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Abstract  17 

The protection provided by the human skin is mostly attributed to the stratum corneum. However, 18 

this barrier also limits the range of molecules that can be delivered into and across the skin. One of 19 

the methods to overcome this physiological barrier and improve the delivery of molecules into and 20 

across the skin is via the use of microneedles. This work evaluates the mechanical insertion of two 21 

different commercially available microneedle systems, Dermapen® and DermastampTM. The influence 22 

of biaxial skin strain on the penetration of the two microneedle systems was evaluated ex vivo using 23 

a biaxial stretch rig. From the skin insertion study, it was apparent that for all levels of biaxial strain 24 

investigated, the Dermapen® required less force than the DermastampTM to puncture the skin. In 25 

addition, it was observed that the oscillating microneedle system, the Dermapen®, resulted in deeper 26 

skin insertion ex vivo in comparison to the Dermastamp™. The use of this new biaxial stretch rig and 27 

the ex vivo skin insertion depth study highlights that the oscillating Dermapen® required less force to 28 

perforate the skin at varying biaxial strain whilst resulting in deeper skin penetration ex vivo in 29 

comparison to the DermastampTM. Although the Dermapen® punctured the skin deeper than the 30 

DermastampTM, such difference in penetration did not influence the permeation profile of the model 31 

drug, imiquimod across the skin as evidenced from a 24-hour ex vivo permeation study. 32 

 33 

 34 

 35 

 36 

 37 
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1. Introduction 38 

The human skin is the largest organ in the human body and is comprised of three layers; the epidermis, 39 

dermis and hypodermis. The epidermis is a multilayer compartment of the skin that comprises of the 40 

stratum corneum (SC), stratum granulosum, stratum spinosum and stratum basale [1]. The outermost 41 

layer of the epidermis, the stratum corneum, is avascular and has evolved to provide protection 42 

against physical and chemical attack. The protection provided by the stratum corneum has also 43 

resulted in a barrier to the delivery of compounds across the skin either for therapeutic or cosmetic 44 

purposes [2].  45 

Microneedles are one of the strategies explored to improve the delivery of compounds across the 46 

skin. These are minimally-invasive needles with lengths that ranging between 250-1000 µm capable 47 

of perforating the stratum corneum in order to promote the delivery of compound across the skin [3]. 48 

Due to their size, microneedles offer painless skin insertion as they are unlikely to stimulate the dermal 49 

pain receptors upon application [4].  Some of the microneedle products available on the market, 50 

licensed for cosmetic use, include the DermastampTM and Dermapen®.  51 

The DermastampTM consists of a stamp with an array of microneedles arranged at the base of the 52 

device. The microneedles are inserted into the skin in one vertical motion, creating micron sized 53 

channels in the skin. The Dermapen® is a motor driven microneedling device that inserts its needles 54 

into the skin in a continuous oscillating motion at one of five programmed frequency levels. The use 55 

of a motor helps circumvent the issue of varying insertion force between users. It also features an 56 

adjustable dial to control the needle’s depth of penetration during use. However, little research exists 57 

evaluating the effectiveness of such a motor driven device or the associated advantages or 58 

disadvantages in its use in comparison to the Dermastamp™ and its single stamping motion.  59 
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In order to effectively generate microneedle channels, the skins topology must also be considered. 60 

The human skin features a roughened surface due to the variation in structure of the keratinocytes on 61 

the stratum corneum [5,6]. This surface is undulating in nature, being up to 150 microns from peak to 62 

trough for those aged over 60 [6], thus clearly demonstrating the need to smooth the skin as far as 63 

possible to maximise depth of penetration by the needles. To achieve smoothing, the skin must be 64 

stretched. It is understood that when skin is uniaxially stretched, the skin acts in a compressive fashion 65 

in the perpendicular direction to maintain the area of the surface, causing micro-furrows to develop 66 

[7].This highlights the need for biaxial stretching to mitigate against this and ensure microneedle 67 

insertion into the skin. Biaxial skin stretching has been performed in several studies [8–10] with a non-68 

linear stiffening of skin being found as a function of strain. This relationship has been supported by a 69 

simulation study by Flynn and Rubin[11] however little other data appears to exist regarding how 70 

increase in strain affects the penetration of microneedle into the skin.  71 

In this work, we compare the insertion force profiles of two commercially available microneedle 72 

systems; DermastampTM and Dermapen®.  This study evaluates the influence of biaxial skin strain on 73 

the insertion force of two different microneedling systems into the skin. Besides that, the influence of 74 

microneedle oscillation during microneedle application was evaluated using an in vitro and an ex vivo 75 

set up.   76 

2. Materials 77 

Dermapen® (ZJChao, China) and Dermastamp™ (Teoxy Beauty, Wuhan, China). The Dermapen® is an 78 

oscillating microneedling pen featuring a 36-needle removable array, with tip radius of 44-68 µm and 79 

conical geometry. In order to mimic how the Dermapen® would be use by a patient in a real-world 80 

setting, the plastic ring around the microneedle cartridge was not removed for all skin insertion and 81 

permeation study. The Dermastamp™ is a non-oscillating microneedle stamp featuring a 42-needle 82 
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array of 1mm length, tip radius of 21-25 µm and curved conical geometry. The geometry of the 83 

microneedles from respective devices are visualised using Leica DM4000B (Leica Microsystem, 84 

Germany). The geometry of the microneedles is shown in Figure 1. 85 

Porcine skin was used to study the insertion force profile of commercial microneedles instead of ex-86 

vivo human skin due to its limited availability and the ethical difficulties associated with its use. Various 87 

studies have highlighted that porcine skin is a suitable alternative to human [12]. Porcine flank skin 88 

samples from six-month old animals were obtained from a local abattoir, reared specifically for food. 89 

