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ABSTRACT  

The absence of a robust risk stratification tool for triple negative breast cancer (TNBC) 

underlies imprecise and non-selective treatment of these patients with cytotoxic chemotherapy. 

This study aimed to interrogate transcriptomes of TNBC resected samples using next 

generation sequencing to identify novel biomarkers associated with disease outcomes. A subset 

of cases (n=112) from a large, well-characterized cohort of primary TNBC (n=333) were 

subjected to RNA-sequencing. Reads were aligned to the human reference genome 

(GRCH38.83) using the STAR aligner and gene expression quantified using HTSEQ. We 

identified genes associated with distant metastasis-free survival and breast cancer-specific 

survival by applying supervised artificial neural network analysis with gene selection to the 

RNA-sequencing data. The prognostic ability of these genes was validated using the Breast 

Cancer Gene-Expression Miner v4. 0 and Genotype 2 outcome datasets. Multivariate Cox 

regression analysis identified a prognostic gene signature that was independently associated 

with poor prognosis. Finally, we corroborated our results from the two-gene prognostic 

signature by their protein expression using immunohistochemistry. Artificial neural network 

identified two gene panels that strongly predicted distant metastasis-free survival and breast 

cancer-specific survival. Univariate Cox regression analysis of 21 genes common to both 

panels revealed that the expression level of eight genes was independently associated with poor 

prognosis (p<0.05). Adjusting for clinicopathological factors including patient’s age, grade, 

nodal stage, tumor size, and lymphovascular invasion using multivariate Cox regression 

analysis yielded a two-gene prognostic signature (ACSM4 and SPDYC) which was associated 

with poor prognosis (p<0.05) independent of other prognostic variables. We validated the 

protein expression of these two genes, and it was significantly associated with patient outcome 

in both independent and combined manner (p<0.05). Our study identifies a prognostic gene 

signature that can predict prognosis in TNBC patients and could potentially be used to guide 

the clinical management of TNBC patients. 
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BACKGROUND 

Breast cancer (BC) is a heterogeneous disease with variations in morphological features, 

molecular profiles, and therapy responses [1]. Triple negative breast cancer (TNBC), defined 

by the absence of expression of Estrogen Receptor, Progesterone Receptor and Human 

Epidermal Growth Factor 2, comprises 15%-30% of BC, and presents considerable challenges 

with regard to clinical management due to lack of targeted therapies [2,3]. Moreover, TNBC 

often has an unfavorable prognosis with increased probability of early metastasis, disease 

recurrence, and shorter overall survival [4,5]. Although TNBC generally displays aggressive 

behavior, patient outcomes can vary considerably. Around 23% of early-diagnosed TNBC 

patients remain disease free for more than five years  while death within five years of diagnosis 

is inevitable for almost all metastatic TNBC patients [6–8]. Therefore, the complexity, 

molecular variability, and unpredictability of TNBC behavior warrants further investigation 

[9]. The biological heterogeneity of TNBCs has provided an impetus to develop tools for 

prognostic stratification, however, there are inconsistent results owing to a small cohort of 

patients, gene expression datasets obtained from different gene expression platforms and the 

use of microarray versus quantitative reverse transcriptase polymerase chain reaction which 

also makes head-to-head comparison challenging [10,11].  

Various multigene prognostic tests are available for estrogen receptor-positive tumors for 

patient risk stratification and to guide therapy choice, whereas in estrogen receptor -negative 

tumors, and specifically TNBC tumors with a higher proliferation rate, these multigene 

signatures provide no clinical value [12]. Lehmann et al, used gene expression profiles to 

classify TNBCs into six molecular subtypes: Basal-like 1 and 2, Mesenchymal, Mesenchymal 

Stem-like, Immunomodulatory, and Luminal Androgen Receptor [13]. Burstein et al proposed 

an alternative gene expression classification for TNBC  categorizing the tumor into four TNBC 

molecular subtypes: Luminal Androgen Receptor, Mesenchymal, Basal like immune 
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suppressed, and Basal like immune activated [14]. However, distant metastasis-free survival 

(DMFS) analysis showed poor prognosis for TNBCs regardless of their molecular profile 

subtype [15]. Therefore, there is an urgent unmet need for clinically validated prognostic 

markers that can predict outcomes for TNBC patients [15].  

Unbiased omics technologies, including Next Generation Sequencing (NGS), are expected to 

lead a paradigm shift for precision medicine from a pathological microscopy-based diagnosis 

to gene signature-based diagnosis, prognosis, and treatment approaches [16]. NGS enables 

transcriptomic profiling of TNBC and identification of genomic alterations such as copy 

number changes, insertions, deletions and mutations; consequently, studies exploring inter-

tumor heterogeneity in different types of tumors are now possible [17,18]. 

For successful NGS analysis, clinical samples must be maintained in conditions that would 

allow for DNA and RNA preservation and subsequent extraction. At present, most clinical 

samples are processed and archived as formalin-fixed, paraffin-embedded (FFPE) tissue 

samples in which the DNA and RNA necessary for NGS analysis is often fragmented [19]. 

However, FFPE tissue samples, if processed and stored properly, have been shown to preserve 

sufficient DNA and RNA material for extraction for NGS analysis [20]. The present study 

utilizes NGS transcriptomic analysis of a large cohort of TNBC FFPE tissue samples and aims 

to identify a molecular prognostic signature predicting risk for poor outcomes in TNBC.  

 

 

 

 

 

 

 



5 
 

METHODS 

Nottingham TNBC Cohort 

A retrospective well-characterized series of primary invasive TNBC (n=333) samples obtained 

from patients presented to Nottingham City Hospital, UK between 1987 to 2006, was included 

in this study. Clinicopathological data, including patient age at diagnosis, tumor size, tumor 

grade, nodal stage, lymphovascular invasion (LVI), and Nottingham Prognostic Index were 

collected from patients’ medical records. The mean patient age was 48 years (range 27-69) and 

tumor sizes in diameter at the time of presentation ranged from 0.25 – 8.00 cm (1.5-2.8 cm 

within the interquartile), with a mean tumor size of 2.2 cm. Patients received a combination of 

treatment options including: surgery, radiation and chemotherapy according to standard 

protocols [21]. Outcome data including BC-specific survival (BCSS) and distant metastasis-

free survival (DMFS) were available and prospectively maintained. BCSS was defined as the 

time (in months) from the primary surgical treatment to the time of death from BC, while 

DMFS was defined as the duration (in months) from the time of primary surgery to the first 

occurrence of distant metastasis. Estrogen Receptor, Progesterone Receptor and Human 

Epidermal Growth Factor 2 status of primary tumors were determined at the time of primary 

diagnosis from full-face sections of resected tumors according to published guidelines [22], 

(See Supplementary (A) for full details). 

Transcriptomic Analysis  

RNA sequencing was performed on representative FFPE tissue of an in house TNBC cohort 

(n=112) which had also been assessed histopathologically for tumor burden, (See 

Supplementary (A) for full details). Artificial Neural Network (ANN) database mining 

approach was used to build a classifier using the RNA-sequence matrices and identify genes 

associated with disease outcomes (DMFS and BCSS). In ANN, learning rates and momentum 
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were set at 0.1 and 0.5, respectively [23]. Each tumor sample had 39,684 corresponding genes. 

The input codes were “0” if patients showed neither evidence of metastasis (DMFS) nor death 

from BC (BCSS) within five years, and “1” if metastasis or death due to BC was evident in the 

first five years after diagnosis. Although BCSS is the ultimate endpoint of cancer outcome, 

DMFS was chosen as an end point based on the high likelihood of TNBC patients being 

diagnosed with distant metastases within five years of diagnosis [8]. Prior to ANN testing, a 

Monte-Carlo cross validation procedure was applied to avoid data over-fitting and false 

discovery. Documentation of such approach has proven to outperform the commonly used 

leave-one-out cross validation [24]. The input data were randomly divided into three subsets; 

60% for training, 20% for validation to ensure model performance during the training process, 

and 20% for blind testing of the original model [25]. Genes identification by the forward 

stepwise approach using ANN was performed as described previously [26]. Based upon the 

distribution of performance on aforementioned model, ANN generated two panels of genes, 

representing the top 1% of the RNA sequence matrices that significantly predicted DMFS and 

BCSS, respectively. Genes common to both the DMFS and BCSS panels were identified using 

the Venny 2.0 online tool [27]. Receiver operating characteristics curves were generated to 

assess the predictive value of the differentially expressed gene panel presenting the sensitivity 

and specificity of the tested model (Supplementary (B) Figure 1). 

