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Mathematical model to determine the effect of a sub-glycocalyx space
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We consider the drainage of blood plasma across the capillary wall, focusing on the
flow through the endothelial glycocalyx layer that coats the luminal surface of vascular
endothelial cells. We investigate how the presence of a sub-glycocalyx space between
the porous glycocalyx and the impermeable endothelial cells affects the flow, using the
Darcy and Stokes equations to model the flow in the glycocalyx and sub-glycocalyx space,
respectively. Using an asymptotic analysis, we exploit the disparity of length scales to
reduce the problem complexity to reveal the existence of several asymptotic regions in
space. We provide a detailed characterization of the flow through the glycocalyx layer in
terms of the microscale system parameters, and we derive analytic macroscale results, such
as for the flux through and hydraulic conductivity of the glycocalyx layer. We show that
the presence of a sub-glycocalyx space results in a higher flux of blood plasma through the
glycocalyx layer, and we use our theoretical predictions to suggest experiments that could
be carried out to shed light on the extent of the layer.
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I. INTRODUCTION

The endothelial glycocalyx (eGlx) is a porous coating found on the luminal surface of most
blood vessels [1,2]. The eGlx is a complex biochemical and structural entity, and though there is
little consensus within the field over the specifics of its biochemical make-up and structure, it is
known to serve several purposes: it acts as a molecular sieve for plasma proteins; it regulates blood
cell interactions; it acts as a mechanotransducer of hydrodynamical shear stress to the endothelial
cells to which it is attached; and it modulates the vascular permeability of the vessel wall to plasma
leakage to the interstitium [1,3–6]. Damage to the vasculature through inflammation, disease, or
insult can change the local resistance of the eGlx structure and hence affect the drainage of plasma
[7–9]. To aid the use of targeted therapies, it is important to develop a better understanding of how
the microstructure of the eGlx layer affects the function of the vascular wall.

As blood plasma drains from the lumen on its way to the interstitium, it first passes through
the porous eGlx attached to the endothelial cells. The impermeability of the endothelial cell body
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FIG. 1. A schematic of the endothelial glycocalyx and the plasma leakage through it as a cross section
through the radial and axial directions of the capillary. As blood passes through the lumen, a small amount of
plasma leaks across the capillary wall. This plasma travels through the two-layer structure of the eGlx and then
down the intercellular clefts between neighboring endothelial cells before reaching the interstitium.

means that in nonfenestrated vessels the only route to the interstitium is though the small gaps
between these cells, referred to as the intercellular clefts [4]. The current belief is that the the eGlx
is a layered structure consisting of an inner layer (approximately 200 nm thick) which acts as a
filtration barrier and a highly permeable diffuse outer layer (up to 1000 nm thick) which is involved
in the mechanotransduction and mechanistic roles [10]. We provide a schematic of the structure of,
and the flow through, the eGlx in Fig. 1.

The global resistance of the vascular wall can be experimentally measured using single capillary
cannulation with pressure control [11,12], but determining the microstructure of individual layers
is more difficult. Electron microscopy is currently the only experimental method with the potential
to determine the ultrastructural space in the glycocalyx structure. Although there is some visual
evidence for a sub-glycocalyx space [13,14], the extent of this space is unclear due to the
practicalities of the imaging process, and several challenges with this procedure remain. First, when
using electron microscopy, the eGlx must be stained and immobilized since polysaccharides (which
make up part of the glycocalyx) are not fully immobilized by aldehyde fixation [15–18]. These
charged stains induce a structural alteration of the glycocalyx, including a collapse of the layer.
Second, when curing the resin between the tissue and the lumen, splitting between the fixed cells in
the tissue and the relatively empty lumen can occur, making it difficult to validate the extent of this
sub-glycocalyx space experimentally.

It is particularly important to understand the extent of this space for the revised Starling
hypothesis. The standard Starling hypothesis provides a macroscale relationship between the plasma
flux and the net driving pressure between the lumen and the interstitium [19]. However, common
misinterpretations of the hypothesis do not agree with physiological experiments due to confusion
over the nature of the oncotic pressure from albumin concentration [20], which usually acts in
the opposite direction to hydrostatic pressure [21,22]; while varying the albumin concentration in
the lumen alters the flux as expected, varying the albumin concentration in the interstitium does
not [22].

This discrepancy is explained by the revised Starling hypothesis, which proposes that there
is a critical point below the eGlx but above the interstitium wherein the albumin concentration
is negligible. Moreover, it holds that the important locations for calculating the oncotic pressure
difference are between the lumen and this critical point, rather than the lumen and the interstitium.
The oncotic pressure difference between the critical point and the interstitium can then be ignored,
as the flow through the intercellular clefts to the interstitium is rapid enough to negate diffusion
back from the tissue [20,23,24]. However, the location of this critical point is not known precisely,
largely due to the unknown nature of the eGlx structure. As the filter functionality of the eGlx
means that the critical point is likely to be immediately below the eGlx, it is vital to know whether
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FIG. 2. A schematic of the differences between the plasma leakage through the glycocalyx, centered around
a single intercellular cleft when there is (a) a negligible sub-glycocalyx space (Case 1) and (b) a significant sub-
glycocalyx space (Case 2). The question of the existence of a sub-glycocalyx gap has important implications
for calculating the oncotic pressure (�πc) across the glycocalyx in the revised Starling hypothesis. In this
paper, we show that the horizontal extent of the flow (and thus the useful filtration width) in the glycocalyx is
larger when the sub-glycocalyx space is significant, i.e., in Case 2.

the eGlx terminates above the endothelial cells to leave a significant sub-glycocalyx space or much
closer to the level of the endothelial cells where the intercellular clefts begin. This is because the
former possibility has a much greater seepage area than the latter, with important implications for
the revised Starling hypothesis, since this gives the plasma flux per unit area.

The main goal of this paper is to determine the effect of any sub-glycocalyx space on the flow
through the eGlx and whether the height of this space can be inferred through future experiments.
This space is not necessarily devoid of all material, as the protein core tether would attach the porous
glycocalyx to the surface of the endothelial cells, but it would have a very large void fraction, in
contrast to the filtration zone of the eGlx. The size and extent of this sub-glycocalyx space are
unknown: it could range from being a small region localized around the entrance of each cleft
through to extending under the entire glycocalyx. We compare these two extreme scenarios in this
paper and provide a schematic of them in Fig. 2. In addition, understanding the flow though the
eGlx will allow us to determine the horizontal extent of the flow within the glycocalyx, as well
as to derive the macroscale hydraulic conductivity, a constitutive parameter in the revised Starling
hypothesis, as a function of the microscale properties of the eGlx.

Mathematical modeling has been used to understand the role of the glycocalyx in molecular
transport better, with a focus on the effect of the junction strands within the intercellular clefts. The
most extensive models are combined flow and transport models due to Weinbaum and colleagues
[25–27]. While these models are useful, they do not address the issue of a sub-glycocalyx space
or the horizontal extent of the flow within the glycocalyx (as indicated in Fig. 2) and hence the
proportion of the glycocalyx that is used for filtration. In the recent Ref. [28], the authors consider
the coupled solute transport and flow problem across microvessel walls, with the aim of investigating
solute exchange with time-dependent pressure drops across the wall. However, as the authors model
the endothelial glycocalyx as a membrane, the exact nature of the flow within the endothelial
glycocalyx is not considered.

