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ABSTRACT: Aryl isocyanates are introduced as comonomers for ring opening copolymerization (ROCOP) with epoxides. Informed 

by studies of reaction kinetics, we show that divergent sequence selectivity for AB- and ABB-type copolymers can be achieved with 

a single dimagnesium catalyst. The resulting materials respectively constitute a new class of polyurethane (PU) and a new class of 

material featuring an unprecedented backbone structure, the polyallophanate (PA). The successful use of isocyanate comonomers in 

this way marks a new direction for the field of ROCOP, while providing distinct opportunities for expansion of PU structural diversity. 

Specifically, the methodology reported herein delivers PUs featuring fully substituted (tertiary) carbamyl nitrogen atoms, a structural 

motif that is almost inaccessible via extant polymerization strategies. Thus, in one step from commercially available comonomers, 

our methodology expands the scope of ROCOP and gives access to diverse materials featuring both privileged (PU) and unexplored 

(PA) microstructures. 

Controlled ring opening copolymerization (ROCOP) involv-

ing epoxide comonomers represents a significant accomplish-

ment in the fields of catalysis and materials chemistry. By over-

coming the synthetic challenges associated with selective alter-

nate copolymerization, readily-available comonomers such as 

carbon dioxide,1-3 its sulfur-analogs4-15 or cyclic anhydrides16 

can be converted directly to valuable, biodegradable plastics 

such as poly(thio)carbonates (Scheme 1A) and polyesters.17 

Perhaps most notably, ROCOP strategies offer atom-economic 

access to materials with properties that can be readily tuned by 

varying both comonomers. While this advantage is regularly 

exploited in epoxide/cyclic anhydride ROCOP,18 the same can-

not be said for epoxide/heteroallene ROCOP where the scope 

with respect to heteroallene comonomers has remained limited 

to carbon dichalcogenides (CO2, COS or CS2). All materials 

synthesized via epoxide/heteroallene copolymerization must 

therefore be based on the (thio)carbonate linkage. Methods em-

ploying isocyanates as the heteroallene component would over-

come this limitation19,20 and provide concise access to polyure-

thanes (PUs), an iconic class of material with a market value 

predicted to exceed $79bn in 2023.21,22 

Current routes to PUs - including industrially ubiquitous co-

polymerization of diisocyanates with polyols - give secondary 

(NH) carbamyl linkages (Scheme 1B). There exists no general 

method for the direct synthesis of PUs featuring tertiary car-

bamyl linkages.17a-c,22-25 Challenging post-polymerization N-H 

functionalization is thus necessary if all vectors of the PU chain 

are to be exploited. 

Scheme 1. Context and Strategic Blueprint for Copolymer-

ization of Epoxides and Heteroallenes 

 

In contrast, epoxide/isocyanate copolymerization represents a 

fundamentally new approach to PUs that addresses this limita-

tion, providing direct access to tertiary carbamate linkages in 

which all nitrogen vectors are substituted (Scheme 1C). Within 

this manifold, variation of the N-pendant functionality is 

achieved simply by choosing from the plethora of commercially 

available monoisocyanates.26 

The key hurdle to realizing this strategy is the high and varied 

reactivity of isocyanates, particularly in combination with epox-

ides. In the presence of either Lewis basic or Lewis acidic addi-

tives, isocyanates readily undergo homo-oligomerization27-31 to 



 

uretidones, allophanates and isocyanurates, or react with epox-

ides to form oxazolidinones.32-36 This contrasts with the stability 

of heteroallenes currently employed in copolymerization with 

epoxides; indeed CO2 and CS2 are so stable that they are used as 

solvents. 

Herein we report, for the first time, that the innate reactivity 

of isocyanates and epoxides can be harnessed for productive 

and selective copolymerization. Informed by studies of reaction 

kinetics, we demonstrate that this copolymerization affords not 

only a new class of PUs, but also a new class of material featur-

ing an unprecedented backbone structure, polyallophanates 

(PAs). Both classes of material are accessed with excellent se-

quence control using the same precatalyst. The resulting PUs 

feature microstructures that are otherwise challenging to access 

via direct polymerization strategies.23,37 The corresponding PAs 

are inaccessible through any other means and represent a rare 

opportunity to enter unexplored materials space. 

