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Survivin at a glance
Sally P. Wheatley1,* and Dario C. Altieri2

ABSTRACT
Survivin (also known as BIRC5) is an evolutionarily conserved
eukaryotic protein that is essential for cell division and can inhibit cell
death. Normally it is only expressed in actively proliferating cells, but
is upregulated inmost, if not all cancers; consequently, it has received
significant attention as a potential oncotherapeutic target. In this Cell
Science at a Glance article and accompanying poster, we summarise
our knowledge of survivin 21 years on from its initial discovery. We

describe the structure, expression and function of survivin, highlight
its interactome and conclude by describing anti-survivin strategies
being trialled.
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Introduction
When survivin (BIRC5) was first described, its discovery sparked
considerable interest from oncologists and cell biologists, an interest
that persists today (Ambrosini et al., 1997). For oncologists seeking
new anti-cancer targets, proteins that are required for cell
proliferation feature high on their ‘most wanted’ list. Similarly
appealing are proteins that interfere with programmed cell death (i.e.
apoptosis), which is the intended response of tumour cells to
traditional chemo- or radio-therapies. Therefore, as a protein that is

1Department of Biochemistry, School of Life Sciences, University of Nottingham,
Nottingham NG7 2UH, UK. 2The Wistar Institute Cancer Center, Philadelphia,
PA 19104, USA.

*Author for correspondence (sally.wheatley@nottingham.ac.uk)

S.P.W., 0000-0002-9550-8979

1

© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs223826. doi:10.1242/jcs.223826

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

http://jcs.biologists.org/collection/cell_biology_disease
mailto:sally.wheatley@nottingham.ac.uk
http://orcid.org/0000-0002-9550-8979


both essential for mitosis and able to inhibit apoptosis, at first
glance, survivin seemed a promising new target. Moreover, the most
sought-after targets are those that are differentially expressed in
cancer versus normal cells and, indeed, survivin is highly abundant
in cancer (Velculescu et al., 1999), yet absent from most normal
somatic cells. Thus in this respect too, it seemed an ideal candidate.
Despite these desirable characteristics, rather disappointingly, a
truly specific anti-survivin agent is yet to reach the clinic. Part of the
challenge may be that survivin has no enzymatic activity of its own;
instead, it achieves most of its tasks in association with other
proteins and is probably best described as an adaptor protein that
interacts with, or shuttles its partners to their destinations. This is
certainly the case during mitosis, when it targets the chromosomal
passenger complex (CPC) to the centromeres, thereby enabling
aurora-B kinase to phosphorylate a number of proteins that
ultimately ensure that the chromosomes are aligned properly
before they are segregated at anaphase. Although it is less clear
how survivin inhibits apoptosis, interactions with other members of
the inhibitors of apoptosis (IAP) protein family (see Box 1), also
appear to be key. In this Cell Science at a Glance article and
accompanying poster, we aim to bring the reader up to date with the
current understanding of this multi-tasking little protein.

Structure, domains and key partners
Survivin is a small protein [142 amino acids (aa); 16.5 kDa] with
multifunctional domains (see poster). Its N-terminal two-thirds
comprise a globular baculovirus inhibitor of apoptosis repeat (BIR)
domain (aa 20–90), the integrity of which depends on a Zn2+ finger
that is created by C57, C60, C84 and H77 (Li et al., 1999); this

defines survivin as an IAP (see Box 1). The C-terminal third is an
extended α-helix (98–142). Survivin crystallises as a homodimer;
the two monomers interact via its central linker region (aa 90–102),
assisted by N-terminal residues L6 andW10 (Verdecia et al., 2000).

Survivin uses the same interface to interact with its mitotic
partner borealin (Jeyaprakash et al., 2007), and its C-terminus forms
a triple helical bundle with the N-termini of borealin and inner
centromere protein (INCENP) (Jeyaprakash et al., 2007). Together
with aurora-B kinase, these proteins constitute the CPC, an essential
mitotic complex. Survivin also has multiple non-mitotic partners,
which influence its stability, and its role in the inhibition of
apoptosis, subcellular localisation and pro-oncogenic signalling, as
well as its other roles (see Table 1). Survivin undergoes several post-
translational modifications, including phosphorylation by protein
kinase A (PKA) and polo-like kinase (Plk1), (Dohi et al., 2007;
Colnaghi and Wheatley, 2010); cyclin-dependent kinase 1 (Cdk1),
(O’Connor et al., 2000; Barrett, et al., 2009), casein kinase II
(CKII), (Barrett et al., 2011) and aurora-B kinase (Wheatley et al.,
2007). It is also acetylated (Wang, H. et al., 2010b) and
ubiquitylated (Vong et al., 2005).

