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A B S T R A C T

Bridge Management Systems (BMS) are decision support tools that have gained widespread use across the
transportation infrastructure management industry. The Whole Life Cycle Cost (WLCC) modelling in a BMS is
typically composed of two main components: a deterioration model and a decision model. An accurate dete-
rioration model is fundamental to any quality decision output.

There are examples of deterministic and stochastic models for predictive deterioration modelling in the lit-
erature, however the condition of a bridge in these models is considered as an ‘overall’ condition which is either
the worst condition or some aggregation of all the defects present. This research proposes a predictive bridge
deterioration model which computes deterioration profiles for several distinct deterioration mechanisms on a
bridge.

The predictive deterioration model is composed of multiple Markov Chains, estimated using a method of
maximum likelihood applied to panel data. The data available for all the defects types at each inspection is
incomplete. As such, the proposed method considers that only the most significant defects are recorded, and
inference is required for the less severe defects. A portfolio of 9726 masonry railway bridges, with an average of
2.47 inspections per bridge, in the United Kingdom is the case study considered.

1. Introduction

The functional operation of transportation networks is contingent
on diverse asset portfolios including civil infrastructure. The railway in
Great Britain includes over 26,000 bridges, which are constructed out
of many different materials and are of various ages. Network Rail (NR)
is the infrastructure asset manager for the railway network in England,
Scotland, and Wales. Consequently, NR is responsible for the inspec-
tion, assessment, maintenance, and repair of this portfolio of bridges.

Ensuring the bridges are maintained to a suitable safety threshold is
critical, as the consequence of structural failures would be enormous.
The risk of structural failure is reduced by performing inspections and
maintenance as per the industry guidelines [1]. However, it is also a
significant challenge to achieve this within the budgetary constraints
placed on railway infrastructure managers. To ensure that decisions
made result in the optimal Whole Life Cycle Cost (WLCC), a modelling
approach is employed. A decision support tool known as a Bridge
Management System (BMS) is used to perform any required modelling
and to prioritise and justify decisions to the regulator.

Any WLCC analysis can be roughly divided into two parts: a

deterioration model and a decision model [2]. The deterioration model
is responsible for predicting the future condition of a bridge asset,
whilst a decision model supports the decision making process in the
development of maintenance strategies. The appropriateness of any
decisions and the accuracy of cost outputs for maintenance strategies
will be inherently flawed if the deterioration model does not have a
sufficient prediction accuracy. This work presents a method to compute
predictions of the deterioration profiles of multiple deterioration me-
chanisms opposed to the current practice of a single overall condition
index. Moreover, existing condition records do not have observed
conditions for all the deterioration modes at each inspection, and thus a
score inference technique is developed to overcome this limitation of
the data, so that transition rates between conditions can be estimated. A
method of maximum likelihood applied to panel data, based on the
works of Kalbfleisch and Lawless [3], and Kallen and van Noortwijk [4]
is used to estimate parameters for the deterioration rates of each of the
defects.
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2. Bridge asset management

There are a variety of deterministic and stochastic modelling ap-
proaches for bridge asset management but Frangopol et al. [2] argued
that stochastic modelling is more advantageous than all other model-
ling approaches for structural deterioration. Deterministic models can
be used to predict values for measurable quantities [5], which is a
difficult task to scale to large asset portfolios. Additionally, determi-
nistic models provide limited scope to investigate the effects of un-
certainty, and consequently these models are often used to predict the
outcomes of ‘worst case’ scenarios [6]. Several factors that influence the
safety of a structure have been parametrised using probabilistic fra-
meworks opposed to deterministic alternatives [7,8]. Moreover, sto-
chastic modelling has the capability to incorporate the inherent ran-
domness of structural deterioration.

To model the degradation of bridge condition, there are two main
sources of data: condition records from examinations and maintenance
records, which outline the time between maintenance interventions.
The use of maintenance records allows lifetime analysis and addresses
the concerns of subjectivity of condition indices. However, maintenance
data is often sparse and of poor quality [9], making its use unsuitable
for many infrastructure managers.

The use of condition records from bridge inspections to model de-
terioration and estimate transition rates is more common [10]. As
bridges degrade at a slower rate in comparison to other railway assets,
for example mechanical assets, it is common for infrastructure man-
agers to have considerably more condition records than maintenance
records. Caution should be taken when using any condition index as it
does not necessarily reflect the integrity of a load bearing structural
element [11–13], although Frangopol and Liu [14] argue that main-
tenance interventions should typically be prioritized to civil infra-
structure with unacceptable and poor condition rating levels. Note that
the notion of a scale of ‘overall’ or ‘worst’ conditions are commonly
defined for either data type for the purposes of modelling.

A performance study of 5700 bridges in Indiana, USA [15], is often
cited as an early example of a Markov-based model being used for
bridge deterioration modelling. Further studies made use of Markovian
methods for predictive bridge deterioration modelling of a single bridge
component or a whole bridge [16–18]. The Markov Chain approach is
recognised as the most popular technique for stochastic deterioration
models [2,19]. Many industry leading BMSs make use of the Markov
chain approach for the predictive deterioration modelling in each sys-
tems, including: AASHTOWare Bridge Management (formerly Pontis)
developed in the United States; KUBA, used in Switzerland; Ontario
Bridge Management System (OBMS) used in Ontario, Canada and
Quebec Bridge Management System (QBMS) used in Quebec, Canada
[20,21].

Other modelling frameworks have been used for the modelling of
bridge deterioration: Semi-Markov [22–25], Petri Nets (PNs) [26–29]
and Bayesian Belief Networks (BBN) [30]. Time-based approaches have
been presented to obtain probability distribution parameters from his-
toric condition data, including non-constant deterioration rates
[31–35]. However, since bridges are inspected at intervals, rather than
continuous monitoring, the exact transition event is not observed and
hence assumptions are required to determine sojourn times for each
condition state.