Within our screening study,38 Williams’ dimagnesium com-

plex A39 was uniquely active in the copolymerization of cyclo-

hexene oxide (CHO) and phenyl isocyanate (PhNCO) (Scheme 

2). Complete conversion of PhNCO to copolymer P1 and tri-

phenyl isocyanurate 1 occurred in 30 mins at 80 °C; oxazoli-

dinone 2 was not detected. The unprecedented selectivity ex-

hibited by precatalyst A stands in stark contrast to the myriad 

Lewis acid catalysts that yield oxazolidinones with high effi-

ciency.32-36 

Scheme 2. Copolymerization of Cyclohexene Oxide (CHO) 

and Phenyl Isocyanate (PhNCO) 

 

GPC analysis confirmed the polymeric nature of P1. How-

ever, 1H NMR spectroscopy indicated it to be microstructurally 

heterogeneous: enrichment in PhNCO relative to CHO implied 

the presence of linkages featuring urea-type moieties in addition 

to carbamate moieties. Further analysis38 by 13C{1H} NMR 

spectroscopy and hydrolysis experiments revealed that the link-

ages containing these urea moieties are constructed from just 

two consecutive PhNCO monomers, forming an allophanate 

linkage (red brackets, Scheme 2).40 This microstructural assign-

ment was confirmed following subsequent studies of constitu-

tionally pure materials (vide infra).41 

Identification of two distinct structural sub-units in P1 indi-

cated that this reactivity manifold promises access to not only a 

new class of polyurethanes (AB copolymers, blue brackets, 

Scheme 2) but also to previously inaccessible polyallophanates 

(ABB copolymer, red brackets, Scheme 2). To realize the syn-

thesis of each of these new copolymers, we sought to under-

stand the kinetic origin of the partitioning between the carba-

mate and allophanate sub-units. 

The urethane sub-units within P1 comprise a single, A-B (car-

bamate) linkage, whereas the allophanate sub-units comprise 

linkages featuring both A-B (carbamate) and B-B (urea) com-

ponents. Given that isocyanurate 1 comprises entirely B-B link-

ages, we hypothesized that the kinetics of formation of this cy-

clic trimer would be representative of the kinetics of formation 

of the B-B linkages within the allophanate sub-units. On this 

basis we proposed that insight into this cyclotrimerization could 

be used to develop a de facto kinetic description of the for-

mation of A-B linkages 

Cyclotrimerization of PhNCO to isocyanurate 1 was moni-

tored by in situ IR spectroscopy, and a kinetic model (eq. 1) was 

developed that could reproduce the observed reaction profiles 

(Fig. 1, left).38 This model for B-B linkage formation allowed 

an analogous term for formation of the A-B linkages to be de-

veloped (eq. 2). Combination of the terms gives an empirical 

rate law (eq. 3) that models the combined cyclotrimerization 

and copolymerization processes across a range of practical 

comonomer stoichiometries (Fig. 1, right). 

 

 

 

Figure 1. Representative kinetic profiles for isocyanate cyclotri-

merization (left; [A]0 = 4.90 mM, [PhNCO]0 = 0.75 M), and com-

bined copolymerization/cyclotrimerization (right; [A]0 = 3.50 mM, 

[PhNCO]0 = 0.20 M). Simulated data shown as solid black lines are 

calculated using equations 1 (left) and 3 (right).