Expression
Survivin is expressed during development (Uren et al., 2000) and in
proliferating adult cells (Li et al., 1998). Apart from activated
T lymphocytes (Leung et al., 2007), erythroblasts (Keerthivasan
et al., 2012) and self-renewing stem cells (Martini et al., 2016), it is
absent from adult cells. Human survivin is encoded by the BIRC5
gene and located on the long arm of chromosome 17 (q25)
(Ambrosini et al., 1997). It has a TATA-less promoter and four
transcriptional elements: three cell cycle-dependent elements
(CDEs), and a cell cycle homology region (CHR), which ensure its
expression is minimal in G1 and maximal in mitosis (Li and Altieri,
1999). It is indirectly repressed by adenomatous polyposis coli
protein (APC) (Zhang et al., 2001), retinoblastoma protein (pRB,
also known as RB1) (Jiang et al., 2004) and phosphatase and tensin
homologue (PTEN) and transforming growth factor β (TGFβ)
(Martini et al., 2016) (Guha et al., 2009), and repressed directly by
forkhead box O3 (FOXO3) (Hagenbuchner et al., 2012) and p53
(also known as TP53) (Hoffman et al., 2002) (see poster). Survivin
expression is also under the influence of circadian rhythms (Siffroi-
Fernandez et al., 2014), and is activated by many transcription
factors, including hypoxia-inducing factor 1 (HIF1), nuclear factor
κB cells (NFκB), signal transducer and activator of transcription
factors (STATs), and β-catenin (for a full list, see Boidot et al., 2014).

BIRC5 has four exons and five introns, and encodes ten splice
variants, seven with known function (Sah and Seniya, 2015).
Although the isoform transcripts of survivin are frequently analysed
in clinical studies, less information is available about the proteins;
therefore, their significance as biomarkers in cancer remain unclear.
The predominant wild-type form is referred to as survivin, after
which 2β and ΔEx3 are the most common forms. Both deviate from
survivin at the exon 2–exon 3 junction: 2β has a 26-aa insert that
makes it pro-apoptotic; exon 3 is deleted in ΔEx3, causing a
frameshift resulting in a different C-terminus. For further
information regarding the different isoforms, the reader is referred
to Sah and Seniya (2015).

Survivin is ubiquitylated and degraded by the 26S proteasome
and has a half-life of 30 to 120 min. After mitosis, it is eliminated by
midbody extrusion, and removal of any residual protein is mediated
by the anaphase-promoting complex, an E3 ubiquitin ligase, that is
activated by Cdc20 or Cdh1 (Connell, et al., 2008). Nuclear
relocation of survivin reduces its half-life (Connell et al., 2008), and

Box 1. Apoptosis and IAPs
Apoptosis is the primary form of programmed cell death and depends on
cysteine proteinases, called caspases, to disassemble the cell in a
controlled manner (see poster). There are two apoptotic pathways: the
intrinsic and extrinsic pathway. Upon receiving endogenous stress signals
or irradiation, mitochondria initiate the intrinsic cascade through loss of the
mitochondrial outer membrane potential and release of cytochrome c
release; this causes activation of the initiator caspase, caspase 9. In
contrast, the extrinsic pathway is mitochondrion-independent and is
triggered by the binding of ligands to receptors at the cell surface, for
instance, the TRAIL-bound TNF receptor (TRAIL is also known as
TNFSF10), which activates caspase-8 via FADD, which can be inhibited
by cIAP1 and cIAP2. After stimulation of the initiator caspases (caspase 8
or 9), both pathways converge on the effector caspases 3 and 7, which
cause cellular demise by cleaving downstream macromolecules.