In this paper, we seek to investigate the effect of a sub-glycocalyx space on the flow through
the glycocalyx. To focus on the geometrical effect of the sub-glycocalyx space, we do not consider
solute transport. We consider the flow through the glycocalyx in two cases: where the height of the
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sub-glycocalyx space is comparable to or much larger than the typical pore size within the porous
glycocalyx. We refer to these two cases as the height of the sub-glycocalyx space being “negligible”
and “significant”, respectively. We assume that the glycocalyx and sub-glycocalyx space each has a
uniform height and spans the entirety of the vessel wall, including over the intercellular clefts. To
focus on the effect of a sub-glycocalyx space on the flow, we choose a simplified model geometry
in which the cross section of an endothelial cell is rectangular, resulting in right-angled corners at
the entrance to the intercellular cleft and no junction strand within the cleft. In addition, we will
also neglect the effect of the highly porous diffuse eGlx region, which we do not expect to have
a significant effect on the plasma leakage [10], and of any tight junctions or fenestrations in our
vasculature. The latter assumptions mean that our model will be suitable only for non-neural and
nonglomerular vasculature. There has been modeling work for the case with a junction strand but
without a sub-glycocalyx [29] and, more recently, for the flow through the bilayer structure [10].

As the glycocalyx has a complex bushy structure, we model the plasma flow through this
region using the Darcy equations for flow through a porous medium. The intercellular cleft and
the (speculative) sub-glycocalyx space do not contain these resistive structures, and so we model
the flow in these regions using Stokes equations. There are several important questions to consider
when coupling these two flow regions. One such is the correct interfacial conditions to impose on a
boundary between Stokes and Darcy flow regions, which remains an area of active research [30,31].
We use the boundary conditions of continuity of pressure, continuity of flux, and a Beavers-Joseph
slip condition. The first two conditions were derived in Ref. [32] and the last was experimentally
derived in Ref. [33], and given theoretical justification in Ref. [34]. Another important question is
whether the two regions should be treated as distinct. If the height of the sub-glycocalyx space is of
the same order as the pore size within the glycocalyx, the sub-glycocalyx space is indistinguishable
from the porous glycocalyx region and thus should be governed by Darcy’s equations. As we will
show, neither the case with a sub-glycocalyx space nor the case without is a sublimit of the other,
and thus we must consider two potential models: the first where there is a negligible sub-glycocalyx
space (any such space is then indistinguishable from the Darcy region), and the second where there
is a significant sub-glycocalyx space, resulting in a separate sub-glycocalyx region.

The structure of this paper is as follows. In Sec. II we present the general dimensional
problem, which accounts for both cases (i.e., when the sub-glycocalyx space is significant and
negligible). In Sec. III we specifically consider the case with a negligible sub-glycocalyx space;
we nondimensionalize the problem and then perform an asymptotic analysis by exploiting the small
aspect ratio of the geometry, allowing us to derive analytic solutions for the flow in each asymptotic
region. In Sec. IV we consider the case with a significant sub-glycocalyx space, and the analysis
proceeds in a similar manner to that described above. In Sec. V we summarize the main differences
between the cases, and, finally, in Sec. VI we discuss our results and their physical implications.

II. MODEL SETUP

We consider the leakage of plasma across the endothelial glycocalyx layer, from the boundary
between lumen and glycocalyx to the interstitial fluid located beyond the endothelial cells. We
treat the bushy glycocalyx as a porous medium and the endothelial cells to which it attaches as
impermeable boundaries. The plasma leaks through the gaps between endothelial cells, referred to
as intercellular clefts, into the reservoir of interstitial fluid located below the endothelial cells.

As an intercellular cleft has typical width much smaller than the typical radius of an endothelial
cell and is not particularly tortuous, we simplify the geometry by considering the two-dimensional
problem with the intercellular cleft perpendicular to the lumen wall. Essentially, we neglect any
effect of cell curvature or of junctions where intercellular clefts meet. In addition, we consider
the problem with one intercellular cleft in an infinite domain. Although there are many intercellular
clefts along the glycocalyx in the lumen (see Fig. 1), we will show that the flow decays exponentially
away from the intercellular clefts sufficiently rapidly that restricting our model to a single
intercellular cleft has no significant bearing on the results. Additionally, we will not consider the
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FIG. 3. A schematic of the model geometry. The single-headed arrows show the flow direction. It is not
known whether the sub-glycocalyx exists, and so we consider h � 0. As explained in this paper, we must
consider different models for h = 0 and h > 0.

flow within the main blood vessel above the glycocalyx, instead imposing a constant pressure
difference across the system, which extends from the interface between the glycocalyx and the
lumen at the top to the end of the intercellular cleft at the bottom. This will allow us to obtain a
relationship between the total pressure drop across and the flux through the system. Finally, we
also assume that the lumen to glycocalyx, and glycocalyx to sub-glycocalyx-space interfaces are a
uniform distance from the endothelial cell membrane.

We work in (x̂, ŷ) coordinates, which are tangential and perpendicular to the lumen wall,
respectively, and we show a schematic of the model setup in Fig. 3. We model plasma flow within
the glycocalyx as incompressible Darcy flow

Û = − k

μ
∇P̂, ∇ · Û = 0 for x̂ ∈ R, ŷ ∈ (h, H ), (1)

with velocity Û = (Û , V̂ ) and pressure P̂, through a porous medium with constant permeability
k. As the plasma moving through the glycocalyx does not contain blood cells, we treat it as an
incompressible Newtonian fluid with constant viscosity μ. We model the flow in the sub-glycocalyx
space and in the intercellular cleft as incompressible Stokes flow

∇ p̂ = μ∇2û, ∇ · û = 0 for x̂ ∈ R, ŷ = (0, h) and |x̂| < d/2, ŷ = (−L, 0), (2)

with velocity û = (û, v̂) and pressure p̂. The entire glycocalyx and sub-glycocalyx structure has
height H , the sub-glycocalyx has height h (so 0 � h < H), and the intercellular cleft has width d .
As discussed in Sec. I, the height and extent of the sub-glycocalyx space are largely unknown. The
space could range from only existing at the cleft entrance (the case h = 0) to extending across the
entire endothelial cell membrane (the case h > 0). In the latter case, the glycocalyx is held away
from the endothelial cells by thin stems. As a modeling assumption, we neglect any effect of these
stems on the flow, and we will show that the aspect ratio of this problem results in lubrication
scalings within the sub-glycocalyx space. Finally, as mentioned in Sec. I, when the sub-glycocalyx
height or the intercellular cleft width is comparable to the typical pore size in the glycocalyx,
the two regions are indistinguishable. Mathematically, these occur when h = k1/2 and d = k1/2,
respectively. In this case, the Darcy flow equations govern all the flow above the intercellular cleft.
We will show that the limit h → 0 is singular and does not yield the same results as for the case
where h = 0.
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At the interface between the Darcy and the Stokes flow regions, we impose continuity of
pressure, continuity of flux, and a Beavers-Joseph slip condition for the tangential velocity in the
sub-glycocalyx region [32,33] as follows:

