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On 31 December 2019, the World Health Organization (WHO) was alerted to an unusual 

cluster of pneumonia patients in the city of Wuhan, China (bit.ly/2Vi7OB7). Clinical signs 

and symptoms included fever and breathing difficulties; chest radiographs revealed invasive 

lesions of both lungs. Some of the early patients were vendors in Wuhan’s Huanan seafood 

wholesale market, where live wild animals were also being sold illegally, and where the new 

disease is suspected to have originated.  

Now known as Covid-19, the disease has spread rapidly around the world, first to 

other countries in Asia and then on to the Pacific, Europe, Africa, and the Americas. By the 

time the Covid-19 event was officially characterised a ‘pandemic’, on 11 March 2020, the 

disease had been documented in 114 countries, territories and areas, and the associated case 

count had exceeded 118,000 (bit.ly/34JiQ5l). 

 As the first waves of SARS-CoV-2, the viral agent of Covid-19, began to reach the 

United Kingdom, the British government published a four-stage national plan to tackle its 

spread (bit.ly/2ypUrpj). The plan began with attempted containment of infections, before 

moving onto plans to delay spread, to conduct research and, finally, to mitigate the health and 

economic consequences of the infection.  

 Effective implementation of a strategy which involves the containment and/or the 

delay of spread of a disease such as Covid-19 assumes an ability to model the rate at which 

an infection spreads, both through time and space. There are well-established methods for 

assessing the rate of temporal growth by, for example, looking at the trajectory of case 

doubling times or estimating the propensity for a single case to generate new cases in a 

population – the so-called basic reproduction number, R0. In terms of cases, R0 is interpreted 

as the average number of secondary infections produced when one infected individual is 

introduced into a wholly susceptible population. The crucial point here is that measures such 

as doubling times and R0 are essentially aspatial – they tell us very little about the rate the 
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disease or virus is spreading in different parts of a country or region. The issue becomes 

especially acute when plans for, say, the relaxation of lockdown conditions include an 

explicitly geographical dimension – with restrictions being lifted in certain areas before 

others (bit.ly/2VFYSV0).  

In such scenarios, we need a spatial or geographical equivalent of R0. But defining one 

is not straightforward. Time is a unidirectional metric from past to present to future. Space, 

however, is multidirectional in its behaviour. A virus can jump in any direction from a source 

to other areas and back again; there is no natural order as there is with time. 

 Disease geographers at Cambridge and Bristol have, however, made some progress by 

defining a suitable spatial R0 which is denoted as R0A.1 The principles underpinning the 

approach are illustrated in Box 1. But to explain simply and by direct analogy with R0, the 

method takes all the geographical units in a study area (A) at any time point in an epidemic 

and groups them into one of three states: infected are those areas in which cases are present, 

recovered are those in which the epidemic wave has passed through, and susceptible are 

those which the epidemic wave has yet to reach. This information is then used to define 

velocity parameters which measure how rapidly the so-called “leading edge” (VLE) of an 

epidemic reaches susceptible areas and how soon the wave passes through (represented by 

the “trailing edge” or “following edge” (VFE) of the wave). The equation for R0A (Box 1) 

shows that the parameter compares the arriving velocity of the disease wave with the 

departing velocity, with the difference between the two indicating whether the infection wave 

speeded up or slowed down when passing through. 

BOX 1 NEAR HERE 

CURRENTLY PLACED AT END OF TEXT 
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Testing the model: pandemic influenza in France 

As we are in the midst of the Covid-19 pandemic at the time of writing, we have limited data 

with which to demonstrate how R0A applies to this particular disease. However, we can 

illustrate the model with reference to the historical record of influenza pandemics and 

epidemics in France.  

Like Covid-19, influenza is a viral respiratory disease for which the primary 

mechanism of transmission is via exposure to respiratory droplets. But the similarities 

between the two diseases should not be overstated; they differ in terms of their clinical 

course, symptoms and prognosis. An understanding of the distinct challenges associated with 

the spatial modelling of Covid-19 await the availability of more data. 