Markov chains do have limitations, including: the assumption of
constant transition rates and the model size increasing exponentially
with the increasing number of states [36]. Additionally, discrete con-
dition states, as used in Markov chains, present cases which require
expert judgment for the appropriate state classification, which can be
subjective [2]. Moreover, when using condition records there is diffi-
culty in ascertaining the effects of maintenance and the appropriate
inclusion of records which exhibit an increase in condition [37].
Nevertheless, Morcous [18] observes that they are the most common
stochastic technique used for bridge deterioration modelling, stating

that Markov chain models are implemented for their ability to predict
future condition given the uncertainty of the deterioration process and
their computational efficiency. In spite of the limitations of Markov
chains, they are the most appropriate given the constraints of the in-
dustrial longitudinal data considered in this study, which does not re-
cord all the defect states and only covers a fraction of the structures
lifetime.

In this study, Markov chain models are defined for bridge compo-
nents, which can be used to predict lifetime indicators for overall
bridges. These indicators for overall bridges can then be used to inform
network/portfolio modelling. This approach enables the evaluation of a
large variety of structural configurations, which may exist across a
bridge portfolio. Nonetheless, it should be noted that there have been
several studies performed which analyse maintenance scheduling at the
network level using generalised bridge lifetime indicators [38,39].

Bridges can degrade under a variety of different deterioration me-
chanisms, consequently any scale that seeks to consolidate the different
deterioration modes into one condition index will have a level of sub-
jectivity and arbitrariness. Ceravolo et al. [40] proposed ‘symptom-
based’ reliability models to overcome the limitations of ad hoc relia-
bility indexes and to incorporate engineering knowledge gained from
structural monitoring activities. However, such empirical measure-
ments are often not available across large, diverse asset portfolios.

This research introduces a method to model the multiple different
deterioration modes, such that more comprehensive predictions of
bridge deterioration can be made. By modelling multiple deterioration
modes simultaneously, it should lead to an improved accuracy in any
predictive output. Additionally, by computing predictive deterioration
profiles for each defect type, it would then be possible to produce a
decision model that tests maintenance strategies based on particular
defect types rather than the ‘traditional’ ambiguous repair actions (e.g.
minor repair, major repair and replacement).

Defects can be grouped into different modes as they are different
processes and impact the bridge component in different ways, e.g.
mortar, brick surface, interactions between the bricks and the infill. The
practical implication of multi-defect modelling is that it should not only
facilitate more accurate and engineering based models but also provide
models that can indicate specific future maintenance needs given the
context of all the defects’ extensiveness revealed at the most recent
inspection.

The purpose of a model can be broadly categorised into three
classes: Generator, Mediator and Predictor [41]. A generator model is
used to generate hypotheses, mediator models are employed to make
comparisons between competing strategies, and predictor models are
used when a system is well understood and can provide accurate in-
sights into future bridge condition states [42]. In bridge management, a
mediator model can be used to investigate the benefits of different
maintenance strategies. A predictor model can compare different
maintenance strategies but could also affix accurate costings to any
output, which is an objective of infrastructure asset managers. The
prediction of multiple deterioration mechanisms enables the develop-
ment of a decision model that could apply specific maintenance actions
and consequently the ability to affix more accurate maintenance costs.
Thus, a multi-defect deterioration model facilitates the development of
a decision model which could be described as a predictor model.

It should be noted that the service life of civil infrastructure is
characterised in part by the effects of progressive deterioration and
sudden deterioration [43]. Progressive deterioration describes the de-
velopment of various defect mechanisms and sudden deterioration is
the result of hazards such as earthquakes, fires and floods, amongst
others. The models described in this study are used to predict pro-
gressive deterioration behaviour and they do not model sudden dete-
rioration outright. Nonetheless, the modelling of distinct defect me-
chanisms permits the evaluation of how vulnerable a structure may be
to sudden deterioration.
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3. Inspection records

NR manage a diverse range of bridge assets in their portfolio, with
each bridge denoted as having a primary material which includes:
concrete, metal, masonry, timber and composites. Masonry bridges are
the case study considered as they are the most populous type in the NR
portfolio. NR use an alpha-numeric scoring system called Severity
Extent (SevEx) to record the observed condition of a bridge during a
detailed examination. The definition for each severity score for a ma-
sonry bridge element aligns with a different defect mode. The possible
defects that can be observed are: shallow spalling, deterioration of
pointing, deep spalling, hollowness/drumming, loose or missing block
work from the surface of bridge element and displaced or missing
blockwork to the full depth of the element. The extent score details the
coverage of the observed defect on the bridge element. Full definitions
for the severity and extent scores can be found in Tables 1 and 2 re-
spectively.

At inspection, each element is assessed and any defects can be as-
signed an alpha-numeric score on the SevEx scale. All the possible
masonry SevEx scores range from A1 (no visible defect) to F6 (over 50%
of the element surface having displaced or missing blocks), forming

= A B B C C D D
E E EX EX F F

{ 1, 2, 6, 2, , 6, 2, , 6,
2, , 6, 2, , 6, 2, , 6}. (1)

At each inspection, for each bridge element, the two ‘worst’ scores are
recorded alongside the date of the inspection. When several inspections
have taken place on the same bridge, the repeated observations form a
longitudinal study. The longitudinal study can be split into ‘exam pairs’
and stated in the following format for n exam pairs,
Record Inspection 1 Inspection 2 Time interval

SevEx 1 SevEx 2 SevEx 1 SevEx 2 (Years)
ri i,1 i,1 i,2 i,2 ti

where =i n1, , and αi,j is the worst score at the jth inspection, βi,j is
the second worst score at the jth inspection, ,i j i j, , and

< <t t, 0 18i . This process is repeated for all bridge elements that
have had multiple inspections and the resulting tables are pooled into
one data set.

The historic condition records are filtered to only include records
which exhibit stationary behaviour or deterioration, i.e. {αi,1,

βi,1} ≤ {αi,2, βi,2}. Pairs of inspections that exhibit extreme cases of
deterioration are also omitted under the assumption that they are the
result of non-standard behavior, for example, bridge strikes, fires etc.