P̂ = p̂, V̂ = v̂,
a√
k

(Û − û) = ∂ û

∂ ŷ
on �, (3)

where a is the dimensionless Beavers-Joseph slip coefficient and � is the interface between the
Darcy and Stokes regions. We emphasize that the Beavers-Joseph slip condition will not be
appropriate if there is an impermeable membrane in the Stokes region close to the permeable
interface (as would occur in the limit h → 0), and, as such, we define this interface separately for
the two cases we consider. At the boundary where the intercellular cleft region meets the endothelial
cells, we impose a no-slip condition

û = 0 for |x̂| = d/2, ŷ ∈ (−L, 0). (4)

We note that when there is no sub-glycocalyx space (h = 0), we will require an additional no-flux
condition at the interface between the glycocalyx and the endothelial cells, whereas when there
is a sub-glycocalyx space (h > 0), we will require an additional no-slip condition at the interface
between the sub-glycocalyx-space and the endothelial cells. We will introduce both of these later
when required. Finally, we impose a constant pressure difference of � across the system as follows:

P̂ = � for x̂ ∈ R, ŷ = H, (5a)

p̂ = 0 for |x̂| < d/2, ŷ = −L. (5b)

It will also be helpful to use our model to calculate the steady fluid flux through the glycocalyx
system, defined as

Q = −
∫ d/2

−d/2
v(x̂,−L) dx̂, (6)

as a function of the pressure drop. To quantify this relationship, we define the effective resistance

K = �

μQ
. (7)

We give typical parameter values for this system in Table I and note that there are several extreme
parameter ratios; exploiting these will facilitate our analysis. In particular, we note that H � D, the
height of the glycocalyx is much smaller than the typical length scale of an endothelial cell; d � L,
the width of the intercellular cleft (the endothelial gap) is much smaller than the length of the cleft;
and d � H , the width of the cleft is much smaller than the height of the glycocalyx. Finally, we
also note that k � d2, corresponding to the typical pore size in the glycocalyx being smaller than
the width of the intercellular cleft, and thus, as discussed in Sec. I, the Stokes equations are valid
within the intercellular cleft. In the two cases we consider, with and without a sub-glycocalyx space,
we will first nondimensionalize the problem appropriately, and then exploit these extreme ratios to
solve the system. We start by considering the problem with no sub-glycocalyx space.

III. CASE 1: NEGLIGIBLE SUB-GLYCOCALYX SPACE

We first consider the problem with no sub-glycocalyx space, corresponding to h = 0, where the
glycocalyx extends directly to the endothelial cells. With the addition of the no-flux condition

V̂ = 0 for |x̂| > d/2, ŷ = 0, (8)

at the boundary where the glycocalyx meets the endothelial cells, the governing system for Case 1
is defined by (1)–(5) and (8). Additionally, we note that �, the interface for (3), is defined as

� = {(x̂, ŷ) : |x̂| < d/2, ŷ = 0}, (9)
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TABLE I. Approximate values of the system parameters. The height of the glycocalyx could vary from
anywhere between 150 and 400 nm [4]. The approximate porosity of the glycocalyx is estimated by treating
the glycocalyx as a hexagonal lattice of fibers with center-to-center fiber separation of 20 nm and fiber radius
of 6 nm [27]. The height of the sub-glycocalyx space is unknown, though it has been observed and is expected
to be between 0–50 nm [14]. For the permeability, we use the approximation k ≈ φd2

p/96 from Sec. 5.10 of
Ref. [36] for a porous medium consisting of randomly orientated equal circular tubes of diameter dp.

Variable Description Approximate value

H Height of glycocalyx layer 200 nm [4]
dp Pore width within glycocalyx 8 nm [22]
φ Porosity of glycocalyx 0.7 [27]
h Height of sub-glycocalyx space 40 nm (assumed)
D Length of endothelial cell 4000 nm [25]
L Height of intercellular cleft 400 nm [25]
d Width of intercellular cleft 10 nm [25]
� Hydraulic pressure difference across system 3 cm H2O [27]
μ Dynamic viscosity of plasma 1.2 mPa s [35]
k Permeability of glycocalyx 0.5 nm2 [36]
a Beavers-Joseph slip coefficient Unknown

for Case 1. We give a schematic of our model setup and summarize the governing system in
Fig. 4.

A. Dimensionless problem

We scale our variables as follows:

(Û , V̂ , û, v̂) = k�

μH
(U,V, u, v/δ), (P̂, p̂) = �(P, p), (x̂, ŷ) = H (x, y), (10)

where δ = d/2H . From (1), we obtain the dimensionless problem in the glycocalyx

U = −Px, V = −Py, Ux + Vy = 0 for x ∈ R, y ∈ (0, 1), (11a)

and from (2), in the intercellular cleft

px = δ2ω∇2u, py = δω∇2v, δux + vy = 0 for |x| < δ, y ∈ (−λ, 0), (11b)

where ω = 4k/d2 and λ = L/H . Finally, the boundary and coupling conditions (3)–(5) and (8)
become

P = 1 for x ∈ R, y = 1, (12a)

v = δV, p = P, U − u = δα
∂u

∂y
for |x| < δ, y = 0, (12b)

V = 0 for |x| > δ, y = 0, (12c)

u = 0 for |x| = δ, y ∈ (−λ, 0), (12d)

p = 0 for |x| < δ, y = −λ, (12e)

where α = 2k1/2/ad .

B. Asymptotic structure

To facilitate our analysis, we exploit the small parameter ratios in the system and consider the
asymptotic limits of k � d2 and d � H , corresponding to ω → 0+ and δ → 0+. We proceed by
performing an asymptotic analysis in these two small parameters, and we will find that there is
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FIG. 4. Schematic of the dimensional flow problem with no sub-glycocalyx space. Darcy flow governs the
dark gray region, Stokes flow governs the light gray region, and the white regions denote the impermeable
endothelial cells.

a distinguished asymptotic limit when ω = O(δ). Hence, we introduce ω = δξ , where ξ = O(1).
Additionally, we take λ to be of O(1), essentially a statement that the height of the glycocalyx is of
the same order as the length of the intercellular cleft, and from this we also implicitly consider the
limit d � L. The magnitude of a, the Beavers–Joseph slip coefficient, is relatively unknown, so we
take α = 2k1/2/ad to be of O(1) in Case 1, which results in a distinguished asymptotic limit from
the tangential slip condition. We will find, however, that this dimensionless grouping has no effect
on the leading-order flux through the glycocalyx for this case.

We illustrate the asymptotic structure of the problem in Fig. 5. The intercellular cleft (Region III)
acts as a sink to the flow in the glycocalyx. In Region I, the channel acts as a point sink, and thus the
flow magnitude is of the same asymptotic order in both horizontal and vertical directions. In Region
II the finite nature of the intercellular cleft becomes apparent, and, although the flow velocity is
increased by a factor of 1/δ in Region II over that in Region I, the flow magnitude is of the same
asymptotic order in both horizontal and vertical directions. For notational purposes, we split Region
II into the glycocalyx (Region IIa) and the intercellular cleft (Region IIb). As the flow from Region
II carries on vertically downwards into Region III, the flow magnitude in Region III is the same as
in Region II, though it is directed vertically at leading order.