Skin were collected prior to any steam cleaning, and then prepared. The skin was washed with distilled 90 

water and dried using tissue. Full thickness skin was used to avoid altering the skins biomechanical 91 

properties, which may lead to over-penetration of microneedles into the dermal tissue [13]. After that, 92 

the skin samples were stored at -20 °C and used within six months. Gentian violet solution 1% w/v (De 93 

La Cruz products, USA) was used as a dye to highlight the microneedle channels created in porcine 94 

skin. Parafilm M® (Brand Bermis, Wertheim, Germany) of 127 µm thickness was used as a skin simulant 95 

in the in-vitro insertion study. Imiquimod was purchased from Cayman Chemicals, USA. 5% w/w 96 

imiquimod cream (AldaraTM), MEDA Company, Sweden was purchased from Manor pharmacy, UK. 97 

Sodium acetate was purchased from Sigma-Aldrich, UK. Acetonitrile (HPLC grade) and glacial acetic 98 

acid were obtained from Fisher Scientific, UK. Teepol solution (Multipurpose detergent) was ordered 99 

from Scientific Laboratory Supplies, UK. D-Squame standard sampling discs (adhesive discs) were 100 

purchased from Cuderm corporation, USA. Deionised water was obtained from an ELGA reservoir, 101 

PURELAB® Ultra, ELGA, UK. All reagents were of analytical grade, unless otherwise stated. 102 
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3. Methods 103 

3.1. Biaxial Stretch Rig Development  104 

Following two designs presented in literature [9,10], a low cost biaxial skin stretching rig was 105 

produced. The rig consists of four manual linear stages arranged as shown in Figure 2 on an 8 mm 106 

laser cut acrylic base. Further laser cut components permit clamping to be achieved using M4 Cap 107 

Head Bolts and 5mm acrylic plates. Friction between the clamping plates was improved using 40 grit 108 

emery cloth, double sided taped to the plates. The centre of the rig, over which the microneedle array 109 

is inserted, consists of an acrylic block topped with a 6mm layer of natural cork to simulate the stiffness 110 

of skeletal muscle [14] . Aluminium foil was overlaid on the cork with a thin covering of detergent. This 111 

was performed to reduce the friction experienced by the skin on the cork mat during stretching thus 112 

aiding the amount of strain that could be achieved within the skin.  In addition, a laser cut jig for 113 

locating the biaxial stretch rig on the bed of a Texture Analyser (TA), (Stable Micro Systems, Surrey, 114 

UK) was also prepared to ensure consistency of the location of insertion of the microneedle array. 115 

Zero strain was assumed for each piece of skin when initially clamped.  116 

3.2. Biaxial strain on microneedle skin insertion force  117 

In order to investigate the effect of biaxial stretching on microneedle puncture performance of the 118 

Dermapen® and DermastampTM, an insertion experiment was performed. The prepared porcine skin 119 

was inserted into the biaxial stretch rig and clamped, Figure 3 (a). The skin samples were then 120 

subjected to five levels of biaxial strain; 1.00, 1.0625, 1.125, 1.875 and 1.25 (i.e. a biaxial stretch of 121 

0mm, 2.5mm, 5mm, 7.5mm and 10mm of a 40x40 mm grid). The level of biaxial strain was measured 122 

using a 40x40 mm grid of 5 mm squares ink-stamped onto the skin samples, Figure 3(a). The skin 123 

sample was biaxially stretched and a pair of Vernier callipers used to measure the level of stretch i.e. 124 

0mm, 2.5mm, 5mm, 7.5mm and 10mm. Strain in each direction was calculated using Equation 1. 125 
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ε = Δl/l 126 

Equation 1 - Equation for strain where ε is strain, l is length, and Δl is the change in length of skin. ε 127 

strain, has no unit as the units from Δl and l cancel each other out. 128 

The skin-loaded rig was then placed under the probe of the TA, using a laser cut jig to align a quadrant 129 

with the probe’s central position. A microneedle-loaded probe, see Figure 3(b), was then attached to 130 

the TA. The following parameters were used for the TA program; 5kg Load Cell, Pre-Test Speed: 131 

0.5mm/sec, Test Speed: 0.5mm/sec, Post-Test Speed: 10mm/Sec, Trigger Force: 0.01N. The 132 

microneedles were inserted into the skin sample by the TA and the force-displacement profile 133 

recorded. Following their removal, the Gentian Violet dye was applied to the skin, Figure 3(c) to 134 

visualise the number of microneedle channels generated.  The number of microchannels generated 135 

were counted to measure the percentage of successful microneedle insertion. The DermastampTM was 136 

housed in a custom mount that consist of a turned aluminium with a roll pin used to hold the 137 

microneedle array in place. An M6 grub screw was used in the rear of the mount as an attachment to 138 

the TA. For the Dermapen®, a 3D printed (Fused Deposition Modelling) jacket was designed to house 139 

the device within an aluminium tube and stub assembly via a tapered interference fit. The assembly 140 

was then attached to the TA again by an M6 grub screw. The Dermapen®’s adjustable needle length 141 

was set to 1000 µm, the same length of the DermastampTM needles. 142 

3.3. In vitro skin simulant insertion study  143 

As an alternative method to determine the microneedle penetration depth, a polymeric film (Parafilm 144 

M®,) was used as a skin simulant. This insertion study was adopted from Larrañeta et al. 2014 [15]. In 145 

brief, eight layers of Parafilm M® were stacked onto each other on a cork layer. Both microneedle 146 

systems were applied onto the Parafilm M® stacks. Six replicates were performed, and the pores 147 
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generated were investigated under an optical microscope. The percentage of holes created per layer 148 

for respective microneedle length was calculated using following Equation 2: 149 

% hole generated: [(N microneedle channels observed)/ (N microneedles per array)] X 100 150 

Equation 2 - Equation to establish the percentage of holes produced by the microneedle devices. 151 