3.1. Multi-defect condition states

To leverage the SevEx condition scale for any potential multi-defect
model, some adaptations to the scale are required. The SevEx scale has
the overall state of no defect defined as A1, whereas for multi-defect
modelling a no defect state is required for each defect i.e. A1 → {B1,
C1, D1, E1, EX1, F1}. Thus, the SevEx conditions states for each defect
type are as follows: = B B{ 1, , 6}, = C C{ 1, , 6},

= D D{ 1, , 6}, = E E{ 1, , 6}, = EX EX{ 1, 6} and
= F F{ 1, , 6}. The inspection records for a multi-defect panel should

be in the format as shown in Table 3, for all n records ( =i n1, , ),
where Bij is the condition of Defect B in the jth inspection of the ith

record with Bij . Cij, Dij, Eij, EXij and Fij are described similarly.
However, at each inspection only the two worst severity scores are
recorded.

3.2. Score ranking

The current format of inspection records contains the two ‘worst’
scores; for any score inference, a definition of what ranking is used to
determine ‘worst’ scores is required. However, how the worst scores are
defined is unclear, and consequently two candidate rules were con-
sidered:

• Rule One: The SevEx scores are ranked according to severity score,
followed by the extent score, and thus the rule has the following
order of precedence: A1< B2< ⋅⋅⋅ < B6< ...< F2< ⋅⋅⋅ < F6.

• Rule Two: The SevEx scores have a numerical weight which is used
in a Bridge Condition Marking Index (BCMI) calculation. Using the
BCMI weight a 1D integer condition scale could be created to rank
the different SevEx scores. The integer scale value for each SevEx
score is shown in Table 4. Under this ranking, there are still possible
cases were a tie-break rule would need to be developed.

Documentation compiled by NR describing the condition scores of
bridges used at examinations states that the two most severe defects
should be recorded at each inspection, and that the same severity rating
can not be used more than once [44]. Moreover, the guidance for bridge
inspectors states that with an ageing masonry bridge stock it would be
rarely appropriate to categorise a bridge element as A1, and thus a
minor defect, even if it is with little structural significance, should be
reported. After consultation with NR bridge engineers it was de-
termined that the bridge inspectors adhere to rule one when de-
termining the two worst scores to record for a bridge element at in-
spection. The use of the rule one avoids the arbitrary conversion
weightings which rule two relies on. Moreover, the proposed metho-
dology is applicable to any score ranking method.

Table 1
SevEx severity definitions for masonry bridge elements.

Score Severity definitions

A No visible defects to masonry. (Cracks are scored separately.)
B Brickwork - depth of spalled and weakened/softened material < 10 mm. Stonework - depth of spalled and weakened/softened material < 20 mm. Or any evidence of

the presence or effect of water (defined as percolation, run-off, etc).
C Deterioration of pointing. (Record the maximum and typical depth lost.)
D Brickwork - depth of spalled and weakened/softened material ≥ 10 mm but less than the depth of a header. Stonework - depth of spalled and weakened/softened

material ≥ 20 mm but less than the depth of a block.
E Hollowness/Drumming. (Not associated with B or D.)
EX Includes all incidences of: loose/wedged bricks/blocks - not displaced, loose/wedged bricks/blocks - displaced but not to the full depth of the structural element or

missing brick/blocks - one or more, but not to the full depth of the structural element.
F Choose most extensive from: bulging, distortion tilting (vertical alignment), displacement: loose and/or wedged displaced bricks/blocks to the full depth of the element or

missing brick/block to the full depth of the element

Table 2
SevEx extent definitions for masonry bridge elements.

Score Extent definitions

1 No visible defects to masonry (cracks are scored separately).
2 Localised defect due to local circumstances (such as mechanical damage).
3 Defect occupies less than 5% of surface of the structural element.
4 Defect occupies 5% to 10% of the surface of the structural element.
5 Defect occupies 10% to 50% of the surface of the structural element.
6 Defect occupies more than 50% of surface of the structural element.
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3.2.1. Multi-defect score inference
Score inference can be performed on the historic inspection records,

to express the recorded score panel as a multi-defect inspection panel as
fully as possible. Recall that for the ith record, the worst score recorded
at inspection j is given by αi,j, and the second worst score is denoted by
βi,j. Then, Sev(αi, j) denotes the severity score of the SevEx score of αi,j,
similarly Ex(αi,j) denotes the extent score of the SevEx score of αi,j.

If the score panel at inspection is reported as, = A1i j, and = A1i j,
then the multi-defect panel will be {B1, C1, D1, E1, EX1, F1}. In the
situation that a score panel of = A1i j, and αi,j ≠ A1 is reported at
inspection, the multi defect panel would have five defects that have an
extent of one, the severity score of these five would be all γ that satisfy,

B C D E Ex F Sev Sev( { , , , , , }) ( ( ) ( )).i j, (2)

For the one defect that has an extent score greater than one, which is
Sev(αi, j), the extent score would be Ex(αi,j).

Finally, if an inspection is recorded such that αi,j ≠ A1 and βi,j ≠ A1,
it is still possible to make some assertions on the unobserved defects.
The score inference relies on the assumption that, if an inspection score
panel does not contain a high severity score, it must be due to the high
severity defect being absent, otherwise the bridge examiner should
have recorded the presence of that defect instead of the lower severity
defect. The ranking rule selected states that: B< C< D< E< EX< F.
Consider the ith record at the jth inspection, where αi,j and βi,j are
known SevEx scores and they have two different severity scores, i.e. Sev
(αi, j) ≠ Sev(βi, j). If a candidate score value is denoted as γi,j, then there
are four possible severity scores that were not recorded at inspection
but could possibly be inferred, i.e.

Sev Sev Sev Sev B C D E EX F( ( ) { ( ), ( )}) ( ( ) { , , , , , }).i j i j i j i j, , , , (3)

For each of the four severity values γi,j can assume, an attempt of in-
ferring the extent score can be sought by using the following inference
rules:

> =Sev Sev ExIf ( ) ( ), then ( ) 1.i j i j i j, , , (4)

< > =Sev Sev Sev Sev ExIf ( ) ( ) and ( ) ( ), then ( ) 1.i j i j i j i j i j, , , , , (5)

Alternatively, if Sev(γi, j) < Sev(αi, j) and Sev(γi, j) < Sev(βi, j) then Ex
(γi,j) is unknown, otherwise Ex(γi,j) = 1. In other words, a more severe
defect is not recorded if it is absent, while a less severe defect could be
absent independent of its extent score.