C. Solving for the flow

1. Region I

We start by considering the asymptotic limit δ → 0+. As the intercellular cleft acts as a sink, the
effective leading-order problem in Region I is

∇2P = 2κδ̂(x), (13a)

where κ is a measure of the dimensionless sink strength, which will be obtained later via matching,
and δ̂(x) is the Dirac delta function. We use the hat to distinguish the Dirac delta function δ̂ from
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FIG. 5. The asymptotic structure of the problem in the case without a sub-glycocalyx region. The size of
the asymptotic regions have been exaggerated for illustrative purposes.

the small parameter δ. The appropriate boundary and far-field conditions in Region I are

P = 1 for x ∈ R, y = 1, (13b)

∂P

∂y
= 0 for x ∈ R, y = 0, (13c)

∇P → 0 for |x| → ∞, y ∈ (0, 1). (13d)

The system for Region I is defined by (13) in terms of the fluid pressure, from which the fluid
velocity can be obtained, using the first two equations in (11). We may solve (13) using complex-
variable theory introducing z = x + iy, with the transformation tanh πz/4 mapping the infinite-strip
domain into a semicircle, with origin mapped to origin. Then the system (13) in transformed space
satisfies the standard Green’s function in an infinite two-dimensional domain, yielding the result

P = 1 + κ

π
Re

(
log tanh

πz

4

)
, (14)

where Re(·) denotes the real part. We show this Region I pressure and the streamlines it induces in
Fig. 6. Additionally, we highlight that the far-field pressure is

P ∼ 1 − 2κ

π
e−π |x|/2 cos

πy

2
as |x| → ∞, y ∈ (0, 1), (15)

which we note decays exponentially away from the intercellular cleft, justifying our restriction of
the model to a single intercellular cleft.

For later matching purposes, it will be useful to note from (14) that

P ∼ κ

π
log |x| + 1 − κ

π
log

4

π
as |x| → 0. (16)

We note that the Region I pressure appears to be logarithmically unbounded as we approach
the intercellular cleft. This unphysical result is remedied in the next section, where we consider
the problem in Region II, the transition region near the intercellular cleft entrance. Moreover,
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FIG. 6. (a) A pressure contour map in Region I from P = 0.55 to P = 1 in increments of 0.05, as given
by (14). (b) The streamlines in Region I, as given by the complex conjugate of (14). We use κ = 0.3 for both
panels.

investigating Regions II and III in turn will allow us to determine the value of κ (currently unknown)
in terms of the system parameters.

2. Region II

We scale into Region II using x = δX = δ(X,Y ), U = U/δ = (U ,V )/δ, and u = u/δ. Addi-
tionally, to capture all the relevant terms at once, we shall treat, in a well-established fashion,
logarithmically large terms as 1.

In the glycocalyx (Region IIa), the pressure satisfies Laplace’s equation in the half-plane

∇2P = 0 for X ∈ R, Y ∈ R+, (17a)

with the flow given by U = −∇P. In the intercellular cleft (Region IIb), the governing equations
become

pX = δξ∇2u, pY = δξ∇2v, uX + vY = 0 for |X | < 1, Y < 0. (17b)

The boundary and coupling conditions for this system arise from (12b)–(12d) and are

v = V , p = P, U − u = α
∂u

∂Y
for |X | < 1, Y = 0, (18a)

∂P

∂Y
= 0 for |X | > 1, Y = 0, (18b)

u = v = 0 for |X | = 1, Y < 0. (18c)

In the limit of δ → 0+, we see from (17b) that the leading-order pressure within Region IIb is
constant, and thus

p = B, (19)

where B is a constant to be determined via matching. In Region IIb, we note that the leading-order
flow is coupled to the first-correction to the pressure, which is of O(δ). We do not need to solve
this problem to obtain the fluid flux results in which we are interested; for an example of a related
problem coupled in a similar manner where the inner flow problem must be solved to obtain the
required outer results, the interested reader is directed to Ref. [37]. For the problem at hand, it
suffices to note that the flux is conserved through Region II, and thus the flux entering Region IIa
from Region I is equal to the flux entering Region III from Region IIb. This corresponds to the
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mathematical statement

lim
r→∞

∫ π

0

∂P

∂r
r dθ = lim

Y →−∞

∫ 1

−1
(−v) dX, (20)

which follows on application of the divergence theorem to the continuity equations in (17b), and
where (r, θ ) are polar coordinates centered around (X,Y ) = (0, 0). That the exact details of the flow
in Region IIb have no bearing on the leading-order flux through the glycocalyx system immediately
implies that the exact value of the Beavers–Joseph slip coefficient will have no leading-order effect
on the flux through the system when there is no sub-glycocalyx.

Using (19), we note that the second equation in (18a) becomes

P = B for |X | < 1, Y = 0. (21)

Hence, the system for P, consisting of (17a), (18b), and (21), decouples from the remaining
dependent variables. We solve this system using complex-variable theory in Z = X + iY , noting that
the transformation cosh−1 Z maps the half-plane-with-a-slot Z domain into a semi-infinite rectangle,
and that the logarithmic far-field matching becomes linear in the transformed domain. Therefore,
the system (17a), (18b), and (21) is solved by

P = B + D

π
Re(cosh−1 Z ), (22)

where D is a constant to be determined via matching. For the purposes of matching, we note that
the far-field behavior of (22) is

P ∼ D

π
log |Z| + D

π
log 2 + B as |Z| → ∞, (23)

justifying the Dirac delta function in (13). Matching between Regions I and II using (16) and (23)
with van Dyke’s matching rule [38], we deduce that

D = κ, B = 1 − κ

π
log

8

πδ
. (24)

Thus we have deduced the relevant terms in Region II in terms of κ , which is still to be determined.
Using (20), the conservation of flux condition, we note that the dimensionless flux entering Region
III from Region IIb can be written as

lim
Y →−∞

∫ 1

−1
(−v) dX = κ, (25)

and we show the Region IIa pressure and streamlines in Fig. 7.
From (22) and (24), we may also determine that the flow velocity on the interface between

glycocalyx and intercellular cleft is

U = 0, V = κ

π

1√
1 − X 2

for |X | < 1, Y = 0. (26)

There are integrable singularities in (26) at (|X |,Y ) = (1, 0), which are artifacts that arise due to the
sharp corners in our model geometry. Our remaining task is to couple the analysis thus far with the
flow in the intercellular cleft, in Region III, which will allow us to close the system and determine
κ , the sole remaining free parameter, in terms of the system parameters.