Where N represents ‘number of’. 152 

3.4. Ex vivo skin insertion study 153 

In order to evaluate the penetration depth of the Dermapen® and DermastampTM needles into the skin, 154 

an ex vivo penetration study using porcine skin was conducted. The porcine flank skin was defrosted 155 

at room temperature for an hour prior to the experiment. Using scissors, excess hair was carefully 156 

trimmed from the skin.  A 36-microneedle array tip was used, and the vibration speed was set to level 157 

1 (412 cycles/min) [16]. The microneedle skin pre-treatment was applied by gently stretching the skin 158 

and placing the Dermapen® vertically upon the skin for 10 seconds. A microneedle length of 1000 μm 159 

was used in this study. After treating the skin with the microneedle pen, 10 μl of 1 % Gentian Violet 160 

Dye was applied to the surface of the skin and left at room temperature for 60 minutes. Excess dye 161 

was removed and the skin was then visually inspected to identify microneedle pores. The skin samples 162 

were then cryo-sectioned (Leica CM3050 S Research Cryostat, UK) and the depth of microneedle 163 

penetration was measured under an optical microscope (Zeta Profilometer, KLA-Tencor, US). The 164 

same procedure was repeated to evaluate the depth of DermastampTM penetration into the skin.  165 

3.5. Skin permeation study 166 

In order to investigate the influence of the different microneedle system on skin permeation, an ex 167 

vivo skin permeation study using a Franz-type diffusion cell was conducted using a model compound, 168 

imiquimod. Imiquimod was selected as a model compound as the molecule displayed poor 169 
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permeation across the skin [2]. The application of microneedle system to skin is hypothesised to 170 

improve the permeation of imiquimod into the skin.  Prior to the permeation study, skin samples were 171 

defrosted for at least an hour at room temperature. The skin was trimmed into small pieces according 172 

to the surface area of the donor chamber of the Franz diffusion cell (Soham Scientific, Cambridgeshire, 173 

UK). The trimmed skin samples were equilibrated by placing them above the receptor compartment 174 

for 15 minutes prior to skin treatment. The porcine skins were subjected to the following treatment 175 

modalities: i) application of 5% w/w of imiquimod cream alone as a control ii) application of 1000 µm 176 

microneedles to the skin as a pre-treatment using Dermapen® followed by 5% w/w of imiquimod 177 

cream iii) application of 1000 µm microneedles to the skin as a pre-treatment using DermastampTM 178 

followed by 5% w/w of imiquimod cream. Next, the porcine skins were placed on top of the receptor 179 

compartment filled with 3 ml of degassed 100 mM acetate buffer pH 3.7. This buffer was selected as 180 

the receptor phase in order to maintain a sink condition throughout the permeation study. This is due 181 

to the insolubility of imiquimod at neutral or basic pH values. Various groups have reported the use of 182 

acetate buffer pH 3.7 as the receptor phase in imiquimod permeation studies [17–19]. The skin was 183 

then secured between the donor and receptor compartment of the diffusion cell using a metal clamp, 184 

with the stratum corneum side facing the donor compartment. Upon assembling the Franz diffusion 185 

cell, the permeation experiment was conducted over a period of 24 hours in a thermostatically 186 

controlled water bath set at 36.5 oC. 187 

After a 24-hour permeation experiment, the excess cream was removed and collected from the skin 188 

surface by careful application of sponges soaked with 3% v/v Teepol® solution. The sponges were 189 

pooled for imiquimod HPLC analysis as a total skin wash. Any formulation which might have spread to 190 

the donor chamber was collected by the sponges and stored for imiquimod analysis by HPLC as a 191 

donor chamber wash. Upon removing excess formulation from the skin surface, 15 sequential tape 192 

strips were collected from the skin. The amount of imiquimod from the different Franz cell elements 193 

(skin wash, donor chamber wash, pooled tape strips and remaining skin after tape stripping) were 194 
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extracted by the addition of 5, 5, 10 and 5 mL of methanol extraction mixture (Methanol 70%: Acetate 195 

Buffer pH 3.7 100 mM 30%) respectively using a previously reported method [20]. Samples were then 196 

vortexed for 1 minute and sonicated for 30 minutes before being left overnight. Subsequently, 197 

samples were vortexed again and sonicated for a further 30 minutes. 1 ml of the extracts were 198 

collected and spiked with 100 µl of 100 µg/ml propranolol as an internal standard. The samples were 199 

then filtered through 0.22 µm membrane. For the receptor fluid, 1 ml of the solution from each Franz 200 

cells were collected and spiked with 100 µl of 100 µg/ml propranolol as an internal standard before 201 

being filtered through 0.22 µm membrane. HPLC analysis was carried out using an Agilent 1100 series 202 

instrument (Agilent Technologies, Germany) equipped with degasser, quaternary pump, column 203 

thermostat, autosampler and UV detector. System control and data acquisition were performed using 204 

Chemostation software. The details of the HPLC chromatographic conditions are as follow: column 205 

C18 (150 × 4.6 mm) ACE3/ACE-HPLC Hichrom Limited, UK. The mobile phase composition for analysis 206 

of extracts from skin wash, donor chamber wash, pooled tape strips and remaining skin consists of 10 207 

mM acetate buffer: acetonitrile (79:21). Whilst, the mobile phase composition for analysis of receptor 208 

fluid consists of 10 mM acetate buffer: acetonitrile (70:30). The system operated at a flow rate of 1.0 209 

mL/minute, UV detection at λ max=226 nm, injection volume of 40 µL and column temperature of  210 

25 °C. 211 

 212 

3.6. Statistical analysis 213 

All results were reported as the mean with standard error of mean (SEM) (n≥5). Statistical calculations 214 

were performed in Prism (IBM, USA), a software package. The Student’s t-test and One-Way ANOVA 215 

followed by a Tukey HSD post-hoc test was applied to compare the results of different groups. 216 

Statistically, a significant difference was denoted by p value < 0.05. 217 
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4. Results and Discussion 218 