Pathway Analysis  

The online publicly available web-based gene set analysis tool, Webgestalt, 

(http://www.webgestalt.org/option.php) was used to identify differentially regulated canonical 

pathways using the overrepresentation enrichment analysis (ORA). The pathway analysis was 

based on the top 200 ranked genes predicting DMFS and BCSS. The reference gene list was 

set to the “genome_protein_coding”. The ratio of observed versus expected number of genes 
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in the category was recorded for each significant category using the enrichment ratio (R) scores 

using Panther pathway database [28]. 

Prognostic Gene Signature Score 

In compliance with the Reporting Recommendations for Tumor Marker Prognostic Studies 

criteria (REMARK), the associations between the expression of genes in our 21-gene panel, 

common to both the DMFS and BCSS  gene prediction panels identified by ANN, and  DMFS 

or BCSS were evaluated both individually, as well as after adjusting for standard prognostic 

variables [29,30]. Thus, DMFS and BCSS probabilities were individually computed on our 

gene panel using Kaplan-Meier testing model. Additionally, multivariate Cox regression 

analysis was used to calculate the estimate effect size [i.e., Hazard ratio (HR), along with 95% 

confidence interval (CI)] of the genes that were statistically significant in univariate Kaplan-

Meier testing model for both DMFS and BCSS, which included the genes and standard 

prognostic variables, regardless of the statistical significance of standard prognostic variables 

in univariate analysis. The genes which showed significant prognostic impact independently in 

multivariate Cox regression analysis were further examined in a combined multivariate Cox 

regression analysis to identify a signature with a minimum number of genes that showed the 

most significant association with DMFS and BCSS. 

External Validation of Transcriptomic Data 

For independent validation of the results, the prognostic value of the two-gene signature 

predictors of DMFS and BCSS were evaluated using the Breast Cancer Gene-Expression 

Miner v4. 0 (Bc-GenExMiner) database which includes RNA-sequence expression data from 

4713 BC patients, including 254 TNBC patients [31]. These genes were also interrogated 

through the Genotype 2 outcome tool (http://www.g-2-o.com), a web-based server utilizing 

NGS and gene chip data of 6,697 breast cancer patients including 612 TNBC patients with 
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outcome data. Computed receiver operating characteristics values were used to generate the 

transcriptomic fingerprint for mutational status from The Cancer Genome Atlas RNA-sequence 

and NGS mutation data. The average expression of significant genes was designated as a 

metagene for a given genotype. By employing gene chip data, associations between the 

expression of the metagene and patient outcomes were computed by multivariate Cox 

regression and Kaplan-Meier survival analysis [32]. 

 Immunohistochemistry (IHC) 

Assessment of the protein expression of the identified two-gene prognostic signature was 

performed using rabbit anti-SPDYC (NBP1-80832, lot # R36476, Novous Biological, UK) and 

rabbit anti-ACSM4 (PA5-62082, lot # R59771, Thermofisher, UK) antibodies on tissue 

microarrays prepared for the IHC cohort, (See Supplementary (A) for full details). 

Statistical Analysis 

IBM SPSS 24.0 (Chicago, IL, USA) software was used for statistical analysis. For 

dichotomization of mRNA expression and protein expression levels of different genes, the X-

tile bioinformatics version 3.6.1 (Yale University, USA) was utilized with DMFS as an 

endpoint. Cox proportional hazard models were used for multivariate analysis model adjusting 

for patients age, tumor grade, nodal stage, tumor size, and LVI status as covariates to adjust for 

potential confounding influence of these variables on associations between the tested genes 

and the outcomes of interest. Spearman’s Rho test was used to evaluate correlations between 

continuous variables of the transcriptomic and protein expression data whereas the chi-

square test was performed to analyze relationships between categorical variables. A p-value of 

<0.05 was deemed significant, (See Supplementary (A) for full details).  

 

 



9 
 

RESULTS 

Gene Selection  

To build a classifier panel for outcome prediction in TNBC, ANN analysis of the RNA-

sequence matrices data of the transcriptomic cohort was performed and genes were ranked 

based on relationships between their expression and clinical outcomes in terms of DMFS and 

BCSS. The top ranked genes predicting DMFS (DMFS genes panel) and those predicting 

BCSS (BCSS genes panel) were investigated to determine the most statistically enriched 

pathways, (Supplementary (A) Table 2 & Supplementary (C) for full details). 

Using the Venny tool, we identified a total of 21 genes that were common to both the DMFS 

and BCSS ANN panels. The 21-gene panel predicted patients’ DMFS and BCSS with 92% 

sensitivity and 94% specificity (Supplementary (B) Figure 2). The probability of finding a gene 

by random chance in the top 200 was 0.03, whereas the probability of randomly finding the 21 

genes collectively was 6.2x10-33, (Supplementary (B) Figure 3). 

Univariate Kaplan–Meier survival analysis showed that elevated expression of some genes was 

significantly associated with shorter DMFS and BCSS, whereas elevated expressions of other 

genes showed statistically significant association with longer DMFS and BCSS 

(Supplementary (A) Table 3 & Supplementary (B) Figures 4 A-D). Multivariate Cox regression 

analysis models incorporating patient’s age, tumor grade, nodal stage, tumor size, and LVI 

status revealed that eight of the 21 genes were independent predictors of DMFS and BCSS, 

(Supplementary (A) Table 4 A-D). 

 

Prognostic Two-Gene Signature 

The prognostic gene signature was identified after statistically distilling the eight genes in a 

multivariate Cox regression analysis to identify a signature with a minimum number of genes 
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that show most significant association with BCSS and DMFS. The  analysis revealed two genes 

ACSM4 and SPDYC that most significantly and  independently predicted both DMFS and 

BCSS (ACSM4; DMFS: p=0.015, 95% CI=1.21-6.13, HR=2.72 : BCSS: p=0.004, 95% 

CI=1.44-6.83, HR=3.14), and (SPDYC ; DMFS: p=0.012, 95% CI=1.23-5.45, HR=2.59 

:BCSS: p=0.016, 95% CI=1.18-5.09, HR=2.45) (Supplementary (A) Table 5). There was no 

linear association between the mRNA expression of ACSM4 and SPDYC. To investigate the 

prognostic value of the two-gene signature, a linear prognostic score was generated using the 

sum of the product of normalized expression levels of these two genes and their respective 

regression coefficients, as follows:  

The prognostic two-gene signature score ∑= (ACSM4 normalized expression * ACSM4 

expression β-value) + (SPDYC normalized expression * SPDYC expression β-value) (Table1). 

Using X-tile cut-off generator, patients with higher mRNA expression score of the prognostic 

two-gene signature had worse outcome in terms of shorter DMFS and BCSS when compared 

with those with lower mRNA expression score (Figure 1). Cox regression analysis confirmed 

that the prognostic two-gene signature harbors significant prognostic value in terms of 

predicting shorter DMFS and BCSS independent of patient age, tumor grade, nodal stage, 

tumor size, and LVI status (Table 2). 

External Validation of Genomic Findings 

Using the Bc-GenExMiner tool to analyze publicly available RNA-sequencing data, we 

observed that higher expression of SPDYC was significantly associated with worse prognosis 

in the whole/unselective cohorts of BC (n=4308, p<0.0001) [31]. Validating genes expressions 

on the restricted TNBC cohort (n=254), revealed a similar trend of poor prognosis (p=0.006) 

[31]. Moreover, the integration of our proposed prognostic two-gene signature in the public 

domain Genotype 2 outcome, using the median of each gene expression in the 
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whole/unselective cohorts of BC (n=4029), indicated that higher expression of ACSM4 and 

SPDYC were associated with worse prognosis (both p<0.001). More importantly in the context 

of this study, the prognostic value of the two-gene signature (ACSM4 and SPDYC) were 

significantly associated with poorer outcome when examined in the TNBC subtype cohort 

alone (n=612, p<0.001) [32] (Figure 2). 