3. Region III

In Region III we use Y = Ŷ /δ and u = δû to scale the Stokes equations (17b) and obtain the
following at leading order:

pX = O(δ2), pŶ = ξvXX + O(δ2), ûX + vŶ = 0 for |X | < 1, Ŷ ∈ (−λ, 0). (27a)
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FIG. 7. (a) A pressure contour map in Region IIa from P = 0.63 to P = 0.83 in increments of 0.05, as
given by (22) and (24). (b) The streamlines in Region IIa, as given by (22) and (24). We use κ = 0.3 and
δ = 0.05 in both figures.

The appropriate boundary conditions are (12d) and (12e), which become

û = v = 0 for |X | = 1, Ŷ ∈ (−λ, 0), (27b)

p = 0 for |X | < 1, Ŷ = −λ. (27c)

The system (27) is solved by

û = 0, v = C
X 2 − 1

2ξ
, p = C(Ŷ + λ), (28)

where C is a constant to be determined by one last asymptotic matching procedure between Regions
IIb and III.

To match these regions, we first note from (19) and (24) that p is constant at leading order within
Region II. Thus, we are able to deduce that

C = 1

λ
− κ

λπ
log

8

πδ
. (29)

Second, we note from the continuity equation in (27a) that the flux in Region III is conserved. As
the flux into Region III is given by (25), we may deduce that

κ = −
∫ 1

−1
v(X,−λ) dX = 2C

3ξ
, (30)

and hence

κ = 2

3ξλ + 2
π

log 8
πδ

, (31)

thus completing the asymptotic solution for Case 1.
We can calculate the dimensional flux through the system, defined in (6), using (10), (28), (29),

and (31), to obtain

Q = �

μ

d3

12L + d3

πk log 16H
πd

, (32)

leading to an effective resistance, defined in (7), of

K = 12L

d3
+ 1

πk
log

16H

πd
. (33)
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FIG. 8. Schematic of the dimensional flow problem with a sub-glycocalyx. We consider a two-dimensional
setup, with the impermeable sub-glycocalyx and intercellular cleft walls representing the endothelial cells.
Darcy flow governs the dark gray region, Stokes flow governs the light gray region, and the white regions
denote the impermeable endothelial cells.

The first term on the right-hand side of (33) is due to the intercellular cleft and the second is due to
the structure of the glycocalyx. Therefore it is the latter that will be useful in comparing the effective
resistance in this case to that in the second case, for which there is a significant sub-glycocalyx
space (h > 0). We do this in the next section, where we show that the dimensional flux and effective
resistance have different dependencies on the system parameters. Additionally, we will also show
that the model we present in the next section becomes invalid when h → 0, and that this limit is
when Case 1, the model we have considered in this section, is valid.

IV. CASE 2: SIGNIFICANT SUB-GLYCOCALYX SPACE

We now consider the problem with a sub-glycocalyx space, corresponding to 0 < h < H . With
the addition of the no-slip condition

u = 0 for |x̂| > d/2, ŷ = 0, (34)

at the boundary where the sub-glycocalyx space meets the endothelial cells, the governing system
for Case 2 is defined by (1)–(5) and (34). Additionally, we note that �, the interface for (3), is now
defined as

� = {(x̂, ŷ) : x̂ ∈ R, ŷ = h}. (35)

We give a schematic of our model setup and the governing equations in Fig. 8.
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We will solve the system (1)–(5) and (34) for h > 0 by exploiting the extreme parameter ratios
discussed in Sec. II. To highlight the important parameters in the system and facilitate an asymptotic
analysis, we now nondimensionalize the system.

A. Dimensionless problem

To obtain a distinguished asymptotic limit, we use the following lubrication-type scalings:

(Û , V̂ , û, v̂) = k�

μH
(εU,V, u/ε, v), (P̂, p̂) = �(P, p), (x̂, ŷ) = l (x, εy), (36)

where we preemptively define the horizontal lengthscale as

l =
[

h3(H − h)(ah + 4k1/2)

12k(ah + k1/2)

]1/2

, (37)

which describes the typical horizontal extent of flow in the glycocalyx, and we define the
dimensionless aspect ratio as ε = H/l . In (37), the ah and k1/2 terms arise due to the Beavers-Joseph
interfacial condition, and the remaining terms arise due to the geometry of the glycocalyx.

Using the scalings (36), we obtain the following dimensionless governing equations in the
glycocalyx:

U = −Px, V = −Py, ε2Ux + Vy = 0, (38a)

and in the sub-glycocalyx and intercellular cleft

px = β(uyy + ε2uxx ), py = ε2β(vyy + ε2vxx ), ux + vy = 0. (38b)

Here we define the dimensionless parameters η = h/H , ᾱ = k1/2/aH , and β = kl2/H4, and, for
clarity, we use the following domain descriptions:

Glycocalyx = {(x, y) : x ∈ R, y ∈ (η, 1)}, (39a)

Sub-glycocalyx = {(x, y) : x ∈ R, y ∈ (0, η)}, (39b)

Intercellular cleft = {(x, y) : x ∈ (−δ̄, δ̄), y ∈ (−ν/ε, 0)}, (39c)

where we additionally define the dimensionless parameters δ̄ = d/2l and ν = L/l . We note that
β can be written in terms of η and ᾱ, but, to avoid cumbersome expressions in the dimensionless
system for Case 2, we retain its use. We will discuss the asymptotic sizes of our dimensionless
parameters in Sec. IV B. Finally, the dimensionless boundary and coupling conditions are

P = 1 for x ∈ R, y = 1, (40a)

v = V, p = P, u − ε2U = −ᾱ
∂u

∂y
for x ∈ R, y = η, (40b)

u = 0 for |x| > δ̄, y = 0, (40c)

u = 0 for |x| = δ̄, y ∈ (−ν/ε, 0), (40d)

p = 0 for |x| < δ̄, y = −ν/ε. (40e)

B. Asymptotic structure

We consider the asymptotic limits of H/l � 1 and d/L � 1, with the remaining dimensionless
parameters being of O(1). These asymptotic limits correspond to lubrication flow in the sub-
glycocalyx layer and in the intercellular cleft, respectively. The first limit follows from k � h2,
which is required for the Stokes region to be distinguishable from the Darcy region (as discussed
in Sec. II), and the second limit follows from having a long, thin intercellular cleft; in terms
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FIG. 9. The asymptotic structure of the problem in the case with a sub-glycocalyx region. For visual clarity,
the asymptotic regions are not to scale.

of dimensionless parameters, these asymptotic limits are ε → 0+ and δ̄ → 0+. We proceed by
performing an asymptotic analysis in these two small parameters. With regard to η = O(1), we
note from (37) that ε = O(k1/2/hη1/2) as h → 0. As k1/2/h � 1, and we must have ε � 1 for the
asymptotic analysis that follows to be valid, we see that our asymptotic limit will break down when
η is small—specifically, when η = O(k/h2), which corresponds to h = O((kH )1/3) (approximately
h = 5 nm using Table I). To summarize, if η = O(1) then the lubrication scalings in this section
are valid; however, as η becomes small the horizontal extent of the flow becomes of O(H ) and our
analysis in Sec. III is valid. Finally, although the value of a, the Beavers-Joseph slip coefficient,
is unknown, we take the dimensionless ᾱ to be of O(1) because this results in a distinguished
asymptotic limit from the tangential slip condition, and will allow us to quantify the influence of the
parameter a fully.