3.2.2. Inference examples
Consider the example panel data in Table 5, which can be explicitly

defined as a multi-defect panel using the score inference rules, shown in
Table 6. Both Records 1 and 2 can be explicitly defined as multi-defect
panels, with Record 1 using the first score inference rule, (4) and Re-
cord 2 using both score inference rules, (4), (5). From Records 3 and 4 it

can be observed that the multi-defect panel may not always be ex-
plicitly defined. For example, for inspection 1 of record 3, defects with
severity scores D and EX were found. Consequently, any defect with
severity score B or C would be excluded for being less severe, in-
dependently of extent. In the cases where a multi-defect panel is not
explicitly defined, the inspection pair for a severity score can only be
used in any data analysis if an extent score exists for the defect type at
both inspections.

Generally, the ‘lower’ severity scores will become unobserved when
the bridge element exhibits ‘higher’ severity scores. Thus, any model will
make the assumption that the rate of deterioration estimated for the lower
severity scores which were observed continues to hold true when they
become unobserved. As current industry practice is to base maintenance
scheduling models off of the worst score, this is seen as a reasonable as-
sumption given the data available. However, in the future, NR intend to
record inspections by tracking particular defects by a unique identifier.
This updated recording regime will make the whole multi-defect score
panel observable all of the time and result in the score inference rules and
deterioration behaviour assumption no longer being required.

3.3. Merging of extent scores

Whilst analysing the inspection records, it became clear that an
extent score of 2, i.e. {B2, C2, D2, E2, EX2, F2}, was underutilised by
bridge examiners. It was also apparent that the low number of observed
records with extent score equal to 2 was common across all severity
scores. The under reporting of this score could be due to the sojourn
time of this condition state being considerably shorter than any in-
spection interval.

However, it was determined that a more likely explanation was the
fact that an extent score of 2 and 3 are very similarly defined; extend
score 2 is defined as, ‘Localised defect due to local circumstances’ and
extent score 3 defined as ‘Defect occupies less than 5% of surface of the
structural element’. Thus, if a defect is not present it would be assigned

=Ex ( ) 1,i j, whereas if there is some defect but its’ coverage is less than
5% of the surface, bridge inspectors are being cautious and assigning an
extent score of 3.

Table 3
Multi-Defect score panel format, where Bi, j is the condition of Defect B in the jth inspection.
Record Inspection 1 Inspection 2 Interval

B C D E EX F B C D E EX F (Years)
ri Bi, 1 Ci, 1 Di, 1 Ei, 1 EXi, 1 Fi, 1 Bi, 2 Ci, 2 Di, 2 Ei, 2 EXi, 2 Fi, 2 ti

Table 4
Network Rail assigned integer condition scale score for each SevEx score.

Severity Extent

1 2 3 4 5 6
B 1 2 2 3 4 5
C 1 4 4 5 6 7
D 1 7 7 8 11 12
E 1 7 9 11 13 14
EX 1 7 9 11 13 14
F 1 7 10 12 14 15

Table 5
Example bridge inspection panel data using NR’s SevEx condition scale.

Record Exam Inspection 1 Inspection 2 Time interval

αi,1 βi,1 αi,2 βi,2 (Years)

1 C3 B2 C5 B3 6.34
2 E2 B3 E3 B6 6.12
3 EX2 D3 EX3 E4 5.79
4 F2 EX4 F2 EX5 7.26

Table 6
Inferred multi-defect panel, using the score inference rules on the example
bridge inspection panel data from Table 4. Dashes denote unknown scores.

Record Inspection 1 Inspection 2 Time
interval
(Years)

1 B2 C3 D1 E1 EX1 F1 B3 C5 D1 E1 EX1 F1 6.34
2 B3 C1 D1 E2 EX1 F1 B6 C1 D1 E3 EX1 F1 6.15
3 D3 E1 EX2 F1 E4 EX3 F1 5.79
4 EX4 F2 EX5 F2 7.26
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To address the potential for any erroneous errors due to this, the
extent scores of 2 and 3 were merged, with the extent scores used in this
study defined in reference to the NR extent scores, as shown in Table 7.

4. Proposed model

Due to the constraints of the data, discussed further in Section 4.1, it
was determined that a continuous-time Markov chain would be the
most appropriate modelling technique. The proposed multi-defect de-
terioration model is shown in Fig. 1. The predictive model reports the
probability of an extent score for each of the six severity scores, which
for masonry bridges aligns with the extent of each of the six different
defect types.

The transition rate matrix for severity B is described by,

=Q

B B B B B
B
B
B
B
B

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0 0

.B

i i i i i

j

j

j

j

j

B B B B

B B B B

B B B B

B B B B

,1 ,2 ,3 ,4 ,5

1,

2,

3,

4,

5,

, ,

, ,

, ,

, ,

1 2 1 2

2 3 2 3

3 4 3 4

4 5 4 5

(6)

The model described by (6) makes the assumption that a bridge
element can only degrade instantaneously to an extent score of one
more than the current extent score. The inability to make an in-
stantaneous transition of more than one extent score is considered to be
a more realistic representation of the physical process of bridge dete-
rioration, as the defects will exhibit continuous growth. Moreover, the
inability of the model to make ‘state jumps’ is deemed to be a helpful

attribute to avoid the model being over-fitted to the data.
The transition rate matrices, QC, QD, QE, QEX and QF for severity

scores C, D, E, EX and F respectively, are similarly described as QB.
Thus, the entire model is described by the following transition rate
matrix,

=Q

Q
Q

Q
Q

Q
Q

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

.MD

B

C

D

E

EX

F (7)

The continuous time Markov chain approach as used in this study,
assumes that there is no additional information of the bridge condition,
or timing of condition transitions between the discrete observation
times. However, the model does not implicitly assume that the bridge
element will remain in its most recently observed condition state until
an inspection reveals it to be otherwise. This model assumption is
deemed to be reflective of the physical reality of continuous bridge
deterioration. Notwithstanding, in a model that applied maintenance
strategy, an inspection regime must be considered to reveal condition
rather than assume a continuously reviewed state. However, the pur-
pose of this model is to parameterise the deterioration mechanisms
under a do-nothing maintenance strategy.