Immunohistochemistry of the Prognostic Two-Gene Signature  

The morphological assessment of the tissue samples revealed cytoplasmic expression for both 

proteins; ACSM4 (H-score range 5-295) and SPDYC (H-score range 5-290) (Supplementary 

(B) Figure 5).  

Univariate survival analysis revealed that higher expression of ACSM4 and SPDYC was 

significantly associated with patients’ poor outcomes (DMFS; p<0.001, BCSS; p=0.009 for 

ACSM4) and (DMFS and BCSS, both p=0.004 for SPDYC) (Figure 3), which is concordant 

with the findings obtained from transcriptomic data. 

Multivariate Cox regression analysis showed that SPDYC protein expression was an 

independent prognostic factor regardless of patient age, tumor grade, nodal stage, tumor size, 

and LVI status for DMFS (p=0.015, 95% CI =1.17 - 4.74, HR=2.365) and BCSS (p=0.015, 

95% CI =1.18- 4.78, HR=2.377). Likewise, multivariate Cox regression analysis showed that 

ACSM4 protein expression was a significant independent prognostic factor for DMFS 

(p=0.002, 95% CI=1.35- 3.89, HR= 2.267), but not in BCSS (p=0.057, 95% CI=0.98- 2.93 , 

HR= 1.698) (Table 3 A & B). 

In a combined multivariate Cox regression analysis, SPDYC protein expression was an 

independent prognostic factor that predicted shorter  DMFS and BCSS ( DMFS: p=0.03, 95% 

CI=1.07-5.86, HR=2.50: BCSS: p=0.03, 95% CI=1.08-5.96 HR=2.54), regardless of patient 

age, tumor grade, nodal stage, tumor size, and LVI status. ACSM4 protein expression also was 

observed to be an independent prognostic factor, associated with shorter DMFS (p=0.003, 95% 
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CI =1.01-3.20, HR=1.83), regardless of patient age, tumor grade, nodal stage, tumor size, and 

LVI status, but not with BCSS (p=0.27, 95% CI=0.76-2.56 , HR=1.40) (Table 4). 

Correspondingly, we observed a significant positive linear association between ACSM4 and 

SPDYC protein expression (r=0.29, p<0.001), signifying that these proteins might be 

synergistically driving TNBC disease progression (Figure 4). Furthermore, using only cases 

that were informative for both biomarkers, a linear prognostic score was generated using Cox 

proportional hazard analysis to test whether dual expression of SPDYC and ACSM4 proteins 

was associated with worse outcome. The equation generated used the sum of the product of the 

quantitative H-score and their respective regression coefficient as follows:  

Protein expression prognostic score: ∑= (ACSM4 H-score * ACSM4 H-score β value) + 

(SPDYC H-score * SPDYC H-score β value) (Table 5).  

This protein expression prognostic score was then dichotomized using X-tile software to 

determine the optimal score to classify patients into high and low risk groups using DMFS as 

an end point. In the 257 investigated cases, the scores ranged from 15.43-365.05 with high 

protein expression risk scores (score > 170) observed in 159/257 (62%) cases. 

When testing the association between the prognostic score and outcome, univariate analysis 

demonstrated that cases with higher protein expression score had a significantly shorter DMFS 

(p=0.02) but not BCSS (p=0.06) (Figure 5). Multivariate Cox regression analysis model 

demonstrated that protein expression prognostic score was an independent prognostic factor 

for DMFS (p=0.03, 95% CI=1.04- 3.32 , HR=1.83) independent of patient age, tumor grade, 

nodal stage, tumor size, and LVI status, but not for BCSS (p=0.07, 95% CI=0.94-2.96, 

HR=1.83) (Table 6). 

Finally, when we stratified our cohort based on chemotherapy treatment, the 10-year DMFS of 

patients who were not offered chemotherapy (n=83) and showed low expression of ACSM4 

was 84% compared to 44% of those with high expression and the difference was statistically 
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significant (p=0.005). However, those with low expression of SPDYC had 83% 10-year DMFS 

compared to 70% in those with high expression but the difference was not statistically 

significant (p=0.209). Similarly, with the prognostic two gene signature, the 10-year DMFS of 

patients with low expression was 84% compared to 69% of those with high expression 

(p=0.309).  

Testing the performance of the prognostic two-gene at the transcriptomic and protein 

Levels 

The prognostic signature at the mRNA level captured 58% sensitivity, 69% specificity, 54% 

positive predictive value, 72% negative predictive value, and 64% accuracy in dichotomizing 

distant metastasis outcome of TNBC patients. In comparison, the prognostic signature at the 

protein level showed 73% sensitivity, 42% specificity, 30% positive predictive value, 82% 

negative predictive value, and 50% accuracy in dichotomizing distant metastasis outcome of 

TNBC patients (Supplementary (A) Table 6).
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DISCUSSION 

Molecular classification of BC provides opportunities for enhanced personalized therapy [33]. 

In TNBC, conventional prognostic factors such as age, tumor size, tumor grade, and lymph 

node status have limited risk-predictive influence as these tumors are mostly of higher grade 

with increased chances of recurrence and metastasis [1]. Therefore, deciphering genomic 

profiles of TNBC using advanced techniques is an unmet need. Moreover, the utilization of 

ANN to mine the transcriptomic profile of TNBC in order to identify genes associated with 

clinical outcome is a promising approach to stratify patients for risk prediction [34]. 

In the current study, a discovery phase and two validation phases were implemented. The in-

house transcriptomic TNBC cohort was used for the discovery phase for ANN analysis. 

Whereas the protein expression and publicly available external transcriptomic BC data were 

used for the validation phases of findings. More importantly, regardless of the statistical 

differences in the distribution of clinicopathological parameters between transcriptomic and 

IHC cohorts, our gene signature showed statistical association with outcome both at 

transcriptomic and protein expression level. Our study supports the utility of applying ANN to 

integrate distinct clinical and molecular data to find novel prognostic biomarkers associated 

with TNBC poor outcome.  

Our study employed ANN for the analysis of our transcriptomic cohort to discover novel 

prognostic genes associated with outcome in TNBC. ANN is a powerful tool for the analysis 

of complex data, overcoming high background noise, and thus identifying the influence of 

many interacting factors [35]. ANN analysis, unlike conventional statistical approaches such 

as hierarchical clustering, linear regression, and principal component analysis, is not limited 

by linear functionality; thus, identification of biological relationships between biomarkers and 

clinical outcomes is improved [24]. Furthermore, unlike conventional statistical techniques 



15 
 

used in the medical diagnostic and prognostic approaches, ANN can produce greater accuracy 

model than its counterparts [36]. Therefore, it is highly suitable for the identification of 

potential key genes driving TNBC outcomes. ANN modelling uses a supervised learning 

approach, a multi-layer perception architecture with a sigmoid transfer function, where weights 

are updated by a back propagation algorithm [37]. 

In this study, ANN analysis identified the top ranked genes predicting DMFS and BCSS. We 

then employed a web-based tool to identify the signaling pathways significantly enriched in 

the significant top ranked gene panels. For instance, TNBC patients frequently harbor higher 

expression of the epidermal growth factor receptor EGFR; however, studies have failed to 

establish significant benefit from EGFR-targeted therapies or tyrosine kinase inhibitors, 

suggesting the need to therapeutically target other pathways in these tumors [38,39]. Moreover, 

the significance and over-activation of pathways such as; P38 MAPK , the PDGF, and the RAS 

pathways in BC metastatic sites and their association with DMFS and BCSS in TNBC have 

been previously documented [40–42]. Additionally, the 21 gene panel generated by ANN 

analysis that was strongly associated with both DMFS and BCSS in TNBC included several 

novel and potentially targetable biomarkers in TNBC outcome. For instance, higher expression 

of DOCK10 (also known as dedicator of cytokeratin-10/ZIZ3) [43], has been previously 

identified as an indicator of poor prognosis in TNBC patients and as a predictor of distant 

metastasis [44]. In our transcriptomic cohort, DOCK10 emerged as a significant prognostic 

marker of BCSS and DMFS however, it was not significantly prognostic in multivariate Cox 

regression analysis. We also found that high expression of BICC1, an RNA binding protein, a 

negative regulator of  the WNT  signaling pathway with potential involvement in regulating 

gene expression during embryonic development [45], was associated with DMFS but not with 