4.1. Influence of biaxial strain on commercial microneedle perforation.  219 

A biaxial skin stretching experiment was conducted in order to investigate the effect of skin strain on 220 

the insertion of two commercial microneedle systems. From Figure 4 it can be seen that the force 221 

needed by the Dermapen® to perforate the skin was significantly lower than the Dermastamp™ for 222 

the range of strain rates investigated.  It was also found that an increase in force was needed for the 223 

Dermastamp™ to puncture the skin as the strain increased, however this force plateaued at a biaxial 224 

strain of circa 1.1. In contrast, a linear relationship is presented for the Dermapen® suggesting that 225 

insertion force increases with a higher strain rate.  226 

The relationships shown in Figure 4, an increase in force with increases in biaxial strain, align with 227 

Lanir & Fung’s work that showed skin as a non-linear material that exponentially stiffens when biaxially 228 

stretched [10]. As stiffness is defined as the resistance to bending or deformation, it is proposed that 229 

as skin exponentially stiffens with an increase in strain. This results in the force needed to deform the 230 

skin and insert the needles will increase significantly with biaxial stretching.  231 

Following microneedle insertion, the formed puncture sites were visualised by application of Gentian 232 

Violet Dye. The percentage of successful microneedle insertions is shown in Figure 5 for the two 233 

microneedle systems. It is evident that as the biaxial strain of the skin sample increases, an increase 234 

in the number of successful microneedle insertions was observed for the Dermapen®, which then 235 

plateaus as the skin was subjected to further biaxial strain. For the DermastampTM, as the biaxial strain 236 

of the skin increases, we observed a rise in the percentage of successful microneedle insertion. 237 

However, as biaxial strain of the skin was increased further, the percentage of successful microneedle 238 

insertion into the skin decreased.  239 
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Previous work by Maiti et al has shown that subjecting the skin to strain may help smooth its surface  240 

[21]. Such topographical change in skin structure may help mitigate the presence of micro-furrows on 241 

the skin which fold around the microneedles and can present resistance to microneedle insertion [22]. 242 

One of the ways to achieve skin smoothening is via subjecting the skin to strain or stretching [23]. 243 

However, the current work suggests that smoothening the skin by subjecting the skin to biaxial strain 244 

may help improve microneedle insertion up to an optimum strain (1.0625 and 1.125) as shown with 245 

the DermastampTM in Figure 5. Beyond this optimum strain, the percentage of successful microneedle 246 

penetration decreases due to increased skin stiffness with increasing strain as shown by previous 247 

investigators [10]. 248 

For the Dermapen®, the increase in the percentage of successful microneedle insertions with 249 

increasing strain is attributed to the observation that the skin smooths upon stretching [23]. 250 

Subjecting the skin to biaxial strain results in flattening of the micro-furrows and permits an increased 251 

probability of the needles puncturing through the stratum corneum. This is due to the linear motor, 252 

that oscillates the microneedle array, providing a secondary force to assist with insertion into the skin, 253 

irrespective of the rise in skin stiffness with the increasing strain. These results demonstrate that the 254 

Dermapen® is more effective than the DermastampTM in generating microneedle channels across the 255 

skin. 256 

Unlike the DermastampTM, the presence of plastic shoulders at the tip of microneedle cartridge of the 257 

Dermapen® imposes an additional surface tension to the skin during microneedle application. This 258 

helps to further mitigate the propensity of the skin to fold around the needles while mitigating the 259 

variability in puncture force. This is evidenced by the smaller standard deviation error bar for 260 

Dermapen® relative to DermastampTM for the level of skin strain investigated shown in Figure 4. The 261 

combination of these physical factors mimics the insertion mechanism of a mosquito’s proboscis. The 262 

shoulder of the cartridge of the Dermapen® plays a similar role to that of the mosquito labium which 263 
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applies lateral strain to the skin prior to puncture. This ultimately focusses the force at the tip of the 264 

Dermapen® permitting a more effective insertion [24].  The microneedles in this case are equivalent 265 

to the mosquito’s labrum which insert itself at defined frequency in a stamping manner allowing 266 

deeper insertion with repeated insertion. 267 

4.2. In vitro skin simulant insertion depth study of commercial microneedle 268 

An in-vitro skin simulant study, using Parafilm M®, was performed to compare the percentage of 269 

successful microneedle channels against depth for the two commercial microneedle systems being 270 

considered; the Dermapen® and DermastampTM. 271 

The insertion profiles of the commercial microneedle systems were established using a methodology 272 

developed and validated by Larraneta et al. [15]. It involves the insertion of the microneedle devices 273 

into a stack of eight Parafilm M® layers, followed by the separation of the layers and their visualisation 274 

under an optical microscope to evaluate the number of microneedle channels formed, leading to the 275 

insertion profiles in Figure 6. 276 

The two microneedle systems typically pierce the first five layers, with approximately 100% of the 277 

needles piercing the first three layers before the percentage of microchannels generated begins to 278 

decrease. The generated channels displayed uniform geometry as shown in Figure 6 (a) and (b). 279 

However, less than 50% of the microneedles successfully pierced the fifth and sixth layer.  280 

Hutton et al showed that microneedle patches fabricated from a copolymer of methyl vinyl ether and 281 

maleic acid were capable of penetrating the Parafilm M®  layers to a depth of approximately 60% of 282 

the microneedle height [25]. Vora et al also showed that microneedles fabricated from poly(vinyl 283 

pyrrolidone) (PVP) loaded with nano- and microparticles  were capable of penetrating the Parafilm 284 

layers up to 60% of the microneedle length [26]. This work aligns with our findings that the commercial 285 
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microneedle systems were capable of penetrating Parafilm M® layers up to circa 60% of the 286 

microneedle length. Furthermore, the results in Figure 6 (c) suggest that for an in vitro skin simulant 287 

model, the insertion profiles are similar for both microneedle systems. In a follow up study, Larraneta 288 

et al discovered that the insertion profile of microneedle arrays was more dependent on needle 289 

density and design rather than the material used [27]. Such observations may explain the similar 290 

insertion profiles of the two commercial microneedles systems, as both microneedles are made from 291 

the same material; stainless steel.   292 

4.3. Ex vivo skin insertion study 293 

An ex vivo penetration study was conducted to ascertain the microneedle penetration depth of the 294 

two different commercially available microneedle systems in actual skin tissue. Figure 7 shows that 295 

successful penetration of microneedles into ex vivo porcine flank skin evidenced from the visualisation 296 

of microneedle channels from cryo-sectioned skin samples. From Figure 7 it was apparent that the 297 

region surrounding the microneedle pore retained a normal structure with intact stratum corneum. 298 