As the name suggests, the IAP family of proteins prevent this form of
programmed cell death. Inclusion in the IAP family is based on the
presence of at least one baculovirus inhibitor of apoptosis repeat domain
(BIR), a globular fold that has been originally found in insect viruses.
Humans have eight IAPs, of which survivin is the smallest. Initially
thought to bind to and inhibit caspase activity directly, current views
suggest that only the canonical member of this family, XIAP, can
efficiently and directly inhibit caspases in vivo (reviewed in Lalaoui and
Vaux, 2018). However, XIAP can interact with other IAPs, including
survivin; this can improve its stability to augment the inhibitory effect of
XIAP. For XIAP, both the linker between two adjacent BIR domains and
the BIR domains themselves contribute to the prevention of apoptosis:
the former disables the catalytic cysteine residue of the effector
caspases, while the latter can prevent dimerisation of the initiator
caspases, which is critical for their activation. Upstream factors such as
Smac, which is released from the mitochondria upon apoptotic
stimulation, can inhibit IAPs by binding to the BIR domain; this
prevents Smac binding to its caspase target, and there is evidence to
suggest that survivin might inhibit this inhibitor (Song et al., 2004).
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many of its interactions affect its stability. For instance, binding to
X-linked inhibitor of apoptosis protein (XIAP) increases survivin
turnover (Arora et al., 2007), whereas integration into the CPC
stabilises it (Honda et al., 2003).

Localisation
Interphase
In interphase, survivin localises to the cytoplasm and/or the nucleus.
The ratio between cytoplasmic and nuclear survivin has been assessed
by many clinical researchers hoping to use it as a prognostic tool
(Stauberet al., 2007).However, aswith the survivin isoforms, data have
been inconsistent, so the significance of this ratio remains uncertain.
Survivin is trafficked out of the nucleus in an exportin-1-dependent
manner (Stauber et al., 2006; Colnaghi et al., 2006). It has a centrally
placednuclear export sequence (NES) between theBIRdomain and the
C-terminal helix (Stauber et al., 2006; Colnaghi et al., 2006), which is
masked by homodimerisation, and a bipartite NES in its C-terminus
(Engelsma et al., 2007). While nuclear export is understood, how
survivin enters the nucleus is not; it has no nuclear localisation signal
and may depend on cofactor(s) to gain access (Villapol et al., 2008).
Endogenous survivin is small enough to diffuse across the nuclear
membrane, both as a monomer and a homodimer. However, the
progressive nuclear accumulation of GFP–survivin, which is above the
threshold size of diffusion, upon inhibition of exportin-1 (Connell,
et al., 2008), suggests that it is actively imported (Colnaghi et al., 2006).
Interestingly, Temme and co-workers noted that, in newly isolated
fibroblasts, ectopically expressed survivin was nuclear but became
progressively cytoplasmic with successive passages (Temme et al.,
2005), whichmay depend on its associationwith heat-shock protein 90
(HSP90) and phosphorylation at T34 (Al-Khalaf and Aboussekhra,
2013). As age is one of the primary risk factors in cancer, this nuclear–
cytoplasmic shift is intriguing.
Specifically in cancer cells, survivin is additionally detected in

mitochondria (Dohi et al., 2004), and it is attractive to consider that
mitochondrial survivin could be an ‘Achilles’ heel’ of cancer
(Ausserlechner and Hagenbuchner, 2016). Note, however, that this
pool of survivin, which is found in the inner mitochondrial
membrane and matrix (Rivadeneira et al., 2015), is visually
obscured by the cytoplasmic population, but can be readily
detected by subcellular fractionation and immunoblotting, or by

using nanobody trackers (Beghein et al., 2016). Mitochondrial
import of survivin is directed through its proline-rich N-terminus
(M1GAPTLPPAW10), which forms a canonical amphipathic
α-helical mitochondrial targeting sequence (MTS) (Dunajová
et al., 2016). Survivin can also be indirectly chaperoned into
mitochondria by HSP90 and/or aryl hydrocarbon receptor-
interacting protein (AIP) (Kang and Altieri, 2006). This pool
increases with stress (Asumen et al., 2010), is released from the
mitochondria into the cytosol in response to apoptotic stimuli and
has enhanced anti-apoptotic activity compared to cytoplasmic
survivin, the reason for which is unclear (Dohi et al., 2004).