BCSS; thus, it was not included in the final signature.  
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In our study, we distilled the initial 21 gene panel down to eight genes that when tested 

individually for their prognostic value, were significantly associated with both DMFS and 

BCSS using univariate and multivariate analysis after adjusting for the potentially confounding 

variables. These genes are implicated in pro-oncogenic pathways in BC. PPL (also known as 

Periplakin) is a part of the cornified envelop in keratinocytes and desmosomes with 

intermediate filaments. PPL can act in the PKB/AKT-mediated signaling pathway [46]. In 

TNBC, silencing PPL decreased cell migration and invasion [47]. SPDYC is a member of the 

speedy/Ringo cyclin-dependent kinase (CDK) family with known functions in cell cycle 

transitions and progression [48]. SPDYC plays an important role in activating both CDK1 and 

CDK2 expression [49]. CDK2 high expression  has been previously described to be  associated 

with shorter survival in metastatic melanoma cases and endocrine resistance in SKBR3-HER2 

positive BC cell lines [50,51]. Furthermore, down regulation of CDK1 has been found to 

increase synthetic lethality of TNBC cell lines if accompanied with c-Myc high expression 

[52]. However, SPDYC role in BC is still undefined [48]. ACSM4 encodes a protein with known 

functions in the conjugation of carboxylic acids and in fatty acid beta oxidation. Interestingly, 

upregulation of metabolic pathways has been found to interact with cellular transcriptomic and 

proteomics of both CD4 and CD8 T cells in HIV disease [53]. Although ACSM4 has been 

shown to have a role in AIDS progression, there are no reports with its role in BC [54,55]. We 

have previously reported a strong correlation between tumor infiltrating lymphocytes and 

TNBC outcome [56]. However, our current analysis did not identify known inflammation and 

immune response related genes associated with outcome in the TNBC 21 gene panel. Future 

studies should therefore seek to identify novel mechanisms contributing to aberrant 

inflammatory and immune response pathways involved in tumor infiltrating lymphocytes in 

TNBC. Furthermore, genes such as AC020931.1, DCTN1-AS1, RP11-29H23.5, PAXBP1-AS1, 
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and RPS10P18 require further investigation to decipher their role and function in BC 

progression. 

The original hypothesis underpinning this study was that a gene expression signature would 

more accurately predict both DMFS and BCSS in TNBC than a single gene. Multivariate Cox 

regression analysis enabled us to further filter the set of eight genes to a prognostic two-gene 

signature (ACSM4 and SPDYC) showing strong association with both DMFS and BCSS. We 

tested whether immunohistochemical assessment of the protein expression of the ACSM4 and 

SPDYC genes could be used to predict patient outcomes. Our study confirmed that protein 

expression had independent prognostic significance in TNBCs and showed strong statistical 

association with worse outcomes (i.e., shorter DMFS and BCSS). These genes when combined 

in a linear score, successfully stratified TNBC patients into high- and low-risk subgroups; in 

the former group, which is at a higher risk of developing distant metastasis, could benefit from 

greater vigilance and more aggressive treatment regimens. We have validated our ANN 

investigation and RNA-sequencing results by studying protein expression which showed that 

a prognostic score derived from the immunohistochemical evaluation of the two biomarkers 

could significantly predict distant metastasis, and thus support personalized prognostic 

evaluation and guiding treatment choices to improve disease outcomes. 

In this study, the prognostic value of the two-gene signature at the mRNA level yielded 58% 

sensitivity, and 64% accuracy in dichotomizing distant metastasis outcome of TNBC patients. 

By contrast, at the protein level, our proposed two-gene signature demonstrated 73% 

sensitivity, and 50% accuracy in dichotomizing distant metastasis outcome of TNBC patients. 

Our proposed two-gene signature showed promising accuracy and sensitivity results in 

predicting the risk of distant metastasis in TNBC patients, which is even more important as 

presently TNBC patients solely rely on chemotherapy treatment. Moreover, those patients who 
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are deemed at high risk of distant metastasis may benefit from the stratification for an improved 

treatment decision. 

Furthermore, our proposed two-gene signature is only based on two genes (ACSM4 and 

SPDYC), unlike other commercially available prognostic assays including those designed for 

ER-positive tumors [57]. Our prognostic gene signature may be amenable to the development 

of affordable molecular tests based on quantitative reverse transcriptase polymerase chain 

reaction as the sensitivity, specificity, and accuracy of our two-gene signature is proved to be 

much stronger at the mRNA level. The prognostic gene signature might be suitable for use in 

routine clinical practice because the proposed two-gene signature has prognostic value in 

dichotomizing TNBC patients and may provide important information for treatment decisions.  

The mainstay of TNBC treatment is cytotoxic chemotherapy [58]. However,  chemotherapy 

decision for metastatic TNBC patients are given based on a combination of aspects relates to 

the disease and patient physical characteristics (i.e., tumor burden, patient age, co-morbidities, 

prior treatments received in the adjuvant setting, and patient preference) [59].  Despite the 

interesting finding of this study and the significant difference in the survival of patients who 

were not offered chemotherapy based on the expression of ACSM4 (with worse outcome of 

patients with high expression), the 10-year DMFS of patients with low expression (84%) may 

not justify recommendation for omission of chemotherapy in those patients. However, to make 

such a recommendation, a clinical trial utilizing a sufficiently large number of TNBC patients 

may be warranted to determine whether TNBC patients with low ACSM4 expression can avoid 

chemotherapy without worse outcome. 

A challenge of applying the NGS technique to deciphering the molecular characteristics of 

TNBC tumors includes  access to the technology and the integrity of tumor samples to 

guarantee sufficient tumor RNA extraction [60]. Variation in sample quality and preparation 
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may negatively influence the outputs of NGS analysis and therefore must be carefully 

controlled. In addition, NGS analysis must consider intrinsic tumor heterogeneity between 

patients. Samples used in this study were processed in a strictly standardized procedure 

implemented in Nottingham University Hospitals with immediate sample fixation following 

surgery, with standard protocols optimized to preserve tissue architecture, subcellular details 

and importantly the integrity of biologic materials including proteins, DNA, and RNA. 

Nonetheless, our retrospective study was limited to a single center using an in-house 

transcriptomic and protein expression cohort for this investigation. However, the public 

domain data used in this study supports the value of both ACMS4 and SPDYC high expression 

conferring poor prognosis for BC patients, especially those diagnosed with TNBC molecular 

subtype. Hence, further external validation is strongly recommended.  

Conclusion 

Personalized medicine seeks to stratify BC patients to ensure optimal treatment and thus, 

improved patient outcomes. Our study has identified a two-gene signature that stratifies TNBC 

patients into high and low risk groups for developing distant metastasis, which can potentially 

guide clinical decision-making. The robust methods used herein to identify our prognostic gene 

signature followed by validation of the findings at the protein expression level, suggest that 

this promising two-gene signature provides avenues for further in vitro functional investigation 

and for new drug development for TNBC patients who are in dire need of effective therapeutic 

options.  
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Figures’ titles and legends: 

Figure 1  

Title: Univariate Kaplan-Meier survival analysis of the prognostic two gene signature 
predicting Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival 
(DMFS) (Transcriptomic cohort, n=112) 

 

Legend: Univariate Kaplan Meier survival analyses to test associations between prognostic 

two gene signature at the transcriptomic level and clinical outcomes (Significant P-values are 

bolded HR: Hazard ratio). 

 
Figure 2  
 
Title: Univariate Kaplan Meier survival analysis of our proposed combinatorial two gene 

signature predicting overall Survival (public domain datasets) 

Legend :  To validate our findings, we utilized the Breast Cancer Gene-Expression Miner 

v4.0 (bc-GenExMiner v4.0) datasets which includes 5861 breast cancer patients & 

Genotype 2 outcome public portal, A genome-wide approach to link genotype to clinical 

outcome by utilizing next generation sequencing and gene chip data of 6,697 breast cancer 

patients. A) In the Breast Cancer Gene-Expression Miner data portal, high SPDYC mRNA 

expression confers a poor prognosis in the whole (i.e. unselected cohorts) of Breast cancer 

patients (n=4308, p value<0.0001). B) In the Breast Cancer Gene-Expression Miner data 

portal, high SPDYC mRNA expression confers poor prognosis in the Triple Negative Breast 

Cancer patients (n=254, p value=0.006). C) In the Genotype 2 outcome public portal, high 

ACSM4 mRNA expression confers a poor prognosis outcome in the whole (i.e. unselected 

cohorts) of Breast cancer patients (n=4029, p value<0.0001). D) In the Genotype 2 outcome 

public portal, high SPDYC mRNA expression confers a poor prognosis outcome in the whole 

(i.e. unselected cohorts) of Breast cancer patients (n=4029, p value<0.0001). E)  In the 



 
 

Genotype 2 outcome public portal, high SPDYC & ACSM4 mRNA expression confers a poor 

prognosis outcome in Triple Negative Breast Cancer patients (n=612, p value<0.0001).  