Methods such as partially-observable Markov processes can be used to
incorporate the variability of inspections [2]. However, the quantification
of the inspection variability was deemed to be beyond the scope of this
study. Additionally, there are several other organisations and agencies
globally that use bridge condition scales akin to SevEx, however they may
have different inspection regimes. The purpose of this model is to be as
general as possible for maximum applicability as well as provide insight
into the novel idea of modelling bridge degradation by defect group op-
posed to the traditional single condition index approach.

4.1. Parameter estimation

NR has a vast portfolio of bridges and the time and expense required
to inspect is significant. The earliest record inspection record that NR
have for a bridge asset is from 1999. Between 1999 and 2017, of the
bridge elements that have had multiple inspections, 57.25% have had
two inspections, 34.28% have had three and 8.47% have had four or
more inspections.

Considering a structural element that has been inspected multiple
times over a period of time; a record can be produced detailing the
element’s condition over time. An example of is shown in Fig. 2a. The
time-based approach considers the time it required to move from one
condition to another, so the specific element records are used to de-
termine the number of condition transitions for each observed time
interval. An example of amalgamated records is shown in Fig. 2b.

Many of the masonry bridges in the NR portfolio were constructed
during the Victorian era in the 19th century [45], and thus have had an
active service life of over 100 years in most cases. As there is an ex-
tensive gap between the construction of the masonry bridges in the NR
portfolio and the first recorded inspections as well as the maintenance
interventions records, it was deemed that the use of bridge age to
compute time-dependent transition rate matrices as shown in [4],
would be inappropriate for the available data.

The approach used to produce Fig. 2b is unsuitable for NR records
due to the size of the inspection intervals. When an second inspection
shows deterioration from the first inspection, the inspection interval
can not be assumed to be the exact time it took for that degradation to
occur. As the inspection interval can be several years, it is impossible to
ascertain how long the bridge element has been in the worse condition
state before the inspection took place. An example of this is shown in
Fig. 3a.

Table 7
The extent scores used in this study in reference to the NR extent scores.

NR Extent Score

1 2 3 4 5 6

Study Extent Score 1 2 2 3 4 5

Fig. 1. Multi-defect deterioration Markov model .
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Additionally, due to the large inspection intervals and lack of con-
tinuous monitoring, one can not deduce the route between the initial
inspection and the second, if there is a score difference greater than
one. For example, if the first inspection recorded a 1, and the second a
3, the route of deterioration is unrevealed. Moreover, as the dete-
rioration route is unrevealed, one does not know whether the bridge
condition degraded from condition 1 to condition 2 to condition 3 or
from condition 1 directly to condition 3, see Fig. 3b.

The censoring of time intervals and unknown deterioration paths
are due to the data being a form of panel data or a longitudinal study.
To address these issues a memory-less distribution is employed which
does not require information on the previous histories of condition. A
common implementation of this is to use discrete time Markov chains.

The estimation of parameters of a distribution describing bridge
deterioration need to consider the defined frequency of inspections. In
some organisations and jurisdictions the inspection intervals are a fixed
size, which allows for the Transition Probability Matrices (TPM) to be
computed. The number of records that show a transition from condition
i to condition j is denoted as ni,j. The probability pi,j of a transition from
condition i to j can be computed by the following,

=p
n
n

,i j
i j

i
,

,

(8)

where ni is the sum of all inspections pairs which have an initial con-
dition of i. When time is known to be both fixed and constant for all
observations, pi,j has been shown to be a Maximum Likelihood
Estimator (MLE) [46]. The changes in the probability distribution of a
portfolio, C, with N condition states, from time 0, to t, can be derived
from the Chapman-Kolmogorov equation,

=c c c c c c

p p p
p[ ] [ ] 0

0 0 0 1

,t t
N
t

N

N

N

t

1 2 1
0

2
0 0

1,1 1,2 1,

2,

(9)

where ci
t is the probability of being in state i at year t.

For the NR bridge portfolio the size of interval between detailed in-
spections is determined by the condition of the overall bridge at its pre-
vious inspection or if observations made at an annual visual inspection
result in a detailed inspection being required. For example, stone bridges
are categorised into lower, medium and high risk categories with medium
and high risk bridges inspected every 6 years and low risk bridges every 12
years [1]. Additionally, curved or straight masonry bridges of four or more
spans with RA101 loading have maximum inspection intervals of 3 and 6

years respectively. An example distribution of inspection intervals is
shown in Fig. 4. Thus, any estimation technique will be required to analyse
pairs of inspections with varying interval times.

4.2. Maximum likelihood estimation approach

An alternative parameter estimation method, more suitable for
when the time intervals between inspections vary significantly was
proposed by Kalbfleisch and Lawless [3]. The technique has been used
to estimate parameters for continuous-time Markov chains in dete-
rioration modelling of structural assets [4,47]. In this approach, the
parameters of the model, see (6) and (7) are computed by maximising
the likelihood of the observed inspection results.

Consider the observed discrete vairable data, {x1, x2, ⋅⋅⋅, xn}, the
Likelihood function L(θ) is defined as the joint probability mass func-
tion of the observed data given θ. If {x1, x2, ⋅⋅⋅, xn} is a random sample
from a distribution with probability function f(x|θ) then the Likelihood
function is given by

=
=

L f x( ) ( | ).
i

n

i
1 (10)

The Maximum Likelihood Estimator (MLE) is the value of θ which
maximises L(θ). The log-likelihood function, F(θ), is defined to be the
natural logarithm of the likelihood function L(θ), as,

=
=

F f x( ) ln( ( | )).
i

n

i
1 (11)

Note, that the natural logarithm is a monotonically increasing
function, and thus maximising the likelihood function is equivalent to
maximising the log-likelihood function.

4.2.1. Estimation of the optimal transition rate matrix
The likelihood is the predicted probability of the occurrence of the

observed condition transitions:

=
=

L Q p( ) ,MD
r

N

r
1 (12)

where N denotes the number of observed condition transition records
for all severity scores and

=p p ,r i j t, , (13)

where i is the condition score at the first inspection of record r, j is the
condition score at the second inspection of record r and t is the size of
the inspection interval between the first and second inspection of re-
cord r. The pi,j,t value is found from the (i, j)th element from the

Fig. 2. An example between using historic inspection records to analyse a specific elements and a group of elements.