Table 1. Selectivity of CHO/PhNCO Copolymerizationa 



 

 

entry 
PhNCO:CHO 

molar ratio 

PhNCO  

addition time 

reaction time after PhNCO  

addition complete (min) 
n:mb 

% PhNCO conversion to 
Mn (kDa)d Đd 

1c (±)-2c 

1 P1 1:1  <5 s 30  12:88 35 n.d. 7.7 1.43 

2 P1ʹ 1:5  <5 s 30  25:75 11 n.d. 8.2 1.63 

3 PU1 1:5  6 h 60  >95:5 n.d. 5 4.8 1.32 

4 PA1 3:1  <5 s 60  5:>95 68 n.d. 3.0 1.66 

aConditions: PhNCO added to 0.2 mol% precatalyst A in CHO at 80 °C; stir at 80 °C for the time indicated. bDetermined by 1H NMR 

spectroscopy and hydrolysis studies.38 cDetermined by calibrated HPLC and 1H NMR spectroscopic analyses (vs internal standard).38 dDe-

termined by GPC in THF (calibrated vs polystyrene standards). n.d., not detected. 

 

Inspection of equation 3 reveals that, while the rate of for-

mation of B-B linkages depends on the concentration of 

PhNCO and not CHO, the converse is true of A-B linkage for-

mation. Conditions that limit the instantaneous concentration of 

PhNCO should therefore suppress the formation of B-B link-

ages, providing sequence-selective access to materials com-

posed solely of A-B linkages. While using CHO in excess af-

forded only a slight increase in selectivity (Table 1, entry 1 vs 

entry 2), combining this with syringe-pump addition of PhNCO 

over 6 hours gave polyurethane PU1 with high constitutional 

purity and restricted isocyanurate formation to amounts that 

could not be detected by 1H NMR or HPLC analyses (entry 3). 

The sequence selectivity for this polymerization (>95% carba-

mate linkages) was supported by NMR spectroscopy and con-

firmed by hydrolysis experiments.38 

Conversely, equation 3 indicates that conditions of high 

PhNCO concentration should favor the formation of B-B link-

ages, affording both isocyanurate 1 and polymeric material 

composed of allophanate (ABB) sub-units. In practice, rapid ad-

dition of excess PhNCO in a single portion afforded polymeric 

material with >95% selectivity for ABB linkages (Table 1, entry 

4) albeit in only 36% conversion based on limiting CHO. 

Having demonstrated that PUs and PAs can both be accessed 

with high constitutional purity, we sought to diversify the li-

brary of materials by varying the N-pendant substituent. While 

introduction of substituents at this position via extant strategies 

would necessitate challenging post-polymerization functionali-

zation or lengthy stepwise procedures,37 our chemistry simply 

requires that a different aryl isocyanate comonomer is used (Ta-

bles 2 and 3). 

While the methodology cannot be extended to alkyl isocya-

nates, electron-poor, electron-rich and sterically hindered aryl 

isocyanates all afford PUs with sequence selectivities in excess 

of 95% (Table 2). In all cases, the polymers are isolated in high 

yield42 with oxazolidinone formation limited to trace quanti-

ties.38,43 Given the widespread availability of diverse monoiso-

cyanates, this initial scope is particularly promising for future 

applications of the methodology.  

Table 2. Scope of Polyurethane Synthesisa,b,c 

 

entry Ar Mn (kDa)d Đd % yielde 

1  PU1 Ph 4.8 1.32 83 

2 PU2 p-Me-C6H4 3.1 1.28 96 

3 PU3 m-Me-C6H4 3.8 1.57 90 

4 PU4 p-CF3-C6H4 4.2 1.43 72 

5 PU5 p-F-C6H4 3.9 1.32 71 

6 PU6 p-MeO-C6H4 3.3 1.37 71 

7 PU7 o-Me-C6H4 3.0 1.37 85 

aConditions: 1 equiv. ArNCO added over 6 h to 0.2 mol% precata-

lyst A in 5 equiv. CHO at 80 °C, then stir at 80 °C, 60 min. bAs 

determined following hydrolysis of the isolated materials, all poly-

mers consisted of >95:5 carbamate:allophanate linkages.38 cAs de-

termined by 1H NMR spectroscopic analysis (vs internal standard) 

and analogy to PU1, oxazolidinone side-products accounted for 

≤5% of ArNCO.38 dDetermined by GPC in THF (calibrated vs pol-

ystyrene standards). eYields are of isolated, purified material and 

are calculated based on limiting ArNCO and the mass of the repeat 

unit. 