However, the microneedle channels displayed a deep indentation with disrupted stratum corneum. 299 

In the context of drug delivery, it has been shown by Andrews et al that drug entry into and across the 300 

skin is not just limited by the outermost layer of the skin, the stratum corneum, but the penetration 301 

of molecules is limited by the overall epidermis itself [28]. This would suggest that both microneedle 302 

systems were capable of perforating the skin to generate microneedle channels which could be used 303 

by drug molecules to enter deeper layers of the skin.  304 

It was evident that the microneedle penetration depth by the Dermapen® was significantly deeper in 305 

comparison to the DermastampTM. Such observation may be attributed to the oscillating motion of the 306 

device during skin application which has been suggested to improve skin penetration [29]. Previous 307 

work by Izumi et al investigated the influence of vibration on the penetration of microneedles into an 308 



15 

 

in vitro silicone skin model. The group observed that the application of vibrating microneedles at 30 309 

Hz during skin application resulted in a reduction in the force needed to penetrate the skin [30]. This 310 

reduction in puncture force is attributed to the reduction in effective frictional forces experienced by 311 

microneedles under vibration [31].  The rapid vibration of the microneedles also mitigates the 312 

likelihood of viscoelastic materials such as skin from attaching to the microneedle during the insertion 313 

step. This reduction of effective frictional forces experienced by oscillating microneedles may also 314 

serve as an explanation as to why the Dermapen® displayed lower peak insertion force in comparison 315 

to the DermastampTM, shown in Figure 4.  316 

Another factor that may influence microneedle insertion into the skin is the different organization of 317 

the microneedles on the Dermastamp and Dermapen systems. From Figure 7 (a) and (b) along with 318 

microscopy image from Figure 6 (a) and (b) it is evident that the 36 microneedles on the Dermapen® 319 

are organised in rows whereas the 42 microneedles on the DermastampTM are organised in concentric 320 

circles. The needles on Dermapen® are closely distributed to one another in comparison to the needles 321 

on the DermastampTM. Previous work by Olatunji et al highlighted that insertion force increases with 322 

when microneedle interspacing decreases [32]. In contrast to the finding by Olatunji et al, we observed 323 

that although the needle interspacing on the Dermapen® are closer than the DermastampTM, the 324 

Dermapen® still required less insertion than the DermastampTM. By comparing our findings to that of 325 

Olatunji et al, it can be postulated that the method (oscillating vs non-oscillating) in which the 326 

microneedle is applied to the skin overrides the influence of microneedle interspacing on insertion 327 

force and penetration depth.  328 

By comparing the penetration data for both microneedle systems from Figure 6 and Figure 7, it is 329 

evident that the insertion of microneedles into in vitro skin simulant, Parafilm M® stacks, were 330 

significantly deeper than that of ex vivo skin tissue. Such disparity in results suggest that the in vitro 331 

test developed by Larraneta et al may have some limitations when the insertion data is translated to 332 
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ex vivo tissues and potentially in vivo. Both Parafilm M® and skin are inherently viscoelastic materials 333 

which display both elastic and viscous properties under deformation. Unlike skin, which is an elastic 334 

biological tissue that  returns to its normal state after mild stretching or compression [33], Parafilm 335 

M® exhibits irreversible plastic deformation when stretched or compressed [34].  336 

4.4. Skin permeation study  337 

A permeation study was conducted to investigate the effect of different commercial microneedle 338 

systems on the permeation of a model drug, imiquimod that displayed poor cutaneous permeation 339 

[2]. One of the strategies to overcome the limited permeation of imiquimod is to employ permeation 340 

enhancing strategy such as microneedle. Upon microneedle application, transient microchannels are 341 

generated within the skin that promote the delivery of the drug across the skin. The amount of 342 

imiquimod (µg) recovered from the various Franz cell components following the 24-hour permeation 343 

study is displayed in Figure 8.  344 

For all treatment modalities, we observed no statistical difference in the amount of imiquimod 345 

recovered from different Franz cell components (donor wash, skin wash, tape strips and remaining 346 

skin) except for the receptor fluid. With regards to receptor fluid, it was seen that when the skin was 347 

pre-treated with either microneedle systems, we observed enhanced delivery of imiquimod across 348 

the skin relative to the cream only control.  However, it was worth noting we observed no statistical 349 

difference in the permeation of imiquimod into the receptor fluid between Dermapen® and 350 

DermastampTM.  351 

One possibility for the similarity permeation profile for the two microneedle systems is attributed the 352 

fact that both systems successfully breached the stratum corneum, epidermis and down to superficial 353 

dermis as highlighted in Figure 7 (c) and (d). It has been reported that thickness porcine epidermal 354 

layer varies between 30-140 µm [35] and it was shown that both microneedle system penetrated into 355 
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the porcine skin to a depth of at least 200 µm, reaching the dermal layer of the skin. This layer of the 356 

skin is viscoelastic due to the presence of a dense network of collagen and elastin [36–38]. Although 357 

the Dermapen® may puncture the skin deeper than the DermastampTM, immediately upon 358 

microneedle removal the channels generated in the dermal layer of the skin immediately recoils and 359 

reseals conferring similar resistance in permeation for imiquimod across the dermis for both 360 

microneedle systems. A limitation which is frequently highlighted when a patch-and-poke strategy is 361 

adopted for solid microneedles systems [39]. 362 

5.0 Conclusion 363 

In conclusion, this work expands our knowledge on the mechanical insertion of microneedles into the 364 

skin. Applying biaxial strain on the skin indeed influences the penetration of microneedles into the 365 

skin. It was apparent that the two commercially available microneedle systems, Dermapen® and 366 