1 RA10 refers to the route availability, which defines the axle weight that can
be transported over a bridge.
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appropriate transition probability matrix, P(t), which is calculated as,

=P t e( ) ,Q t·MD (14)

where t is the time interval between inspections. Moler and Van Loan
describe methods to compute the matrix exponential [48].

4.3. Optimising the maximum likelihood estimator approach

The MLE approach seeks to determine the set of parameters, θ, such
that the transition rate matrix, QMD, maximises the following objective
function,

= =
=

F L Q p( ) log( ( )) log( ).MD
i

N

r
1 (15)

Additionally, there is a constraint on all the parameters in the upper
diagonal in the transition rate matrices, QB, QC, QD, QE, QEX and QF in
QMD, that they must be positive.

Typically the MLE parameter values can be determined by taking
derivatives of the log-likelihood function; in this problem, a derivative-
free approach was undertaken as future work will also require these
techniques. Rios and Sahinidis authored a review paper of the algo-
rithms and software implementations of derivative-free optimisation
[49]. Simulation optimisation methods can be used with a ‘black-box’
objective function which does not require derivative information:
Amaran et al. reviewed the algorithms and applications of simulation
optimisation [50].

In this research Particle Swarm Optimisation (PSO) methods and
constrained non-linear optimisation active sets algorithms were

implemented for comparison. PSO is a population based method and
was first introduced by Kennedy and Eberhart [51–53]. Active
set algorithms are useful when the fitness function is evaluated using an
analytical expression rather than a numerical estimation.

A MATLAB script was developed to determine the MLE for the
historic inspection records. The script made use of the pswarm and
fmincon functions in MATLAB, [54]. The functions are variations of PSO
[55], and active set algorithms [56,57], respectively. Each im-
plementation seeks to minimise the objective function, thus the objec-
tive function of maximising F(θ) was found by minimising F ( ).

5. Validation of the multi-defect model

To ensure that the score inference and multi-defect model are both
accurate and robust, a series of validation checks were identified. The
verification and validation checks for the multi-defect model are:

1. Verify the multi-defect model using synthetic records. This requires
the use of data, produced using known distributions, as well as the
ordering rule to infer six scores from the observed two at each in-
spection.

2. Validate the multi-defect model using historic inspection records.
The historic inspection records are split into training and test sets: to
estimate transition rates and analyse the goodness of fit of the
model, respectively.

The subsequent sections will explain the methods used to address
the points above.

Fig. 3. Example plots showing the uncertainty in deterioration paths during the inspection interval and between the revealed condition states.

Fig. 4. A typical distribution of time intervals between two inspections in the NR inspection records. The distribution of inspection intervals has local maxima at 3
years, 6 years and 12 years.
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5.1. Verifying the multi-defect model, using synthetic data

The multi-defect model is verified using synthetic records which
was produced using known distributions. The process is as follows:

1. Assign values for the parameters that populate each of the severity
score transition rate matrices.

2. Generate a number of samples of bridge element inspections by
using Monte Carlo simulation of the defect model with the known
transition rates. Moreover, the inspection time interval for each si-
mulated synthetic record will be sampled from (6, 1), and the
initial condition for each severity score was sampled from a dis-
tribution reflecting observed initial conditions in the NR data. Each
of the six severity scores are recorded at both the first and second
inspections.

3. Using the score ranking rules, determine the worst two scores and
record in the same format as NR historic inspection records.

4. Using the score inference rules, infer a multi-defect inspection re-
cord for each inspection.

5. Using the MLE parametric statistical inference method, estimate
values for each transition rate from the inferred multi-defect in-
spection records.

6. Compare the estimated parameters from the synthetic data to the
known parameters used to produce the synthetic data. As the
number of synthetic records increases, the estimate parameter va-
lues should converge to the known values.

5.1.1. Example
The values of the parameters used to synthesise records are shown

in Table 8. There were 25,000 records synthesised as described in
Section 5.1, and then transition rates were estimated from the synthetic
records using the MLE approach. The values of the estimated transition
rates are shown in Table 8.

It can be observed that the estimated rates are a good approximation

of the known transition rates, shown in Fig. 5. The lower severity scores
are more prone to estimation errors due to the lack of coverage of those
scores in the inference rules when higher severity scores are present.
This can be observed in the example estimation of severity C, however
given the complexity of the problem being considered, this estimation
was still deemed to be sufficiently accurate. Moreover, with the supply
of more records, one would find further convergence to the known
values. However, for the example, 25,000 records were synthesised, as
that number represents a typical sample size of records for a bridge
element in the NR data.

5.2. Validating the multi-defect model, using historic inspection records

To validate the multi-defect model using historic inspection records,
the data set is split into training and testing sets. The proposed random
split between the two sets is a 3:1 ratio between training and test sets.
The training set is used to estimate the values for transition rates from
the observations and the test set is used to evaluate the goodness-of-fit
of the model and the estimated transition rate values.

Masonry is commonly modelled as a homogeneous class of material;
however, it can be easily sub-divided into two materials types: brick
and stone. Analysis of the NR data suggested that there were differences
in the deterioration rate between brick and stone bridge elements.
Moreover, there are subtle differences in the definition of the extent
score for severity B and D, see Table 1. For the multi-defect model it was
deemed that these two materials should have their records split into
two cohorts for the purposes of parameter estimation. Additional fac-
tors have been shown to alter the deterioration profile of a bridge [58],
including local, structural and material characteristics. However, such
cohort based studies reduce the amount of data available to calibrate
each model. In this study, no further cohort analysis beyond material
type was performed, to maximise the amount of data available for the
severe defects, which are of rare occurrence.

Bridges are extremely heterogeneous and the structural hierarchy of
bridges varies greatly. At inspection, NR bridges have a score panel
recorded for each structural element of the bridge e.g. abutment,
spandrel wall, arch barrel etc. An example deterioration profile output
of the multi-defect model for a brick, underbridge, spandrel wall is
shown in Fig. 6, with its transition rates shown in Table 9. A spandrel
wall is a masonry wall that is positioned on the arch barrel and retains
the back-fill [45]. A railway underbridge is a bridge which carries the
railway over a road, river etc.