We show the asymptotic structure of the problem in Fig. 9. At leading order in Region I, the flow
is vertical in the glycocalyx (Region Ia) but horizontal in the sub-glycocalyx (Region Ib). As the
leading-order flow in the intercellular cleft is also vertical, the transition from horizontal to vertical
occurs close to the intercellular cleft entrance, which we term Region II. In this region, the effect
of flow from Region Ia is not felt at leading order. Finally, Region II transitions into Region III, the
main intercellular cleft region. Here the leading-order flow is vertical.

C. Solving for the flow

In the glycocalyx (Region Ia) and sub-glycocalyx (Region Ib), the leading-order system is
obtained by taking the limit ε → 0+ in (38). In Region Ia, the leading-order equations are

U = −Px, V = −Py, Vy = 0 for x ∈ R, y ∈ (η, 1), (41a)

and in Region Ib they are

px = βuyy, py = 0, ux + vy = 0 for x ∈ R, y ∈ (0, η). (41b)
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The relevant boundary conditions for Region I are the leading-order versions of (40a)–(40c):

P = 1 for x ∈ R, y = 1, (42a)

v = V, p = P, u = −ᾱ
∂u

∂y
for x ∈ R, y = η, (42b)

u = 0, v = 0 for x ∈ R, y = 0. (42c)

To solve this system we first determine the flow in the sub-glycocalyx in terms of p, then we use
the coupling conditions to solve for the flow in the glycocalyx, also in terms of p, which will then
enable us to obtain a closed governing equation for p. This will also require an asymptotic matching
procedure with Regions II and III (carried out in the Appendix) to close the system.

We solve (41b) with the tangential slip condition in (42b) and the no-slip condition (42c) to
obtain

u = 1

2β

(
y2 − η

η + 2ᾱ

η + ᾱ
y

)
d p

dx
, v = 1

12β

(
3η

η + 2ᾱ

η + ᾱ
y2 − 2y3

)
d2 p

dx2
, (43)

noting that p = p(x), which will be determined from (45) below. Then, using (41a), (42a), and the
continuity of flux condition in (42b), we deduce

U = y − 1

1 − η

d3 p

dx3
, V = 1

1 − η

d2 p

dx2
, P = 1 + 1 − y

1 − η

d2 p

dx2
, (44)

where the reduction of the right-hand side for V follows from the definitions of l and β in Sec. IV A.
Then, imposing the continuity of pressure condition in (42b), we obtain the governing equation

d2 p

dx2
− p = −1 + [2γ p(0, 0)]δ̂(x, y), (45)

where δ̂(x, y) is a Dirac delta function which appears from matching with Regions II and III
(performed in the Appendix), and

γ = d3

4hL

[
(H − h)(ah + k1/2)

3kh(ah + 4k1/2)

]1/2

. (46)

In (45), the right-hand side represents the pressure forcing in the system, from just above the
glycocalyx to the entrance of the intercellular channel. In particular, the Dirac delta function in
(45) arises from continuity of flux across Region II, from which we are also able to determine Q,
the dimensional fluid flux through the system, in terms of the pressure at the cleft entrance, given by

Q =
(

�d3

12μL

)
p|x=0. (47)

The solution to (45) is

p = 1 − γ

1 + γ
e−|x|, (48)

and we illustrate p(x) for different values of γ in Fig. 10. We note that the pressure (and thus the
flow) decays exponentially away from the intercellular cleft, justifying our restriction of the model
to a single intercellular cleft. The nonanalyticity in (48) arises from the intercellular cleft appearing
as a point sink in this region. It could be smoothed out by solving for the pressure within Region
II in Appendix A 1, but we restrict that analysis to deriving the information required to close the
system. Using (46) and (48) in (47), we may calculate the dimensional flux through the system in
terms of the system parameters, given by

Q = �

μ

d3

12L + d3
[ 3(H−h)(ah+k1/2 )

kh3(ah+4k1/2 )

]1/2 . (49)
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FIG. 10. The pressure distribution within the sub-glycocalyx region for γ = 0.1, 0.5, 1, 2, 10, as defined
in (48).

We can then use (49) to determine the effective resistance, defined in (7), as

K = 12L

d3
+

[
3(H − h)(ah + k1/2)

kh3(ah + 4k1/2)

]1/2

. (50)

In a similar manner to (33), the first term on the right-hand side of (50) is due to the intercellular
cleft, and the second to the structure of the glycocalyx. Therefore, the second is the more useful for
comparing the effective resistance between cases.

V. COMPARISON BETWEEN CASES

Our asymptotic results allow us to determine the key differences between the flow structures
in each case. In this section we restate and summarize these results for convenience and compare
them. We summarize the key quantitative differences in Table II. Recall that parameter definitions
are given in Sec. II.

In Case 1, where the sub-glycocalyx space is negligible, the horizontal extent of the flow within
the glycocalyx is of O(H ), the same order as the height of the glycocalyx. The horizontal extent of
the flow is much larger when the sub-glycocalyx space is significant (Case 2), where it is of O(l ),
given by

l =
[

h3(H − h)(ah + 4k1/2)

12k(ah + k1/2)

]1/2

, (51)

TABLE II. A comparison of the differences between the two cases we consider in this paper.

Case 1 Case 2

Horizontal extent of flow in eGlx O(H ) O(l )
Magnitude of vertical flow in eGlx O( k�

μd ) O( k�

μH )

Magnitude of horizontal flow in eGlx O( k�

μH ) O( k�

μl )

Magnitude of vertical flow in sub-glycocalyx space N/A O( k�

μH )

Magnitude of horizontal flow in sub-glycocalyx space N/A O( k�l
μH2 )

Effective resistance due to glycocalyx structure 1
πk log 16H

πd

√
3(H−h)(ah+k1/2 )

kh3(ah+4k1/2 )
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FIG. 11. The effective resistance for the two cases we have considered in this paper, with and without a
sub-glycocalyx space, given in (52). As discussed in this paper, the case with a sub-glycocalyx space is valid for
larger values of h, and the case with a negligible sub-glycocalyx space becomes valid when h = O([kH ]1/3) ≈
O(5 nm), which is very close to the intersection point between the two lines. We use the parameter values in
Table I, with variable h. We also use a = 0.025, corresponding to a = (2k)1/2/h if we were to fix h = 40 nm.

originally given in (37). Using (51), we note that l 
 H is self-consistent with our observation in
Sec. IV B that we require h3 
 Hk for Case 2 to be valid. Therefore, our results suggest that a
significant sub-glycocalyx gap causes a greater horizontal extent of the glycocalyx to be used for
filtration (which is advection-dominated). If the sub-glycocalyx gap is negligible, only the parts of
the glycocalyx near each intercellular cleft will be used for filtration.