DermastampTM have very different insertion force profiles with increasing strain. For all the skin strain 367 

levels investigated, it was evident that the Dermapen® required less insertion force than the 368 

DermastampTM. Interestingly, the percentage of successful insertion continues to increase before 369 

plateauing with increasing skin strain for the oscillating Dermapen®. In contrast for the Dermastamp™, 370 

the percentage of successful microneedle insertions increases with strain before decreasing at higher 371 

strain rate. In terms of insertion depth, it was apparent that the penetration of the Dermapen® was 372 

much deeper than that of the DermastampTM. Such a difference was not detected when the 373 

microneedle systems were evaluated using the commonly used Parafilm M® stack insertion study but 374 

only became apparent when the devices were evaluated ex vivo. The lower insertion force and deeper 375 

penetration provided by the Dermapen® was attributed to the oscillating feature of the microneedle 376 

system which mitigates the effective frictional force experienced by the needle during skin insertion. 377 

Lastly, although the Dermapen® may puncture the skin deeper than the DermastampTM, such 378 

difference in penetration did not affect the permeation profile of the model drug, imiquimod across 379 

the skin as shown in the ex vivo permeation study. 380 



18 

 

Acknowledgements 381 

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) [grant 382 

number: EP/L01646X/1] via a PhD sponsorship for Akmal Sabri; at the Centre for Doctoral Training for 383 

Advanced Therapeutics and Nanomedicine at the University of Nottingham. We would also like to 384 

thank Mr Ian Ward with the assistance on obtaining microscopy images of the  385 

microneedles for Figure 1. 386 

 387 

Declaration of Competing Interest: 388 

All the authors have no conflict of interest 389 

References 390 

[1] E. Candi, R. Schmidt, G. Melino, The cornified envelope: A model of cell death in the skin, Nat. 391 

Rev. Mol. Cell Biol. 6 (2005) 328–340. doi:10.1038/nrm1619. 392 

[2] M.H. Al-Mayahy, A.H. Sabri, C.S. Rutland, A. Holmes, J. McKenna, M. Marlow, D.J. Scurr, Insight 393 

into imiquimod skin permeation and increased delivery using microneedle pre-treatment, Eur. 394 

J. Pharm. Biopharm. 139 (2019) 33–43. doi:10.1016/j.ejpb.2019.02.006. 395 

[3] A.H. Sabri, J. Ogilvie, K. Abdulhamid, V. Shpadaruk, J. McKenna, J. Segal, D.J. Scurr, M. Marlow, 396 

Expanding the applications of microneedles in dermatology, Eur. J. Pharm. Biopharm. 140 397 

(2019) 121–140. doi:10.1016/j.ejpb.2019.05.001. 398 

[4] S. Kaushik, A.H. Hord, D.D. Denson, D. V Mcallister, S. Smitra, M.G. Allen, M.R. Prausnitz, Lack 399 

of Pain Associated with Microfabricated Microneedles, (2001) 2000–2002. 400 



19 

 

[5] M.M. Hurtado, M. Peppelman, X. Zeng, P.E.J. van Erp, E. Van Der Heide, Tribological behaviour 401 

of skin equivalents and ex-vivo human skin against the material components of artificial turf in 402 

sliding contact, Tribol. Int. 102 (2016) 103–113. doi:10.1016/j.triboint.2016.05.018. 403 

[6] C. Edwards, R. Heggie, R. Marks, A study of differences in surface roughness between sun-404 

exposed and unexposed skin with age, Photodermatol. Photoimmunol. Photomed. 19 (2003) 405 

169–174. doi:10.1034/j.1600-0781.2003.00042.x. 406 

[7] K. Nagano, G. Fyffe, O. Alexander, J. Barbič, H. Li, A. Ghosh, P. Debevec, Skin microstructure 407 

deformation with displacement map convolution, ACM Trans. Graph. 34 (2015). 408 

doi:10.1145/2766894. 409 

[8] W.A. WA, Biaxial tension test of human skin in vivo., Biomed Mater Eng. 4 (1994) 473–86. 410 

[9] J. Keyes, S. Borowicz, J. Rader, U. Utzinger, M. Azhar, J. Geest, Design and Demonstration of a 411 

Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues 412 

with Two-Photon Microscopy, Microsc Microanal. 17 (2011) 167–75. doi:10.1007/978-1-4020-413 

6754-9_17653. 414 

[10] Y. Lanir, Y. Fung, Two-dimentional Mechanical Properties of Rabbit Skin - II Experimental 415 

Results, J. Biomech. 7 (1973) 171–182. doi:10.1016/0021-9290(74)90058-X. 416 

[11] C. Flynn, M.B. Rubin, An anisotropic discrete fibre model based on a generalised strain invariant 417 

with application to soft biological tissues, Int. J. Eng. Sci. 60 (2012) 66–76. 418 

doi:10.1016/j.ijengsci.2012.04.006. 419 

[12] F. Benech-Kieffer, P. Wegrich, R. Schwarzenbach, G. Klecak, T. Weber, J. Leclaire, H. Schaefer, 420 



20 

 

Percutaneous Absorption of Sunscreens in vitro: Interspecies Comparison, Skin Models and 421 

Reproducibility Aspects, Skin Pharmacol. Physiol. 13 (2000) 324–335. doi:10.1159/000029940. 422 