Mitosis
In proliferating cells, survivin is first detected in G2 (Beardmore
et al., 2004) when it targets the CPC to the centromeres through a
direct interaction between its BIR-domain residues D70 and D71,
and histone 3 that has been phosphorylated at T3 by haspin kinase
(Jeyaprakash et al., 2011; Wang F. et al., 2010a; Kelly et al., 2010;
Yamagishi et al., 2010). Several posttranslational modifications
(PTMs) affect the centromeric association of survivin, most notably
phosphorylation by aurora-B, and its ubiquitylation status, which is
regulated by the de-ubiquitylating enzyme fat facet in mouse (FAM,
also known as USP9X) (Vong et al., 2005). Survivin remains at the
centromeres until the metaphase-anaphase transition, after which it
travels to the midzone microtubules and the equatorial cortex,
delineating the cleavage plane (see poster, mitotic survivin). How
survivin is targeted to the midzone is unclear; however, this might
occur through a direct association of its C-terminus with
microtubules (Li et al., 1998). Its dynamic localisation during
mitosis is regulated by all the key mitotic kinases (see poster).

Extracellular
Survivin has also been found on the surface of exosomes, which are
constitutively secreted from cancer cells with secretion enhanced by
oncotherapy; this suggests it may have prognostic potential in serum
biopsies (Khan et al., 2011; Galbo et al., 2017). Interestingly,
neighbouring cancer cells in culture can be coerced to proliferate
and evade apoptosis by exosomally delivered survivin (Khan et al.,
2011), demonstrating a role in cell–cell communication, which has
already been reported in autoimmunity (see below).

Table 1. Survivin-interacting proteins

Partner Key domain/amino acids in survivin Function References

Aurora-B D70, D71 Mitosis and stability Wheatley et al., 2007
AIP D142 Stability and mitochondrial targetting Kang and Altieri, 2006
Beclin-1 ND Autophagy? Niu et al., 2010
Borealin C-terminus Mitosis Jeyaprakash et al., 2007
Clathrin and EPS15 ND Erythroblast enucleation Keerthivasan et al., 2012
Exportin-1 NES Nuclear export Engelsma et al., 2007
Hsp90 BIR domain; aa 79–87 Stability Plescia et al., 2005
HBXIP (Lamtor5) BIR domain; T34 Apoptosis Marusawa et al., 2003
Histone H3 D70, D71 Mitosis Jeyaprakash et al., 2011
INCENP aa 90–142 Mitosis and stability Jeyaprakash et al., 2007
LC3 F61KEL ND Humphry and Wheatley, 2018
Ran-GTP BIR domain; aa 55–79, E65 Mitosis, microtubule dynamics Xia et al., 2008
Ras-GAP (SYNGAP1) N-terminus Oncogenesis Temme et al., 2005
Smac (Diablo) BIR domain; L64, L87 Apoptosis Sun et al., 2005
c-Src Aa 1–10 Adhesion and apoptosis Dunajová et al., 2016
Survivin F101, L102, L6, W10 ND Verdecia et al., 2000
Tubulin aa 99-142 Microtubule dynamics Rosa et al., 2006
XIAP–XAF1 complex BIR domain; aa 15–38 Apoptosis and stability Arora et al., 2007

Where known the key sites of interaction on survivin are indicated, the function the interaction relates to, and a key reference(s), with priority given to structural
data. ND, no data.
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Cellular functions of survivin
Cell death
Survivin protects cells against apoptotic and autophagic death.
Localisation within the cytoplasm is crucial to the anti-apoptotic
activity of survivin, as nuclear relocation abrogates it (Knauer et al.,
2006; Connell, et al., 2008). However, prior mitochondrial residence
augments this activity (Dohi et al., 2004). While there is no doubt that
caspase activity is reduced by survivin expression, in both
homodimeric and monomeric states (Pavlyukov et al., 2011), unlike
other IAPs, survivin only has a single BIR domain and does not bind
to caspases at physiological concentrations. The current consensus is
that survivin cooperates with XIAP and hepatitis B virus X-interacting
protein (HBXIP, also known as LAMTOR5) in a complexwithXIAP-
associated factor 1 (XAF1) (Marusawa et al., 2003) to affect the
interaction of XIAP with caspases or to augment the effect of other
IAP family members, such as c-IAP1 or c-IAP2 (also known as
BIRC2 and BIRC3, respectively), which act further upstream in the
extrinsic apoptotic pathway (Verhagen et al., 2001). Survivinmay also
prevent the release of apoptotic protease-activating factor 1 (APAF1)
from the mitochondria, or sequester the IAP inhibitor second
mitochondrial-derived activator of caspases (Smac; also known as
Diablo), away from other IAPs (Song et al., 2004).
To maintain homeostasis, a basal level of autophagy operates to