We may also use our asymptotic results (summarized in Table II) to obtain the magnitude of the
flow within the glycocalyx in each case. In Case 1, the horizontal velocity in the main part of the
glycocalyx has magnitude of O(k�/[μH]), and the vertical velocity has magnitude of O(k�/[μd]).
Therefore, the magnitude of the vertical velocity is significantly higher than that of the horizontal,
and the streamlines are vertical to leading order within the glycocalyx. In Case 2, the horizontal
velocity in the main part of the glycocalyx has magnitude of O(k�/[μl]), and the vertical velocity
has magnitude of O(k�/[μH]). Therefore, the streamlines are again vertical to leading order within
the glycocalyx here, but the strength of the flow within the glycocalyx is significantly smaller than
in Case 1. This is because the horizontal extent of the flow is far greater. Within the sub-glycocalyx
region in Case 2, the horizontal velocity has magnitude of O(k�l/[μH2]), and the vertical velocity
has magnitude of O(k�/[μH]). Here the streamlines are horizontal to leading order, as fluid from
a large horizontal extent must be transported to the intercellular cleft in the center of the domain.

It is also helpful to compare the effective resistances in each case, given by

K = 12L

d3
+ 1

πk
log

16H

πd
in Case 1, (52a)

K = 12L

d3
+

[
3(H − h)(ah + k1/2)

kh3(ah + 4k1/2)

]1/2

in Case 2, (52b)

originally given in (33) and (50), respectively. In Fig. 11 we compare the two resistances in (52)
graphically. In both expressions, the first term on the right-hand side is the resistance due to the
intercellular cleft and the second term on the right-hand side is the resistance due to the glycocalyx
structure. The appropriate comparison is therefore between the second term on the right-hand sides
of the effective resistances.

In particular, we note that the effective resistance in Case 2 decreases as h increases (Fig. 11);
the presence of a sub-glycocalyx results in a lower effective resistance through the system, and this
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allows for a greater fluid flux through the glycocalyx structure for a given pressure difference, as
one might expect on physical grounds. Although a naive inspection of (52b) would suggest that K
scales with h−3/2 as h → 0, our Case 1 analysis tells us that this is not the case: in fact, the effective
resistance from Case 2 is bounded as h is reduced, as seen from (52a), and Case 1 becomes a more
appropriate model when h = O([kH]1/3).

We also note that the effective resistance has an inversely proportional relationship with the
effective permeability k for Case 1, but an inverse square-root relationship for Case 2. Thus, the
permeability of the glycocalyx is more important when there is a negligible sub-glycocalyx space.
Perhaps less intuitively, we note that the effective resistance has a logarithmic relationship with the
height of the glycocalyx H for Case 1, but a square-root relationship for Case 2. Thus, a thicker
glycocalyx increases the effective resistance (with diminishing returns) in both cases, but this effect
is more pronounced in Case 2.

Finally, we note that the Beavers-Joseph slip coefficient a does not contribute to the leading-order
effective resistance in Case 1. However, in Case 2 we see that although the effective resistance
increases as a increases, the effect of varying a is fairly small. That is, as a varies from 0 to ∞, the
second term on the right-hand side of (52b) increases by only a factor of two. This is significantly
less than the effect of the other system parameters.

VI. DISCUSSION

We investigated the flow through the glycocalyx for two plausible structures of the glycocalyx:
the first with a negligible sub-glycocalyx space, the second with a significant sub-glycocalyx space.
In the analysis of both cases, we exploited the small aspect ratio in the geometry of the problem
to investigate the system via an asymptotic reduction. Our asymptotic analysis allowed us to derive
analytic results for the flow through the glycocalyx in terms of the system parameters. We found
that when the sub-glycocalyx space was significant, the horizontal extent of the flow was far
greater, providing an estimate of the proportion used for filtration. Moreover, the presence of a
sub-glycocalyx gap provided less overall resistance for the plasma flow through the system, allowing
for a greater flux for a given pressure drop. We summarize the key differences between the two cases
in Sec. V. Our theoretical predictions provide a way to estimate some microscale properties of the
glycocalyx, such as the permeability, that cannot be calculated using current imaging technology.

We note that the flux we calculate in this paper, Q, has units of area per time. To obtain the fluid
filtration flux across the capillary wall per unit area used in the revised Starling hypothesis, which
has units of length per time, we can multiply Q/2 by the typical perimeter of an endothelial cell and
divide this by the typical area of an endothelial cell, both as viewed on the surface of the capillary
wall. We use the factor of 1/2 to counter the double counting of adjacent cells. Using Table I for
typical parameter values, and assuming that an endothelial cell is approximately circular on the
surface of a capillary wall, this yields a fluid filtration flux across the capillary wall per unit area
of approximately 2Q/D = 2�/μKD = 0.04–0.2 μm s−1, where the lower bound of our estimate
corresponds to the case where the height of the sub-glycocalyx space is negligible. Here, D is the
typical “diameter” of the cell as seen on the surface of the capillary wall, � is the difference in
hydraulic pressure across the glycocalyx system, μ is the viscosity of the interstitial fluid, and K is
the effective resistance, defined in (33) and (50) for the cases where the height of the sub-glycocalyx
space is negligible and significant, respectively. Although our approximation shows reasonable
agreement with measured fluid filtration fluxes [26], it does slightly overestimate the fluid filtration
flux. We attribute this overestimation to the fact that our model does not take any solute transport
into account: both the osmotic pressure across the glycocalyx and an increase in the effective plasma
viscosity due to solute transport would cause lower values of the fluid filtration flux. We also note
that, in a similar manner to the above, we are able to estimate the local hydraulic conductivity
present in Starling’s hypothesis by 2/μKD. This provides a way to link the microscale properties of
the glycocalyx with the macroscale properties used in Starling’s hypothesis. Additionally, although
we do not consider the solute transport problem here, it would be possible to model the effect of an
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oncotic pressure by modifying the effective pressure difference across the endothelial glycocalyx
layer. As the pressure difference is a multiplicative scaling of the variables in the problem, this
would not qualitatively change any flow properties.

The two parameters of which we have the most uncertainty are the Beavers-Joseph slip coefficient
and the height of the sub-glycocalyx layer, with no information regarding the former. As our model
predicts the effective resistance and flux through the system, we could use these results to predict
these two parameters by data fitting with appropriate experiments. However, we do note that our
model suggests that the exact value of the Beavers-Joseph slip coefficient is unimportant to the
effective resistance and flux through the system when the height of the sub-glycocalyx space is
negligible.

With regard to the sub-glycocalyx layer, our analysis suggests several experiments that could be
carried out to determine the extent of this space. As noted above, one of the key differences between
the two cases is the horizontal extent of the flow within the glycocalyx structure. Therefore, it
would be possible to estimate the extent of the sub-glycocalyx space if it were possible to track
streamlines of the flow. This would ideally be carried out in real time, although this may be too
delicate to carry out with current technology. An alternative method could be to track the distribution
of nonbinding large molecules being sieved through the glycocalyx structure, for example organic
nanodots [39]. If the majority of the molecules were deposited in very localized horizontal regions,
this would provide evidence for a negligible sub-glycocalyx space. However, if the large molecules
were deposited more uniformly in the horizontal direction, this would provide evidence for a
significant sub-glycocalyx space, with the extent of deposition being related to the height of the
sub-glycocalyx space. An additional experiment to determine the extent of the space takes advantage
of our theoretical predictions that the effective resistance of the glycocalyx has a square-root
dependence on the glycocalyx height when the sub-glycocalyx space is significant, but only a
logarithmic dependence when the space is negligible. If systematic experiments could be carried
out using the glycocalyx height as a variable parameter, perhaps by biochemical manipulation, this
could shed light on the height and extent of the sub-glycocalyx space.