** The data portal used to obtain the Kaplan Meier plot integrates the somatic mutations in 

the gene and computes the combined transcriptional fingerprint of the mutation(s) using 

Receiver operating characteristics analysis of breast cancer RNA-seq data and uses the top up 

and down metagenes to estimate patient survival using Cox regression analysis on gene chip 

data. An important element is estimation of the transcriptional signature for each somatic 

mutation, which is carried out by Receiver operating characteristics analysis on the mutation 

and RNA-seq data. 

 

Figure 3  

Title: Univariate Kaplan Meier survival analysis for ACSM4 and SPDYC protein expression 

for association with Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free 

Survival (DMFS) (IHC Cohort, n=333) 

Legend: Univariate Kaplan Meier survival analyses to test associations between the ACSM4 

and SPDYC protein expression and clinical outcomes (Significant P-values are bolded       

HR: Hazard ratio) 

 

Figure 4  

Title: Violin plots demonstrating a positive correlation between protein expressions of SPDYC 

and ACSM4 (Correlation Coefficient, r=0.29, p=0.00001) (IHC Cohort, n=333). 

 

 



 
 

Figure 5  

Title: Univariate Kaplan Meier survival analysis of the protein expression of the two gene 
signature score predicting Breast Cancer Specific Survival (BCSS) and Distant Metastasis-
Free Survival (DMFS) (IHC Cohort, n=333) 

 

Legend: Univariate Kaplan Meier survival analyses to test associations between the two gene 
prognostic signature protein expression and clinical outcome (Significant P-values are bolded       
HR: Hazard ratio) 

 



Supplementary (A) 

Nottingham TNBC Cohort 

A subset of this cohort (n=112) was used for NGS analysis and was referred as “transcriptome 

cohort”, whereas the “IHC cohort” (n=333) was used to validate the identified biomarkers at 

the protein level using immunohistochemistry (IHC). Selection of the transcriptome cohort was 

based upon availability of FFPE tissue block with sufficient tumor burden. Patients included 

in the transcriptomic cohort (n=112) were treated at Nottingham University Hospitals between 

1987 and 1998. The IHC patient’s cohort (n=333) were treated at Nottingham University 

Hospitals between 1987 and 2006. All patients were managed in a standard manner, where all 

patients underwent a mastectomy or wide local excision, as decided by disease characteristics 

or patient choice. Adjuvant therapy was based on Nottingham Prognostic Index (NPI) and 

Estrogen Receptor status. Prior to the year 2000, not all Estrogen Receptor negative BC patients 

were offered chemotherapy. Human Epidermal Growth Factor 2 status was not assessed in 

routine practice or influenced treatment decision during that time. The transcriptome patient’s 

cohort showed 51% of patients received the classical cyclophosphamide, methotrexate and 5- 

fluorouracil (CMF) adjuvant chemotherapy and 66% received radiotherapy. The patient’s 

cohort (n=333) showed 44% of patients received adjuvant CMF chemotherapy, 29% of patients 

received 5-flourouracil, epirubicin, cyclophosphamide (FEC) adjuvant chemotherapy, and 

20% received doxorubicin, cyclophosphamide (AC) adjuvant chemotherapy. Furthermore, 

71% of the IHC cohort received radiotherapy treatment. Distribution of clinicopathological 

parameters between NGS transcriptomic cohort and the TNBC IHC cohort were tested using 

Chi-square test (Supplementary Table1). 

 

 



Transcriptomic Analysis  

 

Invasive tumor cells were macro-dissected from unstained tissue sections from multiple tumor 

blocks of each case where tumor cellularity (i.e. tumor burden) was at least 50% of the tissue 

section area were macro-dissected. Hematoxylin and Eosin sections of tumor blocks were 

microscopically assessed for invasive tumor burden and to guide tumor macro-dissection. Four 

10μm unstained tissue sections were used per case. Macro-dissected tissues were 

deparaffinized, rehydrated, and centrifuged to remove excess ethanol. RNA was extracted 

using the Omega Mag-Bind XP formalin fixed paraffin embedded RNA isolation kit (Omega, 

M2595-01) and Kingfisher Flex magnetic particle separator (ThermoFisher) as per 

manufacturer’s instructions. RNA was measured with a Nanodrop 2000c spectrophotometer 

(Thermo Scientific). First strand cDNA synthesis was performed on approximately 100 ng 

RNA at 25°C for 10 min, 42°C for 15 min, and 70°C for 15 minutes using random hexamers 

and ProtoScript II Reverse Transcriptase (New England BioLabs, Ipswich, MA). Second strand 

synthesis and RNA sequencing libraries were prepared using the Illumina TruSeq RNA access 

library kit (Illumina, RS-301-2002) and sequenced on an Illumina HiSeq 2500 using PE75 run 

chemistry. The targeted read count was 60M total reads per sample. Sequencing was performed 

at the Emory Integrated Genomics Core Facility, Emory University, Atlanta, USA. Raw FastQ 

sequence reads files were quality assessed and adapter processed using the trim galore wrapper 

for Fastqc and Cutadapt reads with phred scores >30 retained. The resultant quality trimmed 

reads were aligned to the hg38 (GRCh38.83) build of the human genome using the STAR 

aligner [1]. Transcript abundance quantification were performed using HTSEQ [2]. 

Normalization of genes was determined using transcripts per kilobase million (TPM) [3].  Only 

one sample per patient was included in downstream analyses by random selection. 

 



Immunohistochemistry (IHC) 

To assess the expression in normal breast tissue and evaluate the degree of heterogeneity of 

expression in tumor tissue, full-face BC tissue sections from 15 cases representative of different 

BC molecular subtypes, histological grades and stages, were subjected to IHC staining and 

interpretation before IHC staining and scoring was performed on tissue microarrays (TMAs). 

TMAs were prepared from tumor samples utilizing 0.6 mm cores, a single sample of each 

patient representative of the histological grades and stages was included using The TMA Grand 

Master® (3D HISTECH®, Budapest, Hungary), as previously described [4]. 

Briefly, xylene was used to deparaffinize tissue slides followed by rehydration through three 

changes of alcohol. Subsequently, heat-induced citrate antigen retrieval of epitopes was 

performed (pH 6.0) for 20 minutes using a microwave oven (Whirpool JT359 Jet Chef 

1000W). IHC was conducted using the Novolink Max Polymer Detection system (Leica, 

Newcastle, UK). Novolink peroxidase blocking buffer was applied to slides for 5 minutes to 

block the endogenous peroxidase activity followed by three washes with Tris-Buffered Saline 

(TBS, pH 7.6).  Protein blocking buffer was applied for 5 minutes to the slides, followed by 

another three TBS washes. Incubation of the primary antibodies (dilutions were 1:50 for 

SPDYC and 1:100 for ACSM4) was done for 16 hours at 4°C, followed with three TBS wash 

for each antibody. Then, incubation for 30 minutes with post primary blocking buffer, and 

another 30 minutes for the polymer buffer with three TBS wash interval for all. Finally, the 

3,3′-diaminobenzidine (DAB) chromogen was applied to the slides for 5 minutes followed 

by three TBS washes. The slides were then counterstained with Novolink hematoxylin for 

6 minutes, dehydrated and cover slipped. Importantly, the specificity of antibodies used in the 

experiment was confirmed through peptide blocking experiments. Anti SPDYC was 

neutralized with recombinant human protein antigen (NBP1-80832PEP, lot # PR03260, 

Novous biological, UK) using 1:25 dilution incubated for 16 hours at 4 °C. Whereas Anti 



ACSM4 was neutralized with recombinant human protein antigen ( NBP2-14696PEP, lot # 

00004251, Novous biological, UK) using 1:50 dilution incubated for 16 hours at 4 °C following 

the same staining protocol previously described.  