remove defective organelles and misfolded proteins. In response to
stress, such as nutrient depletion, autophagy is induced to enable
short-term survival. However, as a catabolic recycling system,
excessive autophagy ultimately kills a cell, which in a cancer context
would be tumour suppressive. Cytokine treatment, which
hyperactivates the protein kinase B (also called AKT1, herein
denoted Akt/PKB), phosphoinositide 3-kinase (PI3K) signalling
pathway and increases survivin expression, can inhibit autophagic
death (Roca et al., 2008); conversely, pharmacological inhibition of
survivin with sepantronium bromide (YM155) increases it (Wang
et al., 2011). We recently discovered that survivin binds to the
autophagic regulator microtubule-associated protein light chain 3B
(LC3B, also known as MAP1LC3B) through a canonical LC3-
interacting region in its BIR domain; however, this interaction did not
have any effect on its inhibition of autophagy (Humphry and
Wheatley, 2018). Whether survivin inhibits excessive autophagy in
association with Beclin-1 (Niu et al., 2010), or other autophagic
factors, remains to be determined.

Mitosis
By targeting the CPC to the centromeres during prometaphase,
survivin helps to ensure that chromosomes are properly aligned
prior to anaphase. It achieves this by communicating with the
spindle checkpoint tension sensor BubR1 (‘budding uninhibited
by benzamidazole-related protein 1’, also known as BUB1B in
mammals) via aurora-B kinase, which detect and detach
misoriented chromosomes, respectively, allowing the cell further
attempts to attach chromosomes correctly. As noted above, during
prometaphase, phosphorylation of survivin by aurora-B ensures that
its association with the centromeres remains dynamic until all
chromosomes have oriented (Wheatley et al., 2007, 2001; Lens
et al., 2003; Carvalho et al., 2003). Survivin can also affect mitotic
spindle assembly by dampening microtubule dynamics (Rosa et al.,
2006; Cheung et al., 2009), a phenomenon that is mediated by Ran-
GTP and TPX2 (Xia et al., 2008). Finally, survivin directs
cytokinesis by delineating the cleavage plane prior to actomyosin
recruitment. The coordination of mitosis and cytokinesis is an
essential and conserved role of survivin in all eukaryotes from yeast
(where the survivin homologue is known as Bir1) (Rajagopalan and

Balasubramanian, 2002) to human. Accordingly, loss or depletion
of survivin leads to prometaphase defects, cytokinesis failure,
mitotic catastrophe and increased apoptosis in all model systems
(Lens et al., 2003; Carvalho et al., 2003; Rajagopalan and
Balasubramanian, 2002; Yue et al., 2008; Speliotes et al., 2000;
Jones et al., 2000). Furthermore, the mouse knockout is embryonic
lethal at 2.5 days post-coitum (Uren et al., 2000).

Mitochondria
Mitochondrial residence of survivin appears to be an exclusively
cancer-associated phenomenon and can affect cellular metabolism;
however, the current data are contradictory. For instance, in
neuroblastoma cells, which have an additional copy of
chromosome 17q (Islam et al., 2000), survivin increases glycolysis
(Hagenbuchner et al., 2016), whereas in prostate cancer and
glioblastoma cells with high survivin expression, oxidative
phosphorylation is increased (Rivadeneira et al., 2015). The
metabolic adaptability of cancer cells makes understanding this
aspect of survivin biology particularly challenging. In addition,
mitochondria are highly dynamic organelles that continuously fuse
and undergo fission in order to ensure that their health is maintained
and any damaged parts, such as mitochondrial (mt)DNA-harbouring
reactive oxygen species (ROS)-induced lesions, are eliminated. Aside
from metabolism, evidence is amassing that survivin regulates
mitochondrial dynamics, but exactly how this is achieved also
remains to be elucidated (Hagenbuchner et al., 2012).