In France, data on influenza deaths – by time (weeks, months, years) and by area 

(towns, départements, regions) – have been either collected or estimated by the Ministère de 

l’Intérieur and related bodies since 1887, making them one of the longest continuous 

spatially disaggregated influenza time series in the world (Figure 2).2  

The influenza pandemics to which the population of France (and elsewhere) was 

exposed in the late nineteenth and twentieth centuries are summarised in Table 1. As in most 

countries, the 1918–19 pandemic stood alone in France in terms of the mortality caused. 

While the long-term trend in influenza mortality depicted in Figure 2 was steadily 

downwards, it was the case that pandemic years generally experienced heightened mortality 

as compared with adjacent years. 
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Figure 2. Influenza mortality in France, 1887–1999. Time series of annual deaths from 

influenza reported in French records. The millennium is taken as a convenient end date for 

the present analysis. 
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Table 1. Influenza pandemic events, 1887–1999. 

Year(s) 
Virus 

subtype 
Colloquial name 

Notes 

1889–90 A/H2N?  First deaths were reported in France in November 1889; the 

peak month was January 1890.  

 

1900 A/H3N?  It has been queried whether this was a true global pandemic 

event. Excess mortality was reported in North America and 

in England and Wales, but not globally. 

 

1918–19 A/H1N1 

 

‘Spanish’ influenza This pandemic produced a level of mortality so far 

unequalled in recorded history. The event occurred in three 

main waves: Wave I (April–July 1918); Wave II (August–

December 1918); Wave III (March 1919). 

 

1957–58 A/H2N2 

 

‘Asian’ influenza This pandemic occurred in two main waves: Wave I 

(February–December 1957); Wave II (November 1957–

March 1958). 

 

1968–70 A/H3N2 

 

‘Hong Kong’ influenza This pandemic occurred in two main waves: Wave I (1968–

69); Wave II (1969–70). Wave I primarily affected North 

America and to a lesser extent Europe. In Wave II, the 

situation was reversed. 

 

 

 

 So how rapidly did these influenza pandemics, and intervening epidemics, spread 

throughout the geographical areas of France? Using monthly data at the spatial scale of 

département (95 in total), Figure 3A plots annual estimates of the spatial basic reproduction 

number R0A and the two edge parameters, VLE and VFE. The trend lines show that the long-

term direction in R0A was slowly downwards during the twentieth century. That is, the rate of 

geographical spread of influenza epidemics gradually diminished, probably reflecting less 

intense epidemics arising from (i) improved standards of living and healthcare, and (ii) no 

major changes (‘shifts’) in the genetic structure of influenza A viruses after 1969 that would 

enable them to by-pass existing immunity in the population. This century-long declining 

trend in R0A is reflected in a similar decline in the leading edge velocity parameter (VLE), and 
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a rising trend in the following edge parameter (VFE), implying that epidemics arrived later and 

ended sooner in each influenza season; in essence, influenza seasons became of shorter 

duration as the twentieth century progressed. 

 

Figure 3. Swash model parameters for influenza in France, 1887–1999. (A) Time series plots 

of calculated values for the spatial basic reproductive number, R0A, and for the edge velocity 

parameters, VLE and VFE. (B) Time series of the infected (IA), susceptible (SA) and recovered 

(RA) integrals. Linear regression trend lines are also shown. See Box 1 for an explanation of 

the measures. 
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Within these long-term trends, however, the pandemic seasons of 1900, 1918–19, 

1957 and 1968–69 showed locally raised values of R0A, thereby signalling the heightened rate 

of geographical spread of the novel influenza viruses with which these events were 

associated. Interestingly, this is not evident for the 1889–90 pandemic, while the rise to a 

higher level in 1968 persisted for four seasons and is consistent with Viboud and colleagues’ 

characterisation of a ‘smouldering pandemic’.3 From the late 1980s, R0A oscillated wildly, 

suggestive of locally intense epidemics in each influenza season involving only a few 

départements rather than the entire country. 