 4 μm TMA Immunostained sections were digitally scanned at 20X magnification using a 

NanoZoomer machine (Hamamatsu Photonics, Welwyn Garden City, UK). Morphological 

evaluation of the cytoplasmic immunoreactivity  was assessed using the H-score method based 

on the intensity of protein expression (0 = negative, 1 = weak, 2 = moderate, 3 = strong) and 

percentage of stained cells (0–100) as previously reported [5]. TMA cores were considered 

scorable if invasive tumor cells represented >15% of the total TMA core area. In addition, 25% 

of TMA sections were scored by two scorers (who were blinded to each other’s scores as well 

as to the clinical data for the samples) to assess inter-observer concordance. The intra-class 

correlation co-efficient for SPDYC and ACSM4 were 0.77 and 0.80, respectively, indicating 

substantial concordance between scorers. Moreover, the discordant cases were re-scored by the 

both observers and a consensus score was agreed upon and assigned.  

Statistical analysis  

The results of the combinatorial prognostic two gene signature expression, both at the mRNA 

and protein levels, were analyzed vis-à-vis distant metastasis with respect to sensitivity, 

specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. 

Sensitivity  was calculated based on the percentage of recorded histopathologically proven BC 

tumors interpreted as positive for distant metastasis, defined as (Number of true positive distant 

metastasis cases harboring high expression of the combinatorial prognostic two-gene 

signature) × 100/(Number of true positive distant metastasis cases harboring high expression 

of the combinatorial prognostic two-gene signature + Number of false negative distant 

metastasis cases harboring low expression of the combinatorial prognostic two-gene signature), 

where true positive were the cases correctly recorded as distant metastasis positive, and false 



negative were cases diagnosed as positive for distant metastasis but harbored low expressions 

of the combinatorial prognostic two-gene signature on both mRNA and protein levels. While 

specificity was calculated based on the percentage of recorded histopathologically proven BC 

tumors interpreted as negative for distant metastasis, defined as (Number of true negative 

distant metastasis cases harboring low expression of the combinatorial prognostic two-gene 

signature) × 100/( Number of true negative distant metastasis cases harboring low expression 

of the combinatorial prognostic two-gene signature + Number of false positive distant 

metastasis cases harboring high expression of the combinatorial prognostic two-gene signature) 

where true negative is a case correctly recorded as a distant metastasis negative, and false 

positive a case recorded as distant metastasis negative but harbored high expressions of the 

combinatorial prognostic two gene signature on both mRNA and protein levels [6].  

To evaluate the precision rate of this prognostic index in predicting distant metastasis, the 

positive predictive value [the proportion of subjects with distant metastasis who are correctly 

diagnosed. PPV = true positive/true positive + false positive] and the negative predictive value 

[proportion of subjects without distant metastasis who are correctly diagnosed. NPV= true 

negative/true negative + false negative] were calculated [7]. Finally, to investigate the accuracy 

of the overall ability of  the expressions of the combinatorial prognostic two-gene signature to 

correctly classify cases as high or low risk for TNBC metastatic disease, defined as (number 

of cases true positive for distant metastasis harboring high expressions of the combinatorial 

prognostic two-gene signature + true negative cases for distant metastasis harboring low 

expression of the combinatorial prognostic two-gene signature) × 100/(total number of patients 

who underwent scanning) were calculated [8]. 

 

 

  



 

 Supplementary (A) Table 1: Patients Cohorts  

Clinicopathological 
Parameter 

Transcriptomic cohort 
(n=112) 
No (%) 

IHC Cohort (n=333) 
No (%) 

P-value Clinicopathological 
Parameter 

Transcriptomic 
cohort (n=112) 
No (%) 

IHC Cohort 
(n=333) 
No (%) 

P-value 

Age (years) 
  < 50 
  ≥ 50 

   
0.025 

Vascular Invasion 
Yes 
No 

   
0.005 62 (56) 154 (46) 42 (38) 89 (27) 

50 (44) 179 (54) 70 (62) 244 (73) 
Tumor Size (cm) 
< 2 
≥ 2 

   
< 0.001 

Distant Metastasis 
Yes 
No 

   
0.001 32 (28) 144 (43) 46 (41) 91 (28) 

80 (72) 189 (57) 64 (59) 241 (72) 
Grade 
1 
2 
3 

   
 
0.469 

Breast Cancer Specific 
Survival 
Alive 
Died of BC 
Died of other causes 

   
 
0.033 

1 (1) 4 (1) 61 (55) 216 (65) 
6 (6) 24 (7) 42 (38) 89 (27) 
104 (93) 305 (92) 9 (7) 27 (8) 

Nodal Stage 
1 
2 
3 

   
 
0.270 

Chemotherapy 
Yes 
No 
No treatment  

   
 
0.005 

68 (61) 223 (67) 57 (51) 257 (65) 
31 (27) 77 (23) 44(40) 123 (31) 
13 (12) 32 (10) 11 (10) 14 (4) 

Nottingham Prognostic Index 
Good Prognosis 
Moderate Prognosis 
Poor Prognosis 

   
 
0.037 

Radiotherapy  
Yes 
No 
No treatment  

   
 
0.668 

3 (3) 96 (29) 74 (66) 278 (71) 
76 (68) 194 (58) 28 (25) 97 (25) 
33 (29) 42 (13) 10 (9) 19 (4) 

 

 

 

 

 

 

 

 



Supplementary (A) Table 2: Pathway analysis of genes strongly predictive of both Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival 
(DMFS) (Transcriptomic Cohort, n=112) 

 

 

Table legend: The top 200 ranked genes predicting DMFS (DMFS genes panel) and those predicting BCSS (BCSS genes panel) were investigated to determine 
the most statistically enriched pathways in our DMFS and BCSS gene lists by conducting Panther enrichment pathway analysis using Webgestalt. Since the 
aforementioned biologically important pathways showed statistically significant enrichment, they merited more in-depth evaluation, nevertheless, they reinforced 
the power of our discovered classifier panels in predicting TNBC outcome.

Description 
 

Gene Set Gene 
Set 
Size 

Overlap Significance 
P-value 

Enrichment 
Ratio 

 
Gene Symbol 
 

Gene Name 

JAK/STAT signaling pathway P00038 15 1 0.130 7.1937 STAT1 signal transducer and activator of transcription 1 
p38 MAPK pathway P05918 34 2 0.038 6.3473 MAP3K4 mitogen-activated protein kinase 4 

MAP2K6 mitogen-activated protein kinase 6 
Ras Pathway P04393 70 3 0.025 4.6245 STAT1 signal transducer and activator of transcription 1 

MAP2K6 mitogen-activated protein kinase 6 
MAP3K4 mitogen-activated protein kinase 4 

EGF receptor signaling pathway 

 

P00018 115 4 0.019 3.7532 STAT1 signal transducer and activator of transcription 1 
MAP3K4 mitogen-activated protein kinase 4 
MAP2K6 mitogen-activated protein kinase 6 
EGFR epidermal growth factor receptor 

Cadherin signaling pathway P00012 153 4 0.048 2.821 PCDHGC5 protocadherin gamma subfamily C, 5 
PCDHB1 protocadherin beta 1 
FZD5 frizzled class receptor 5 
EGFR epidermal growth factor receptor 

PDGF signaling pathway P00047 125 3 0.105 2.5897 MAP3K4 mitogen-activated protein kinase  4 
STAT1 signal transducer and activator of transcription 1 
ETV3 ETS variant 3 



Supplementary (A) Table 3: Univariate analyses for the 21 genes identified by Venny tool 
that potentially predictive of both Breast Cancer Specific Survival (BCSS) and Distant 
Metastasis-Free Survival (DMFS) (Transcriptomic Cohort, n=112) 

• Significant P-values are bolded 

 

 

 

Gene 

ID 

Breast Cancer specific Survival Distant Metastasis Free Survival 

Frequency  

 

P-value 

Frequency  

 

P-value 

Below-cut-point 

Expression 

(N) 