Table 3. Scope and Selectivity of Polyallophanate Synthesisa 

 

entry Ar n:mb 
% ArNCO converted to  

isocyanuratec 

% ArNCO 

unreactedc 
Mn (kDa)d Đd % yielde 

1 PA1 Ph >95:5 68% 5.5% 3.0 1.66 36% 



 

2 PA2 p-Me-C6H4 >95:5 83% 6.5% 4.5 1.66 10% 

3 PA3 m-Me-C6H4 91:9 59% 21.5% 8.3 1.54 15% 
aConditions: 3 equiv. ArNCO added rapidly to precatalyst A (0.2 mol%) in 1 equiv. CHO; stir at 80 °C, 60 min. bLinkage quantification 

determined by hydrolysis of the purified polymer (vs internal standard).38 cDetermined by calibrated HPLC and/or 1H NMR spectroscopic 

analyses (vs internal standard). dDetermined by GPC in THF (calibrated vs polystyrene standards). eYields are of isolated, purified material 

and are calculated based on limiting CHO and the mass of the repeat unit. 

 

A consequence of the slow addition protocol is that PUs PU1-

PU7 feature relatively low molar mass and high Đ (Table 2), 

presumably because chain transfer competes effectively with 

chain growth during the extended reaction periods.44 Whilst 

higher Mn can be achieved by increasing the rate of isocyanate 

addition (cf. P1ʹ, Table 1, entry 2), this is at the expense of se-

quence selectivity. 

Synthesis of PAs via a single addition of excess isocyanate 

proved less general (Table 3). Formation of isocyanurate out-

competed polymerization for electron-poor aryl isocyanates.45 

However, electron-rich and -neutral aryl isocyanates afforded 

the expected polyallophanates with excellent constitutional pu-

rity. 

NMR spectroscopy was conducted at 90 °C to reduce signal 

broadening.38,46 1H NMR spectra of both classes of material are 

resolved into the aromatic, methine and the methylene regions, 

each of which integrate as expected. 13C{1H} NMR spectra of 

the PUs show a single signal between 152 and 157 ppm, corre-

sponding to the carbonyl environment within the carbamate 

moiety. 13C{1H} NMR spectra of PAs display two signals be-

tween 150 and 155 ppm, corresponding to the two distinct car-

bonyl environments within the allophanate moiety.  

IR spectra of the PUs display a single strong band at ≈1700 

cm-1 corresponding to the stretching frequency of the carbonyl 

group. IR spectra of the PAs display two strong bands at ≈1690 

cm-1 and ≈1725 cm-1 corresponding to the two distinct carbonyl 

groups within the allophanate moiety. 

Thermal decomposition of the PUs and PAs commences be-

tween 180 to 210 °C, and affords non-volatile small-molecule 

products.38 While PU5 exhibits a glass transition at 181 °C, the 

remaining polymers all initiate decomposition prior to the oc-

currence of any thermal events. 

In conclusion, we have achieved productive copolymerization 

of epoxides and isocyanates for the first time. By overcoming 

the innate reactivity of each comonomer, we have fulfilled a 

missing link in epoxide/heteroallene copolymerization. Insight 

from kinetic models allows this new reactivity to be diverted 

towards the selective synthesis of either a new class of polyure-

thanes or polyallophanates, a material featuring a previously 

unprecedented microstructure. The ability to use isocyanates as 

comonomers enables the synthesis of diverse and tunable mate-

rials that cannot be accessed via other ROCOP strategies, or via 

conventional routes to PUs. We envisage that the diverse, mod-

ular materials reported herein will augment the privileged posi-

tion that PUs hold as structural materials, and will expand their 

applicability into the field of functional materials. 
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