 Table 2 highlights the difference between pandemic and non-pandemic seasons in 

France. The seasons have been classified into three groups: (i) pandemic-affected (11 

seasons); (ii) high-intensity inter-pandemic (54), with death rates greater than the lowest 

pandemic season; and (iii) low-intensity inter-pandemic (38), with death rates lower than the 

lowest pandemic season. The leading edge velocity parameter (VLE) in Table 2 confirms that 

the rate of spatial propagation declined systematically as between the pandemic (0.80), high-

intensity inter-pandemic (0.70) and low intensity inter-pandemic (0.59) seasons. The higher 

velocity of pandemic seasons was maintained even when compared with inter-pandemic 

influenza seasons of similar intensity levels. Moreover, pandemic seasons appeared to be of 

greater spatial intensity (larger R0A) and were slower to clear (lower VFE). 
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Table 2. Characteristics of 103 influenza waves: France 1887–88 to 1998–99 

  Leading edge (LE) 

velocity 

 Leading edge (FE) 

velocity 

 

Type of influenza wave Death rate1 

 

LEt  

(months) 

VLE  
FEt  

(months) 

VFE R0A 

(mean) 

Pandemic ( 11n ) 27.29 2.39 0.80  11.45 0.05 0.93 

Interpandemic        

 High intensity ( 54n ) 14.91 3.59 0.70  11.20 0.07 0.84 

 Low intensity ( 38n )  3.14 4.93 0.59  10.12 0.16 0.80 

1 Seasonal average, expressed per 100,000 population. 

 

 The time series plots in Figure 3B depict the proportion of French départements in 

each of the susceptible (SA), infected (IA) and recovered (RA) states at the end of each 

influenza season. The plots for SA and RA show rising trends over the decades, and this is 

consistent with the generally declining trend for IA. Effectively, as the decades wore on, fewer 

departments were infected by influenza in a given season and, if they were infected, they 

transitioned more rapidly to a state of recovery. Again, the pandemic years bucked the trend 

with raised values of IA, indicating a tendency for greater proportions of départements to be 

infected by pandemic waves and for the disease to persist in these areas for longer.  

The main other variations in the long-term fall in IA occurred following the arrival of 

the ‘Asian’ influenza pandemic in 1957, when the IA remained above the trend line (shaded) 

until its precipitous fall in the 1980s. The extended period of higher values for IA from the 

late 1950s to the late 1970s may be attributable to the combined action of three effects: (i) the 

long interval since the last major shift in virus subtype (40 years since 1918); (ii) the shift 

from the A/H2N2 to the A/H3N2 virus with the arrival of the ‘Hong Kong’ influenza 

pandemic in 1968; and (iii) the re-emergence in 1976 of the ‘Russian’ influenza (A/H1N1) 

virus which has been co-circulating with the Hong Kong (A/H3N2) virus ever since. 
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Together these effects meant that a greater proportion of the French population was likely to 

be susceptible to one or other of the mix of circulating subtypes than if just a single subtype 

had been present over the period. After a generation, with no new major virus subtypes 

emerging, herd immunity appears to have caught up from the mid-1980s, leading to a general 

collapse of nationwide epidemics. 

Conclusion 

Trialling the spatial R0A and related parameters in Box 1 on French influenza data suggests 

that it can separate pandemic, epidemic and other seasons, so that it can be used to inform 

decisions about the public health preparations which need to be made to restrict pandemic 

spread.  

Obviously, the model will need wider testing and refinement using different 

geographical settings and diseases to establish its utility and robustness. But at this early 

stage it appears to give new spatial perspectives on infection transmission to complement 

existing (aspatial) approaches.  

As far as Covid-19 is concerned, until a safe and effective vaccine is developed and 

licensed, control of spread in all countries is being exercised by a mixture of self-isolation, 

quarantine and lockdown so that transmission chains from infected populations to susceptible 

populations are severed – methods developed in Italy during the plague centuries from 

c.1300–1800.  