Above cut-point 

Expression 

(N) 

Below-cut-point 

Expression 

(N) 

Above cut-

point 

Expression 

(N) 

AC020931.1 74 38 0.037 69 37 0.012 

AC079305.10 50 62 0.02 47 59 0.001 

AC084809.2 95 17 0.002 90 16 0.012 

ACSM4 80 32 < 0.001 75 31 < 0.001 

MEX3A 90 22 0.015 87 19 0.038 

NDUFA4L2 72 40 0.036 66 40 0.010 

PAXBP1-AS1 84 28 0.033 81 25 0.020 

BICC1 72 40 0.160 68 38 0.048 

CCDC54 71 24 0.330 68 38 0.115 

DCTN1-AS1 91 21 0.047 85 21 0.006 

DOCK10 91 21 0.020 86 20 0.037 

GTF3C6 72 40 0.242 68 38 0.076 

HARBI1 94 18 0.113 90 16 0.017 

PPL 94 18 0.002 89 17 < 0.001 

RP1129H23.5 82 30 0.002 77 29 0.001 

RP11409C19.2 72 40 0.180 70 36 0.068 

RPS10P18 95 17 0.002 89 17 0.003 

RPS3AP47 91 21 0.588 86 20 0.509 

SNORD99 90 22 0.099 84 22 0.075 

SPDYC 90 22 0.014 86 20 0.018 

SRP72P2 91 21 0.381 20 86 0.175 

Total 112  106  



 Supplementary (A) Table 4 (A):  Multivariate Cox regression analysis for genes potentially 
associated with both Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free 
Survival (DMFS) (Transcriptomic Cohort, n=112) 

 

Covariates 

Breast Cancer-Specific Survival Distant Metastasis-Free Survival 

P-value Hazard 
Ratio 

95% CI P-value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.061 1.836 0.971 3.472 0.047 1.920 1.009 3.653 

Grade 0.452 1.712 0.421 6.954 0.441 1.743 0.424 7.157 

Nodal Stage 0.116 1.582 0.893 2.801 0.173 1.480 0.842 2.600 

Tumor Size 0.258 0.675 0.342 1.333 0.137 0.601 0.307 1.176 

Vascular Invasion 0.454 1.365 0.604 3.083 0.550 1.277 0.573 2.842 

AC020931.1 0.103 0.528 0.245 1.137 0.043 0.437 0.196 0.976 

Age 0.113 1.682 0.884 3.210 0.101 1.727 0.899 3.315 

Grade 0.362 1.914 0.475 7.714 0.341 1.986 0.484 8.150 

Nodal Stage 0.102 1.595 0.911 2.793 0.148 1.500 0.866 2.595 

Tumor Size 0.351 0.724 0.367 1.427 0.179 0.635 0.327 1.232 

Vascular Invasion 0.388 1.413 0.645 3.097 0.416 1.374 0.639 2.953 

AC079305.10 0.046 1.983 1.012 3.887 0.004 2.871 1.394 5.912 

Age 0.225 1.512 0.775 2.951 0.184 1.583 0.804 3.117 

Grade 0.230 2.364 0.580 9.629 0.219 2.400 0.594 9.700 

Nodal Stage 0.077 1.693 0.945 3.034 0.094 1.631 0.920 2.890 

Tumor Size 0.239 0.663 0.335 1.314 0.117 0.583 0.296 1.146 

Vascular Invasion 0.668 1.203 0.517 2.795 0.723 1.160 0.511 2.637 

AC084809.2 0.047 2.184 1.010 4.721 0.131 1.848 0.832 4.104 

Age 0.040 1.969 1.030 3.763 0.048 1.919 1.005 3.664 

Grade 0.176 2.436 0.671 8.841 0.174 2.466 0.672 9.049 

Nodal Stage 0.015 2.135 1.161 3.927 0.027 1.957 1.080 3.545 

Tumor Size 0.165 0.612 0.306 1.224 0.097 0.560 0.282 1.110 

Vascular Invasion 0.839 0.914 0.382 2.183 0.796 0.893 0.381 2.096 

ACSM4 <0.001 3.749 1.964 7.158 0.001 3.154 1.645 6.046 

• Significant P-values are bolded       CI: Confidence interval  

 

 



Supplementary (A) Table 4(B):  Multivariate Cox regression analysis of genes potentially 
associated with both Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free 
Survival (DMFS) (Transcriptomic Cohort, n=112) 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

Significance Hazard 
Ratio 

95% CI Significance Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.306 1.421 0.725 2.784 0.198 1.557 0.794 3.053 

Grade 0.423 1.762 0.440 7.049 0.318 2.029 0.507 8.129 

Nodal Stage 0.043 1.808 1.018 3.211 0.070 1.689 0.958 2.977 

Tumor Size 0.332 0.715 0.363 1.408 0.145 0.607 0.311 1.188 

Vascular Invasion 0.437 1.366 0.623 2.994 0.577 1.247 0.574 2.7111 

MEX3A 0.032 2.208 1.072 4.546 0.102 1.857 0.884 3.904 

Age 0.082 1.751 0.932 3.293 0.077 1.769 0.940 3.329 

Grade 0.330 1.937 0.512 7.328 0.320 1.954 0.521 7.330 

Nodal Stage 0.141 1.540 0.867 2.738 0.191 1.455 0.830 2.552 

Tumor Size 0.384 0.734 0.366 1.472 0.267 0.678 0.341 1.347 

Vascular Invasion 0.450 1.358 0.614 3.004 0.523 1.289 0.591 2.811 

NDUFA4L2 0.181 1.569 0.811 3.033 0.068 1.846 0.955 3.569 

Age 0.039 1.960 1.033 3.720 0.041 1.949 1.028 3.695 

Grade 0.275 2.098 0.555 7.924 0.255 2.169 0.572 8.217 

Nodal Stage 0.164 1.524 0.842 2.756 0.196 1.469 0.820 2.630 

Tumor Size 0.199 0.639 0.332 1.266 0.099 0.566 0.288 1.114 

Vascular Invasion 0.440 1.397 0.598 3.264 0.495 1.339 0.579 3.097 

PAXBP1-AS1 0.049 0.411 0.170 0.996 0.036 0.362 0.140 0.936 

Age 0.028 2.081 1.083 3.999 0.019 2.185 1.135 4.208 

Grade 0.229 2.360 0.583 9.551 0.188 2.581 0.630 10.579 

Nodal Stage 0.035 1.904 1.047 3.465 0.034 1.920 1.052 3.506 

Tumor Size 0.260 0.675 0.341 1.337 0.111 0.577 0.294 1.134 

Vascular Invasion 0.480 1.346 0.591 3.066 0.510 1.315 0.582 2.970 

DCTN1-AS1 0.003 3.061 1.452 6.454 < 0.001 3.874 1.873 8.013 

 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 



Supplementary (A) Table 4(C):  Multivariate Cox regression analysis of genes potentially 
associated with both Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free 
Survival (DMFS) (Transcriptomic Cohort, n=112) 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

Significance Hazard 
Ratio 

95% CI Significance Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.044 1.920 1.019 3.618 0.050 1.881 0.999 3.543 