5.3. Assessing goodness of fit

Pearson’s Chi-squared goodness of fit test is a type of hypothesis
testing which is commonly used to assess the fit of models estimated
using categorical panel data. To be able to use Pearson’s chi-squared
goodness of fit test, the events must be mutually exclusive and be from a
random sample.

Consider n observations from sample data that are arranged in a
frequency histogram having k class intervals. Let Oi be the observed
frequency in the ith interval and Ei, as the corresponding expected
frequency as predicted by the fitted distribution from the observed data.
The test statistic is expressed as,

=
=

O E
E

( ) .
i

k
i i

i

2

1

2

(16)

It is common that the goodness of fit test is conducted at the 5% sig-
nificance level, although this should be taken as merely convention and
not definitive [59].

As shown in [3], the size of the time interval between inspections
must be considered in the assignment of the intervals for the calculation
of the test statistic. However, with the varying inspection intervals in
the NR data, there is an imbalance of interval values. This causes low

Table 8
Transition rates estimated from the synthetic data using MLE approach.

B1 → B2 B2 → B3 B3 → B4 B4 → B5

Known 0.1500 0.0800 0.0850 0.0450
Estimated 0.1480 0.0790 0.0835 0.0443
% Error 1.4 1.2 1.7 1.5

C1 → C2 C2 → C3 C3 → C4 C4 → C5

Observed 0.0810 0.0500 0.0600 0.0240
Estimated 0.0862 0.0490 0.0600 0.0240
% Error 6.4 2.0 0.05 0.1

D1 → D2 D2 → D3 D3 → D4 D4 → D5

Known 0.0240 0.0600 0.0525 0.0140
Estimated 0.0248 0.0596 0.0512 0.0146
% Error 3.2 0.6 2.4 4.2

E1 → E2 E2 → E3 E3 → E4 E4 → E5

Known 0.0090 0.0820 0.0400 0.0225
Estimated 0.0095 0.0828 0.0365 0.0209
% Error 5.4 0.9 8.8 7.1

EX1 → EX2 EX2 → EX3 EX3 → EX4 EX4 → EX5

Known 0.0070 0.0435 0.0410 0.0555
Estimated 0.0070 0.0437 0.0381 0.0579
% Error 0.6 0.4 7.0 4.3

F1 → F2 F2 → F3 F3 → F4 F4 → F5

Known 0.0055 0.1160 0.0860 0.0415
Estimated 0.0055 0.1138 0.0842 0.0439
% Error 0.3 1.9 2.1 5.8
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frequencies to occur for some test statistic intervals. Generally, the
values for each expected state to state movement should have occur-
rences that are greater than 5; if the occurrences are less than 5, then

neighbouring intervals are merged. For the test set of NR data, this
required the merging of a considerable amount of intervals and as such,
it was deemed that the Pearson Chi-squared test statistic was an

Fig. 5. Deterioration profiles for defect types with the known distribution for the synthetic data and the estimated distributions.

Fig. 6. Deterioration Profiles for all defect modes for a brick, underbridge, spandrel wall.

G. Calvert, et al. Reliability Engineering and System Safety 200 (2020) 106962

9



inappropriate measure of fit for the data.

5.4. Comparing the observed and predicted final inspection

To assess the goodness-of-fit, a comparison between the observed
final condition and predicted final condition was performed. The re-
cords in the training set are used to estimate the values of each of the
transition rates and the records in the test set are used in the compar-
ison. The process for the comparison requires:

• A total number for each condition state in the final inspection for all
the observed records.

• The probabilities for each condition state at the final inspection
given the condition at initial inspection for each observed record.

• The sum of all the probabilities for each condition state for all
predicted final conditions.

For a brick underbridge, spandrel wall, the error rate for each
condition state can be found in Table 10, with the mean percentage
error and weighted mean percentage error for each severity score
shown in Table 11. The weighted mean percentage error, W, for a
particular severity score is calculated as follows:

= =W
n e

N
·

,i i i1
5

(17)

where ni is the number of a observations in extent score i, ei is the
percentage error for extent score i from the model and N is the total
number of observations for the severity score being considered.

5.5. Results discussion

Variability in recorded bridge inspection conditions is well docu-
mented in literature [60–65], and thus it would be inappropriate to not
consider the impact of this in any model analysis. Consequently, the
values for the errors and the mean errors are considered to be suffi-
ciently low to be content that the model represents an appropriate
goodness of fit.

For all the severe defects, i.e. D, E, EX and F, the absorbing state of
extent score 5, is deemed to be a poor condition state, which would
require immediate maintenance intervention. Moreover, for E, EX and
F, this is true for some of the preceding states. Thus, maintenance ac-
tivity would typically be scheduled in advance of defects progressing to
such states and few observations would be made for these absorbing

states. The low observations for these states can result in high predic-
tion errors (e.g. D5, EX5), however these are rare events and represent
less than 1% of the final observations for those particular defects.

From Table 10, it can be seen that there is a low prediction error
shown for D1, E1, EX1 and F1, and thus the model is accurate at pre-
dicting defect absence and presence. Furthermore, for these defects that
pose the greatest risk to the structural integrity of the bridge, a Pear-
son’s chi squared test of the predicted final observations shows that the
model is accurate to a statistical significance of 5%. Due to the data
censoring, the errors for B and C are more significant. Nonetheless, the
model is a useful tool for asset managers to predict and schedule spe-
cific maintenance interventions.

The weighted mean is used to analyse the fit of the model without
the metric being adversely impacted by low frequencies. From Table 10
it can be observed that the trend for the weighted mean percentage
error is that the higher severity scores have smaller values. This would
be expected as the score inference rule favours the higher severity
scores over the lower scores, hence there are more revealed extent
scores for the higher severity scores which results in an improved
parameter estimation.

Fig. 6 shows the deterioration profiles for a brick, underbridge,
spandrel wall, with severity scores B, C and D exhibiting more rapid
deterioration than severity scores E, EX and F. Severity scores B, C and
D represent shallow spalling, deterioration pointing and deep spalling,

Table 9
Transition rates estimated from NR inspection records for a brick, underbridge,
spandrel wall.