The first major assessment of the efficacy of these methods for Covid-19 has 

appeared in The Lancet, focusing on China’s cities and provinces outside the source province 

of Hubei.4 The authors used an instantaneous reproduction number, Rt, in a SIR (susceptible, 

infectious, recovered) model and found that the disease transmission rate fell sharply after 23 

January, when restrictions on personal interactions were introduced, but that relaxation of the 

restrictions allowed Rt to rise again.  
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Spatial analogues of the reproduction number could add an important dimension to 

the ongoing monitoring and assessment of SARS-CoV-2 transmission in both its expansion 

and retreat phases, and could inform geographically-based decisions over the relaxation of 

lockdown conditions. 
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Box 1 

The Spatial Basic Reproduction Number, R0A 

Statistical details of R0A and related parameters are given elsewhere.5 Figure 1 illustrates the 

underlying principles. We begin, in Figure 1A, with a hypothetical 12 area map in which 

areas are identified as a1, a2, . . , and 10 time periods indexed as t1, t2, . . . This is converted 

into a 1012  space-time data matrix in which 122 recorded cases of a disease are distributed 

to simulate an array typical of an epidemic wave. For any one of the rows in the data matrix, 

two cells can be identified which mark the ‘start cell’ and the ‘end cell’ of a recorded 

outbreak. Figures 1B and C analyse these start and end cells. In Figure 1B, the 1012  matrix 

is re-arranged so as to position the start cells in an ascending temporal order. This line of cells 

(dark shading) defines the position of the leading edge (LE) that marks the start of the 

epidemic wave in the different areas. To the left and above this line lies a zone of cells (light 

shading) which have yet to be infected and thus may be regarded as areas to which the 

epidemic has yet to spread. Similarly, the 1012  matrix can be organized as in Figure 1C, so 

as to arrange the end cells in ascending temporal order. This line of cells (dark shading) 

defines the position of the trailing edge or following edge (FE), marking the completion of 

the epidemic wave in the different areas. To the right and below this line lies a zone of cells 

which have ceased to be infected and which thus may be regarded as areas which have 

recovered from infection. 



Significance (Royal Statistical Society) 

Published online: 22-04-20 

13 

 

 

Figure 1. Spatial basic reproduction number, R0A: hypothetical example. (A) Base map and 

space-time disease matrix. (B) Matrix arranged to order leading edges (LE). (C) Matrix 

arranged to order following edges (FE). (D) Leading and following edges plotted as a phase 

transition diagram. 

 

 Both the edges, LE and FE, can be combined as in Figure 1D to identify cells (areas) 

which are in susceptible (S), infected (I) and recovered (R) states. This is an exact analogy 

with infected, susceptible and recovered individuals when defining R0 in a human population 

rather than in a population of geographical areas. The resulting graph may be regarded as a 

phase transition or SIR diagram. It has two roles: first, it defines the boundaries of the two 

phase shifts from susceptible to infective status (S I) and from infective to recovered status 
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(IR); second, it integrates the three phases, S, I and R, as areas within the graph. The phase 

diagram has characteristic configurations depending upon the velocity, duration and ultimate 

spatial extent of an epidemic wave as it passes through a region. 

For each edge in Figure 1D, we can define a time-weighted arithmetic mean, LEt  and 

FEt , which gives the average time of arrival (LE) and departure (FE) of the infection wave 

across the set of areas. These time-weighted means can be converted to dimensionless 

velocity ratios VLE and VFE with values in the range [0, 1]. 

 For the time-space map in Figure 1D, the integral SA defines the proportion of areas at 

risk of infection and is given by 

 
 

T

t
S LE

A

1
 , 

while the integral IA defines the proportion of areas that are infected and is given by 

 A
FE

A S
T

t
I  . 

Finally, the integral RA defines the proportion of areas in the recovered state and is given by 

  AAA ISR 1 . 

All three integrals are dimensionless numbers with values in the range [0, 1] such that 

1 AAA RIS .  

 The spatial basic reproduction number R0A is derived from the integrals SA and RA in 

the manner 

 
A

A
A

R

S
R






1

1
0 . 

Effectively, R0A provides a measure of the propensity of an infected geographical unit to 

spawn other infected units in later time periods. Values of AR0  calibrate the spatial velocity 

of disease spread, with higher values denoting more rapid spatial propagation. 
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