A theoretical understanding of how the flow through the endothelial glycocalyx layer is affected
by a sub-glycocalyx space is an important first step towards understanding the size of such a space.
Although we could model the effect of an oncotic pressure in the manner mentioned above, it is
our hope that the hydrodynamical results we have derived in this paper will be formally combined
with models for molecular transport, such as Ref. [40], and used to predict outcomes that cannot be
directly obtained directly through experimental procedures.

In this paper we have neglected additional factors which might affect transport, such as electric
effects generated by the active transport of ions across the cell membrane [41] and glycocalyx
deformability [4]. While the framework we have introduced could be modified to account for
these effects, it is also helpful to hypothesize on how these effects may change our results. If
the electrokinetic effects led to flow reversal near the endothelial cells, as seen in Ref. [42], this
would lead to an increase in the effective flow resistance. Although this effect would be more
pronounced when the hydrostatic pressure difference across the endothelial glycocalyx layer was
smaller, it is worth noting that a recent model for fluid transport across the retinal pigment epithelium
(RPE) accounting for electrokinetic effects suggests that the electroosmotic effects were around
three orders of magnitude smaller than osmotic effects for water transport [43]. Given that one
would expect the net hydrostatic and osmotic pressure difference across the RPE to be lower than
that across a vascular wall, the inclusion of electrokinetic effects is unlikely to have a significant
effect on the effective flow resistance. However, the electrokinetic effects would be important for
ion transport, and we would expect the negative endothelial glycocalyx fixed charge density to
contribute directly to molecular transport by effectively changing the pore size, particularly for
larger molecules such as albumin with a reflection coefficient close to 1. With regard to glycocalyx
deformability, while a increased external pressure may compress the glycocalyx slightly, decreasing
its permeability and the size of any sub-glycocalyx space, it would also make the glycocalyx shorter,
reducing the distance fluid has to travel. As these two mechanisms have competing effects on the
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filtration resistance, it is likely that the exact way in which glycocalyx compression affects its
permeability would be important.

We have modeled the flow in the intercellular cleft using the lubrication equations. However, we
note that if the cleft width were comparable to the typical pore size in the glycocalyx it would be
possible to use the Darcy flow equations in the cleft region instead of the lubrication equations.
Although it would not change the nature of our solutions (we would obtain the same results
averaged over the cleft cross section), if the entire system were to be solved numerically it may
be preferable to pose the Darcy flow equations instead of the lubrication equations when there is no
sub-glycocalyx space (Case 1), since this avoids the issue of coupling different flow domains.

We also note that we have ignored the effect of any junction strands within the intercellular cleft
for mathematical expediency. Although we expect this cleft to have an effect on the flow, we do not
expect it to qualitatively affect the flow within either the glycocalyx or the sub-glycocalyx space.
By changing the geometry of the problem we consider here, it would be possible to extend this
work to consider the effect of a junction strand within the intercellular cleft as well as the effect of a
sub-glycocalyx space. Moreover, our model does not fully account for the slow variation (compared
to the “fast” variation associated with the distance between intercellular clefts) of pressure along
a blood vessel over many endothelial cells. This is because we have assumed the pressure to be
constant at the top of the glycocalyx. While this is likely to be correct at leading order, a more refined
model could include the effect of blood flowing within the lumen above the glycocalyx, which would
involve a slow variation of pressure along the top of the glycocalyx and the periodic distribution of
many intercellular clefts. As this is a multiscale problem, one could use homogenization theory
[44] to upscale this microscale problem systematically to derive a homogenized equation which
describes the flux over the macroscale.
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APPENDIX: CLOSING THE SUB-GLYCOCALYX PROBLEM

1. Region II

In this Appendix, we derive the closure conditions for Region Ib in the case with a sub-glycocalyx
space. When x = O(δ̄) in Region Ib, the finite nature of the intercellular cleft becomes apparent. In
this transition region, which we define as Region II (see Fig. 9), the vertical velocity grows in
magnitude to accommodate the transition from horizontal to vertical flow within the intercellular
cleft. Thus, we must additionally scale v = O(1/δ̄). In this region, the relative sizes of ε and δ̄

become important. We consider the distinguished limit where h = O(d ), corresponding to εη =
O(δ̄), and thus we write εη = δ̄ψ , where ψ = O(1). Writing x = δ̄x̄ and v = v̄/δ̄, and using the
asymptotic expansions

p ∼ 1

1 + γ
+ δ̄p1, u ∼ u0, v̄ ∼ v̄0, (A1)
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noting that p is constant at leading order in this region, where γ is defined in (46), we obtain the
governing equations

p1x̄ = β

(
u0yy + ψ2

η2
u0x̄x̄

)
, p1y = ψ2β

η2

(
v̄0yy + ψ2

η2
v̄0x̄x̄

)
, u0x̄ + v̄0y = 0. (A2)

The flux through this region is conserved, and thus

lim
x̄→∞

∫ 1

0
u(x̄, y) dy − lim

x̄→−∞

∫ 1

0
u(x̄, y) dy = lim

y→−∞

∫ 1

−1
v̄(x̄, y) dx̄, (A3)

where there is no contribution from Region Ia because of the asymptotic increase from v to v̄.
As we see from (A2), the leading-order flow is coupled to the first-order pressure, resulting in the
Stokes equations. As we do not require any further results from this region, we proceed straight to
Region III.

2. Region III

To move from Region II to Region III, we further scale y = ȳ/δ̄ and u = δ̄ū. Using εη = δ̄ψ

again, the governing equations become

px̄ = O(δ̄2), pȳ = ψ4β

η4
v̄x̄x̄ + O(δ̄2), ūx̄ + v̄ȳ = 0 for |x̄| < 1, y ∈ (−νη/ψ, 0). (A4a)

The boundary conditions are

ū = 0, v̄ = 0 for |x̄| = 1, y ∈ (−νη/ψ, 0), (A4b)

p = 0 for |x̄| < 1, y = −νη/ψ. (A4c)

The system (A4) is solved by

ū = 0, v̄ = Aη4

2ψ4β
(x̄2 − 1), p = A

(
ȳ + νη

ψ

)
, (A5)

where A is an as-of-yet unknown constant. To obtain (45), and the Dirac delta function within, we
note that the pressure at ȳ = 0 is given by

p(x̄, 0) = Aνη/ψ, (A6)

and the total dimensionless flux out of the channel (and the system) is given by

−
∫ 1

−1
v̄(x̄,−ν/ψ ) dx̄ = 2Aη4

3ψ4β
. (A7)

Noting that the flux is conserved within Region III, we can combine (A3), (A6), and (A7) with (43),
the solutions for the flow in Region Ib, to deduce the strength of the Dirac delta function in (45),
thereby closing the system.
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