Migration and angiogenesis
Linking ATP demand to migration, we witnessed that mitochondria
are recruited to actively migrating areas of adherent cells
overexpressing survivin (Rivadeneira et al., 2015). Moreover,
survivin can alter focal adhesion dynamics by regulating c-Src
activity, which may promote migration (Dunajová et al., 2016) (see
poster). Interestingly, communication with c-Src may be
bidirectional: using a temperature-sensitive c-Src expression system
in MDCK (epithelial) cells, in which cell-cell and cell-matrix
interactions were disrupted, ultimately increased survivin expression
through T-cell factor–β-catenin signalling (Capra and Eskelinen,
2017). Survivin also has a pro-angiogenic role, as it is downstream of
vascular endothelial growth factor (VEGF) and might also contribute
to vascular remodelling through inhibition of apoptosis (Daly et al.,
2004; reviewed in Sanhueza et al., 2015).

Stemness
In embryonic stem cells, survivin knockdown decreases the
expression of the key transcription factors associated with
pluripotency, namely octamer-binding transcription factor 4
(Oct4, also known as POU5F1) and Nanog (Mull et al., 2014),
suggesting that it is involved in stemness. This has pathogenic and
potentially therapeutic implications, because survivin appears to
prevent aneuploidy and formation of micronuclei in pluripotent
stem cells that undergo neurogenesis (Sartore et al., 2011), whereas
pharmacological targeting of survivin is sufficient to abolish
pluripotent stem cell and teratoma formation (Lee et al., 2013).
Furthermore, survivin is expressed in stem cells and rapid-
amplifying progenitor cells in the intestinal crypts, where it helps
to maintain gut homeostasis (Martini et al., 2016).

Survivin is constitutively expressed in cancer stem cells (CSCs), a
discrete cell population within a particular cancer that retains and/or
regains stem-like qualities. For example, in acute myeloid
leukaemia, CSCs are thought to drive the malignant state and to
be responsible for resistance to and relapse after treatment (Zhang
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et al., 2015). In this case, transcriptional de-repression of survivin,
mediated by mitogen-activated protein kinase (MAPK) signalling,
and the transcription factors Sp1 (specificity protein 1) and c-Myc,
promote its constitutive expression (Zhang et al., 2015). Siddarth
and colleagues (2016) reported that survivin expression is linked to
the pre-metastatic state of breast cancer stem cells. By noting
changes after shRNA-mediated knockdown of survivin, they
found that its expression was not only linked to self-renewal, but
also to epithelial-to-mesenchymal transition (EMT), invasion
and metastasis through alterations in WNT/β-catenin signalling
(Siddharth et al., 2016).

Survivin signalling
The signalling aspect of survivin biology is complex and
incompletely understood, and may also differ depending on the
cellular context. Evidence to date suggests that activation of Akt/PKB
and PI3K occurs upstream of many events that involve survivin.
These kinases regulate numerous cellular processes, including cell
cycle, metabolism, apoptosis, angiogenesis and autophagy, by
instructing downstream transcription and translation factors that
alter protein expression. Upstream of Akt/PKB and PI3K, are
β-catenin, mammalian target of rapamycin (mTOR), the MAPK
cascade and Ras. Immunologically, the interleukins IL4 and IL6
instruct the STAT family of transcription factors to promote survivin
expression. Survivin signalling pathways are outlined in the poster.