[13] Y.W. Naguib, A. Kumar, Z. Cui, The effect of microneedles on the skin permeability and 423 

antitumor activity of topical 5-fluorouracil., Acta Pharm. Sin. B. 4 (2014) 94–99. 424 

doi:10.1016/j.apsb.2013.12.013. 425 

[14] M.M. Badran, J. Kuntsche, A. Fahr, Skin penetration enhancement by a microneedle device 426 

(Dermaroller) in vitro: Dependency on needle size and applied formulation, Eur. J. Pharm. Sci. 427 

36 (2009) 511–523. doi:10.1016/j.ejps.2008.12.008. 428 

[15] E. Larrañeta, J. Moore, E.M. Vicente-Pérez, P. González-Vázquez, R. Lutton, A.D. Woolfson, R.F. 429 

Donnelly, A proposed model membrane and test method for microneedle insertion studies, 430 

Int. J. Pharm. 472 (2014) 65–73. doi:10.1016/j.ijpharm.2014.05.042. 431 

[16] S. Bhatnagar, K. Dave, V.V.K. Venuganti, Microneedles in the clinic, J. Control. Release. 260 432 

(2017) 164–182. doi:10.1016/j.jconrel.2017.05.029. 433 

[17] R.F. Donnelly, P.A. McCarron, A.A. Zawislak, A. David Woolfson, Design and physicochemical 434 

characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod, Int. 435 

J. Pharm. 307 (2006) 318–325. doi:10.1016/j.ijpharm.2005.10.023. 436 

[18] C.G. Venturini, F.A. Bruinsmann, R. V. Contri, F.N. Fonseca, L.A. Frank, C.M. D’Amore, R.P. 437 

Raffin, A. Buffon, A.R. Pohlmann, S.S. Guterres, Co-encapsulation of imiquimod and copaiba oil 438 

in novel nanostructured systems: Promising formulations against skin carcinoma, Eur. J. Pharm. 439 

Sci. 79 (2015) 36–43. doi:10.1016/j.ejps.2015.08.016. 440 



21 

 

[19] M. Sharma, G. Sharma, B. Singh, O.P. Katare, Systematically Optimized Imiquimod-Loaded 441 

Novel Hybrid Vesicles by Employing Design of Experiment (DoE) Approach with Improved 442 

Biocompatibility, Stability, and Dermatokinetic Profile, AAPS PharmSciTech. 20 (2019). 443 

doi:10.1208/s12249-019-1331-1. 444 

[20] D. De Paula, C.A. Martins, M.V.L.B. Bentley, Development and validation of HPLC method for 445 

imiquimod determination in skin penetration studies, Biomed. Chromatogr. 22 (2008) 1416–446 

1423. doi:10.1002/bmc.1075. 447 

[21] R. Maiti, L. Gerhardt, Z.S. Lee, R.A. Byers, A. Sanz-herrera, S.E. Franklin, R. Lewis, D. Woods, S.J. 448 

Matcher, M.J. Carre, In vivo measurement of skin surface strain and sub-surface layer 449 

deformation induced by natural tissue stretching, Journa l Mech. Behav. Biomed. Mater. 62 450 

(2016) 556–569. doi:10.1016/j.jmbbm.2016.05.035. 451 

[22] F.J. Verbaan, S.M. Bal, D.J. van den Berg, W.H.H. Groenink, H. Verpoorten, R. Lüttge, J.A. 452 

Bouwstra, Assembled microneedle arrays enhance the transport of compounds varying over a 453 

large range of molecular weight across human dermatomed skin, J. Control. Release. 117 454 

(2007) 238–245. doi:10.1016/j.jconrel.2006.11.009. 455 

[23] R. Maiti, L.C. Gerhardt, Z.S. Lee, R.A. Byers, D. Woods, J.A. Sanz-Herrera, S.E. Franklin, R. Lewis, 456 

S.J. Matcher, M.J. Carré, In vivo measurement of skin surface strain and sub-surface layer 457 

deformation induced by natural tissue stretching, J. Mech. Behav. Biomed. Mater. 62 (2016) 458 

556–569. doi:10.1016/j.jmbbm.2016.05.035. 459 

[24] S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and 460 

consideration on insertion mechanism of mosquito’s proboscis, Sensors Actuators A Phys. 143 461 

(2008) 20–28. doi:10.1016/j.sna.2007.06.007. 462 



22 

 

[25] A.R.J. Hutton, H.L. Quinn, P.J. Mccague, C. Jarrahian, A. Rein-weston, P.S. Co, E. Gerth-guyette, 463 

D. Zehrung, E. Larrañeta, R.F. Donnelly, Transdermal delivery of vitamin K using dissolving 464 

microneedles for the prevention of vitamin K de fi ciency bleeding, Int. J. Pharm. 541 (2018) 465 

56–63. doi:10.1016/j.ijpharm.2018.02.031. 466 

[26] L.K. Vora, R.F. Donnelly, E. Larrañeta, P. González-Vázquez, R.R.S. Thakur, P.R. Vavia, Novel 467 

bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted 468 

intradermal delivery: Proof of concept, J. Control. Release. 265 (2017) 93–101. 469 

doi:10.1016/j.jconrel.2017.10.005. 470 

[27] E. Larrañeta, R.E.M. Lutton, A.J. Brady, E.M. Vicente-Pérez, A.D. Woolfson, R.R.S. Thakur, R.F. 471 

Donnelly, Microwave-assisted preparation of hydrogel-forming microneedle arrays for 472 

transdermal drug delivery applications, Macromol. Mater. Eng. 300 (2015) 586–595. 473 

doi:10.1002/mame.201500016. 474 

[28] S.N. Andrews, E. Jeong, M.R. Prausnitz, Transdermal delivery of molecules is limited by full 475 

epidermis, not just stratum corneum, Pharm. Res. 30 (2013) 1099–1109. doi:10.1007/s11095-476 

012-0946-7. 477 

[29] M.T.C. Mccrudden, E. Mcalister, A.J. Courtenay, P. Gonz??lez-V??zquez, T.R. Raj Singh, R.F. 478 

