimal sensor/actuator363

configuration. We place the devices at locations of the variables with higher values while avoiding sensor364

clustering.365

• The optimal sensor and actuator layouts coincide, at least for the ultrasonic guided-wave based application,366

which suggests that the use of PZT transducers in pulse-echo mode is the most efficient test mode.367

• The proposed objective function, which combines entropy and cost, provides less sensors/actuators in cases368

with higher uncertainty (entropy), hence penalizing scenarios with poor quality of data.369

Further improvements in our approach are under consideration on the following topics: (1) the inclusion of po-370

tential sensor and actuator malfunctioning as well as multiple damage scenarios to further enhance the robustness371

of the optimal configuration, (2) the computation of the mutual information between data and model parameters by372

addressing the calculation of the evidence, and (3) the use of a physics-based model, along with a surrogate of it for373
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efficient calculations, so that wave interaction with different types of damage as well as wave attenuation are taken374

into account.375
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