Survivin in cancer and other diseases
Undoubtedly the main clinical interest in survivin is in cancer, as it is
the fourth most upregulated mRNA in the human cancer transcriptome
(Velculescu et al., 1999), and its expression has been correlated with
increased tumour resistance to a broad range of chemotherapy agents,
radiation insensitivity and poor patient prognosis. Derangement of its
natural cycle of expression is due principally to transcriptional
de-repression, which causes continuous synthesis throughout the cell
cycle (Siffroi-Fernandez et al., 2014) and/or altered splicing
(Antonacopoulou et al., 2011). Although many single-nucleotide
polymorphisms (SNPs) have been found in its promoter, mutations
within the gene coding region are rare, but one that has been reported is
a lysine to glutamic acid mutation, K129E (Jang et al., 2008). When
assessed in cultured cells, the K129E variant caused mitotic defects by
decreasing the affinity of survivin to borealin (Aljaberi et al., 2014).
Clearly, with roles in mitosis, apoptosis suppression, autophagy,
migration, metabolism and angiogenesis, there are many routes
through which survivin can promote tumour cell survival and cancer
metastasis. In addition to cancer, survivin has been implicated in
rheumatoid arthritis (Bokarewa et al., 2005; Mera et al., 2008) and
multiple sclerosis (Hebb et al., 2008). In these autoimmune disorders,
survivin is secreted and its cytokine-dependent expression correlates
with reduced apoptosis and inflammation.

Therapeutic targeting
Despite the critical role of survivin as a universal cancer gene that is
pivotal for disease maintenance, targeting of this pathway for novel
therapeutics so far has garnered only limited success. Lacking
intrinsic catalytic activity, and having few deep ‘pockets’ that are
suitable to accommodate small-molecule antagonists, survivin joins
the vast majority of cancer genes that are considered ‘undruggable’
in the conventional sense (Dang et al., 2018). Against this backdrop,
the best-studied survivin suppressor is YM155. YM155 is not
technically a direct survivin inhibitor, but instead predicted to shut
off transcription of the BIRC5 (survivin) gene, although this
proposed mechanism is not universally accepted (Rauch et al.,

2014). After encouraging phase I trials that showed manageable
toxicity and hinted to clinical activity in heavily pre-treated patients
(Tolcher et al., 2012), further clinical development of YM155 has
been less successful and most combination regimens failed to meet
their specified endpoints in different cancers, including advanced
melanoma (Kudchadkar et al., 2015), HER2-negative metastatic
breast cancer (Clemens et al., 2015), prostate cancer (Tolcher et al.,
2012) and non-small cell lung cancer (Kelly et al., 2013). A
potential exception may be advanced non-Hodgkin’s lymphoma;
here, the combination of YM155 with rituximab, a therapeutic
monoclonal antibody against the CD20 surface molecule expressed
on B cells, appeared well-tolerated and produced durable responses
(Papadopoulos et al., 2016) in patients with aggressive and relapsed
non-Hodgkin’s lymphoma.

Alternative strategies to target the survivin pathway for novel
cancer therapeutics continue to emerge. These include small
molecule inhibitors of the survivin dimerisation interface (Qi et al.,
2016), or adjacent cavities (Berezov et al., 2012), antibodies to a
recently discovered cell surface pool of survivin (Fenstermaker et al.,
2018), and survivin-directed short interfering RNA encapsulated in
nanoparticles (Li et al., 2017). However, these approaches are still in
their infancy and have yet to advance past preclinical evaluation.

Conversely, a third strategy aimed at generating survivin vaccines
for cancer immunotherapy has successfully passed proof-of concept
and has already produced encouraging results in the clinic (Kaneko
et al., 2014). Specifically, several survivin-directed immunisation
platforms have been developed that are well-tolerated in patients and
give rise to robust immunological responses with initial evidence of
clinical activity as both monotherapy or in combination in hard-to-
treat malignancies; these are SurVaxM for malignant glioblastoma
multiformis (Fenstermaker and Ciesielski, 2014) and the multi-
epitope vaccine EMD640744 in solid tumours (Lennerz et al., 2014;
Zhenjiang et al., 2018).

Conclusions and perspectives
In the wake of the 21st anniversary of its discovery, our knowledge
of survivin has expanded exponentially, but we are yet to have a
survivin-specific anti-cancer agent. However, now that we know
survivin is a molecular collaborator extraordinaire, it is heartening
that the development of drugs and peptides that target protein–
protein interactions is gathering momentum (Dang et al., 2018).
Incidentally, shepherdin, a competitive peptide that we developed to
prevent survivin from binding to HSP90 has been used effectively in
this capacity in the laboratory for several years (Plescia et al., 2005).
Thus, now, with a relatively comprehensive understanding of
survivin functions and a molecular inventory of its interactome, it
seems that we are in a strong position to make headway in
preventing this mischievous little protein from doing what it must.
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