Donnelly, Microneedle applications in improving skin appearance, Exp. Dermatol. 24 (2015) 479 

561–566. doi:10.1111/exd.12723. 480 

[30] H. Izumi, T. Yajima, S. Aoyagi, N. Tagawa, Y. Arai, M. Hirata, S. Yorifuji, Combined harpoonlike 481 

jagged microneedles imitating Mosquito’s proboscis and its insertion experiment with 482 

vibration, Electr. Eng. Japan. 3 (2008) 425–431. doi:10.1002/tee.20295. 483 



23 

 

[31] Y. Yokoyama, S. Okabe, Reduction of kinetic friction by harmonic vibration in an arbitrary 484 

direction, Bull. JSME-Japan Soc. Mech. Eng. 14 (1971) 139–146. 485 

[32] O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, Influence of Array Interspacing on 486 

the Force Required for Successful Microneedle Skin Penetration: Theoretical and Practical 487 

Approaches, J. Pharm. Sci. 102 (2013) 1209–1221. doi:10.1002/jps.23439. 488 

[33] X. Xiang, F. Yan, Y. Yang, Y. Tang, L. Wang, J. Zeng, L. Qiu, Quantitative Assessment of Healthy 489 

Skin Elasticity: Reliability and Feasibility of Shear Wave Elastography, Ultrasound Med. Biol. 43 490 

(2017) 445–452. doi:10.1016/j.ultrasmedbio.2016.10.002. 491 

[34] L. Valentini, S. Bittolo Bon, M.A. Lopez-Manchado, L. Mussolin, N. Pugno, Development of 492 

conductive paraffin/graphene films laminated on fluoroelastomers with high strain recovery 493 

and anti-corrosive properties, Compos. Sci. Technol. 149 (2017) 254–261. 494 

doi:10.1016/j.compscitech.2017.06.023. 495 

[35] L.K. Branski, R. Mittermayr, D.N. Herndon, W.B. Norbury, O.E. Masters, M. Hofmann, D.L. 496 

Traber, H. Redl, M.G. Jeschke, A porcine model of full-thickness burn, excision and skin 497 

autografting, Burns. 34 (2008) 1119–1127. doi:10.1016/j.burns.2008.03.013. 498 

[36] J. Aziz, H. Shezali, Z. Radzi, N.A. Yahya, N. Hayaty, A. Kassim, J. Czernuszka, M.T. Rahman, 499 

Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin, 500 

Ski. Pharmacol Physiol. 629 (2016) 190–203. doi:10.1159/000447017. 501 

[37] R. A.M., B. D.L., J.A. Bouwstra, B. F.P.T, O. C.W.J, Monitoring the penetration process of single 502 

microneedles with varying tip diameters, J. Mech. Behav. Biomed. Mater. 40 (2014) 397–405. 503 

doi:10.1016/j.jmbbm.2014.09.015. 504 



24 

 

[38] W. Martanto, J.S. Moore, T. Couse, M.R. Prausnitz, Mechanism of fluid infusion during 505 

microneedle insertion and retraction, J. Control. Release. 112 (2006) 357–361. 506 

doi:10.1016/j.jconrel.2006.02.017. 507 

[39] Y.C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery, Adv. Drug Deliv. 508 

Rev. 64 (2012) 1547–1568. doi:10.1016/J.ADDR.2012.04.005. 509 

 510 

 511 

 512 

Figures and legends 513 

 514 

Figure 1 Close up microscopy image showing the geometry of microneedles from Dermapen® and 515 

DermastampTM 516 
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 517 

 518 

 519 

Figure 2 - A schematic of the conceived manual biaxial stretch rig 520 
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 521 

Figure 3 - Schematic detailing the setup to investigate effect of biaxial strain on microneedle skin 522 

insertion. A 40x40 mm grid of 5 mm squares ink was stamped onto the skin samples in Step (a) in 523 

order to measure the level of biaxial strain on the skin. Using a texture analyser (TA), respective 524 

microneedle systems were attached to the probe of the instrument to allow insertion into the skin as 525 

shown in Step (b). Visualisation of microneedle channels using Gentian Violet dye as depicted in  526 

Step (c) 527 

 528 

 529 

 530 
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 531 

Figure 4 Biaxial skin strain and insertion force relationship for commercial microneedle systems 532 

Dermapen® and DermastampTM. Data expressed as means ± SD, n=5. 533 

 534 

Figure 5 Averaged percentage of maximum number of dyed microneedle insertion holes generated 535 

for each level of stretch. Data expressed as means ± SD, n=5 536 
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 537 

Figure 6 Microscopic images of first layer of Parafilm M® stack punctured by stainless steel 538 

microneedles by (a) Dermapen®, (b) DermastampTM Scale bar:300 µm (c)Insertion profile of different 539 

commercial microneedle systems, Dermapen® and DermastampTM into Parafilm M® layers, data 540 

expressed as means ± SD, n=6. 541 
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 542 

Figure 7 Visual image of porcine flank skin surface after gentian staining following (a) Dermapen® and 543 

(b) DermastampTM application. Optical microscopy images of porcine flank skin cross sections after 544 

application of (c) Dermapen and (d) Dermastamp. The skin was stained with 1% gentian violet solution 545 

to allow visualisation of microneedle channels formed after microneedle treatment. n=10, data is 546 

expressed as mean ± SEM. 547 
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 548 

Figure 8 HPLC analysis of the mean amount of imiquimod recovered from the different Franz cell 549 

components (donor chamber wash, skin wash, tape strips, remaining skin and receptor fluid) post-550 

permeation study. Data is presented as the mean ± SEM (n = 6). Differences were calculated using 551 

one-way ANOVA, followed by Tukey’s post hoc test, and deemed significant at p<0.05. n.s = not 552 

statistically significant at p>0.05 553 