B1 → B2 B2 → B3 B3 → B4 B4 → B5

Estimated 0.0820 0.0741 0.0826 0.0413

C1 → C2 C2 → C3 C3 → C4 C4 → C5

Estimated 0.0561 0.0418 0.0616 0.0248

D1 → D2 D2 → D3 D3 → D4 D4 → D5

Estimated 0.0208 0.0375 0.0568 0.0092

E1 → E2 E2 → E3 E3 → E4 E4 → E5

Estimated 0.0092 0.0826 0.0390 0.0206

EX1 → EX2 EX2 → EX3 EX3 → EX4 EX4 → EX5

Estimated 0.0070 0.0461 0.0366 0.0434

F1 → F2 F2 → F3 F3 → F4 F4 → F5

Estimated 0.0082 0.1166 0.0919 0.0413

Table 10
Errors between Observed and Predicted Final Conditions, for a brick under-
bridge, spandrel wall.

B1 B2 B3 B4 B5

Observed 488 615 360 240 127
Predicted 555.9 594.8 332.3 240.0 107.0
% Error 13.9 3.3 7.7 9.0 × 10 5 15.7

C1 C2 C3 C4 C5

Observed 1127 1073 350 209 59
Predicted 1039.4 1153.7 364.2 194.7 66.0
% Error 7.8 7.5 4.1 6.8 11.9

D1 D2 D3 D4 D5

Observed 2304 848 209 88 19
Predicted 2262.0 853.9 231.5 107.2 13.5
% Error 1.8 0.7 10.7 21.8 29.2

E1 E2 E3 E4 E5

Observed 3584 255 148 103 39
Predicted 3565.1 259.6 171.8 96.8 35.8
% Error 0.5 1.8 16.1 6.1 8.1

EX1 EX2 EX3 EX4 EX5

Observed 4231 207 43 15 5
Predicted 4214.5 219.6 47.8 15.3 3.8
% Error 0.4 6.1 11.3 2.3 24.9

F1 F2 F3 F4 F5

Observed 3651 175 168 180 147
Predicted 3653.2 188.1 140.4 183.8 155.6
% Error 0.1 7.5 16.4 2.1 5.8

Table 11
Mean percentage errors and weighted mean percentage errors for each severity
score for a brick, underbridge, spandrel wall.

B C D E EX F

Mean % Error 8.12 7.61 12.86 6.51 8.99 6.37
Weighted Mean % Error 7.42 7.23 2.74 1.37 0.79 1.28
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respectively, which are faster acting defects than hollowness, loose
block work and fully displaced block work, which are denoted by se-
verity scores E, EX and F respectively. For faster acting defects, the
accuracy of the rate of deterioration aids in the appropriate scheduling
and budgeting of minor interventions. It is critical that the processes of
hollowness, loose block work and displaced block work are also well
understood, as whilst they are slower acting, they are the defects that
are deemed to represent the most risk to the structural integrity of a
bridge.

The comparison of different maintenance strategies requires an
evaluation on the WLCC. The contribution of this research is that the
deterioration model enables specific defect predictions, which occur at
different stages in an asset life cycle and require different resources and
expense to resolve. This defect specific approach which provides ad-
ditional condition indicators is novel for a bridge engineering applica-
tion.

A limitation of the presented model is that it does not account for
any interactions between the different defects modes. Future work will
evaluate how this can be modelled taking into account the limitations
of the available data. However, for bridge managers, an understanding
of the extensiveness of defects is more critical and hence they have been
modelled independently for this case study.

6. Conclusions

This paper presented a multi-defect bridge deterioration model,
which outputs multiple predictive condition profiles. The case study of
masonry bridge elements, deteriorate through a variety of different
defect modes, and thus the proposed model offers more versatility than
current predictive bridge deterioration models which provide a single
condition index.

An ideal inspection regime would record a complete multi-defect
inspection panel, however in many organisations this is not the case
and so a score inference technique using logic rules was also introduced
to utilise existing NR data. A proven MLE parameter estimation tech-
nique can then be applied to estimate the transition rates between
condition states.

The main objective of this paper was to develop a multi defect
model for bridge deterioration and evaluate whether this model could
be reliably calibrated using incomplete inspection data, where only the
two most severe defects are recorded. The results indicate that, al-
though the model can be calibrated using the available data, the quality
of fit is influenced by the censored data, particularly for less severe
condition states.

The current approach in asset management of bridges involves an
inspection regime which is based on the overall condition of the bridge.
As such, the time interval between inspections is reduced as the con-
dition worsens, but the same inspection procedure is followed on all
bridges of the same class (e.g. masonry arch bridges). However, the cost
of detecting different defects varies very significantly. For example,
cracks can be observed at a distance, using for example drones, while
hollowness can only be detected by touch, and thus requires expensive
lifting equipment and longer possession times. The multi-defect dete-
rioration model allows the definition of targeted inspections defined in
terms of the risk of occurrence of each defect, thus enabling an opti-
mised inspection policy.

Moreover, different deterioration mechanisms require different re-
pair actions, with different durations and costs. By predicting the de-
terioration of bridges in terms of different defects, it will be possible to
predict, in further detail, what actions will be required and what their
costs will be.

In future work, the interactions between different deterioration and
failure mechanisms should be evaluated. It is expected that the condi-
tion of a component in terms of one defect may alter the rate of evo-
lution of other defect mechanisms. Such trends would impact on pre-
dictions of service life of the bridge element but additionally on the

condition dynamics upon maintenance intervention. An advantage of
the multi-defect approach to deterioration modelling is the additional
condition indicators the model outputs. The additional outputs enable
the development of specific and targeted maintenance strategies, which
in conjunction with any identified interactions could facilitate the de-
velopment of targeted maintenance strategies and the quantification of
the benefits of early interventions.

Moreover, the current implementation of the model allows infra-
structure agencies to monitor the development of ’severe’ defect me-
chanisms that pose a large risk to the structural integrity of the bridge.
In future work an analysis should be performed to identify possible
precursor condition events, which could improve the inspection regime,
condition recording and strategy development.
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