Grade 0.214 2.293 0.619 8.497 0.203 2.364 0.629 8.885 

Nodal Stage 0.272 1.399 0.768 2.550 0.236 1.426 0.793 2.564 

Tumor Size 0.204 0.646 0.328 1.269 0.104 0.575 0.295 1.121 

Vascular Invasion 0.313 1.573 0.652 3.794 0.462 1.376 0.588 3.217 

DOCK10 0.031 2.215 1.076 4.560 0.075 1.939 0.935 4.025 

Age 0.097 1.740 0.905 3.344 0.110 1.712 0.885 3.313 

Grade 0.276 2.190 0.535 8.971 0.241 2.333 0.565 9.626 

Nodal Stage 0.198 1.459 0.821 2.595 0.259 1.385 0.787 2.437 

Tumor Size 0.301 0.692 0.344 1.390 1.77 0.619 0.309 1.242 

Vascular Invasion 0.225 1.687 0.725 3.928 0.266 1.595 0.700 3.637 

PPL 0.004 2.961 1.424 6.157 0.004 2.966 1.414 6.220 

Age 0.064 1.845 0.964 3.532 0.043 1.977 1.022 3.825 

Grade 0.347 1.956 0.483 7.914 0.270 2.212 0.539 9.079 

Nodal Stage 0.140 1.538 0.869 2.722 0.207 1.440 0.817 2.538 

Tumor Size 0.215 0.645 0.323 1.293. 0.072 0.531 0.267 1.058 

Vascular Invasion 0.279 1.581 0.689 3.627 0.336 1.492 0.660 3.374 

RP1129H23.5 0.001 2.832 1.500 5.346 0.001 2.975 1.569 5.641 

Age 0.024 2.119 1.102 4.078 0.027 2.088 1.085 4.016 

Grade 0.360 1.903 0.480 7.541 0.309 2.053 0.513 8.207 

Nodal Stage 0.048 1.685 1.005 2.826 0.087 1.566 0.938 2.617 

Tumor Size 0.189 0.663 0.320 1.252 0.088 0.556 0.283 1.092 

Vascular Invasion 0.181 1.663 0.789 3.503 0.240 1.558 0.755 3.263 

RPS10P18 < 0.001 3.941 1.852 8.389 0.001 3.399 1.611 7.171 

• Significant P-values are bolded       CI: Confidence interval  

 



Supplementary (A) Table 4 (D): Multivariate Cox regression analysis of genes potentially 
associated with both Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free 
Survival (DMFS) (Transcriptomic Cohort, n=112) 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

Significance Hazard 
Ratio 

95% CI Significance Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.046 1.907 1.012 3.596 0.050 1.886 1.000 3.557 

Grade 0.209 2.279 0.631 8.232 0.190 2.378 0.650 8.695 

Nodal Stage 0.125 1.561 0.884 2.756 0.129 1.545 0.881 2.710 

Tumor Size 0.140 0.596 0.300 1.185 0.066 0.529 0.269 1.042 

Vascular Invasion 0.247 1.666 0.702 3.953 0.383 1.452 0.628 3.356 

SPDYC 0.003 2.892 1.453 5.758 0.006 2.646 1.317 5.317 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary (A) Table 5: Combined multivariate Cox regression analysis of genes 
potentially associated with both Breast Cancer-Specific Survival and Distant Metastasis-Free 
Survival (Transcriptomic Cohort, n=112) 

 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariates 

Breast Cancer-Specific Survival Distant Metastasis-Free Survival 

P-value Hazard 
Ratio 

95% CI P-value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.043 2.053 1.023 4.119 0.046 2.033 1.013 4.079 

Grade 0.203 2.331 0.633 8.582 0.208 2.433 0.610 9.703 

Nodal Stage 0.181 1.523 0.822 2.819 0.208 1.483 0.803 2.739 

Tumor Size 0.202 0.616 0.293 1.296 0.153 0.588 0.283 1.219 

Vascular Invasion 0.215 1.813 0.708 4.642 0.253 1.697 0.685 4.206 

ACSM4 0.004 3.143 1.445 6.834 0.015 2.727 1.213 6.135 

SPDYC 0.016 2.455 1.183 5.096 0.012 2.594 1.234 5.450 

DCTN1-AS1 0.954 1.032 0.358 2.976 0.304 1.721 0.611 4.849 

PPL 0.883 1.079 0.395 2.947 0.926 0.950 0.317 2.841 

RP1129H23.5 0.565 1.268 0.566 2.840 0.724 1.158 0.513 2.612 

RPS10P18 0.093 2.134 0.882 5.160 0.251 1.716 0.682 4.316 

AC079305.10 0.078 2.027 0.924 4.444 0.007 3.014 1.348 6.740 

PAXBP1-AS1 0.083 0.432 0.168 1.114 0.051 0.366 0.133 1.005 



 

Supplementary (A) Table 6: Distribution of cases within transcriptomic and IHC cohorts to 
test the prognostic index with reference to clinical evidence of distant metastasis.  

 

 

• TP = true positive, FP = false positive, TN = true negative, and FN = false negative. 

• TP = true positive, FP = false positive, TN = true negative, and FN = false negative. 

• Sensitivity = TP * 100/(TP+FN). 

• Specificity = TN * 100/(TN +FP). 

• PPV, the proportion of subjects with distant metastasis who are correctly diagnosed; PPV = TP* 100/(TP 

+ FP). 

• NPV, proportion of subjects without distant metastasis who are correctly diagnosed; NPV= TN * 100 / 

(TN + FN). 

• Accuracy = TP + TN * 100/Total number of cases. 

 

 

 

  

 
 
 
 
 
Prognostic index of the two 
gene signature at mRNA Level 
 

 
Distant Metastasis 

Expression level            Yes No Total 
Above cut-point 

Expression 

 

25 TP 21 FP 46 

Below-cut-point 

Expression 

 

18 FN 46 TN 64 

Total 43 67 110 

 
 
 
 
 
Prognostic index of the two 
gene signature at protein level 
 

 
Distant Metastasis 

Expression level            Yes No Total 
Above cut-point 

Expression 

 

48 TP 111 FP 159 

Below-cut-point 

Expression 

 

18 FN 80 TN 98 

Total 66 191 257 



Supplementary (B) 

Supplementary (B) Figure 1: Flowchart of Analytical and Experimental Methodology of 
the Study  

 

Figure legend: The layout of steps used in the conducted experiment utilizing the mRNA 
cohort of 112 TNBC cases to identify genes associated with clinical outcome.  
DMFS: Distant Metastasis Free Survival, BCSS: Breast Cancer Specific Survival



Supplementary (B) Figure 2: Receiver Operative Characteristic curve: Receiver Operative Characteristic curve depicting the sensitivity and 
specificity of the predicted 21 gene panel associated with both Breast cancer-specific survival (BCSS) and Distant metastasis-free survival 
(DMFS) (Transcriptomic cohort, n=112) 

 

 

 

 

 

 

 

 

 

 

 

 

•  
• Area Under the Curve (AUC) 

 

 

Sensitivity = 92%, Specificity = 94%, AUC =0.93 



Supplementary (B) Figure 3: The output of Venny diagram tool showing the overlapping 
genes between the top 200 genes associated with Breast Cancer Specific Survival (BCSS) 
and the top 200 genes associated with Distant Metastasis Free Survival (DMFS) 
(Transcriptomic cohort, n=112) 

 

 

 

 

 

 

 

 

 

 

 



Supplementary (B) Figure 4 A: Univariate Kaplan-Meier survival analyses of the transcripts identified by Artificial Neural Network analysis to 

be strongly predictive of Breast Cancer-Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) using RNA seq matrices 

(Transcriptomic cohort, n=112) 

 

 



Supplementary (B) Figure 4 B: Univariate Kaplan-Meier survival analyses of the transcripts identified by Artificial Neural Network analysis to 

be strongly predictive of Breast Cancer-Specific Survival and Distant Metastasis-Free Survival using RNA seq matrices (Transcriptomic cohort, 

n=112) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary (B) Figure 4 C: Univariate Kaplan-Meier survival analyses of the transcripts identified by Artificial Neural Network analysis to 

be strongly predictive of Breast Cancer-Specific Survival and Distant Metastasis-Free Survival using RNA seq matrices (Transcriptomic cohort, 

n=112). 

 



Supplementary (B) Figure 4 D: Univariate Kaplan-Meier survival analyses of the transcripts identified by Artificial Neural Network analysis to 

be strongly predictive of Breast Cancer-Specific Survival and Distant Metastasis-Free Survival using RNA seq matrices (Transcriptomic cohort, 

n=112). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary (B)  Figure 5: Immunohistochemical expression of SPDYC and ACSM4 in formalin fixed 
paraffin embedded tissue microarray cores from TNBC samples (IHC cohort, n=333) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (B) Legend; Immunohistochemical protein expression of SPDYC and ACSM4 in TNBC tissue 

microarray cores (power 10×, inset high power 40×). A) SPDYC weak expression, B) SPDYC strong 

expression, C) ACSM4 weak expression, D) ACSM4 strong expression. 

Within the proteomic cohort, a significant negative linear correlation was observed between SPDYC mRNA 

(assessed by NGS) and protein level (r= -0.29, p=0.008, 80/112) in contrast to ACSM4, which showed a trend 

towards positive linear association (r=0.08, p=0.52, 65/112). Various factors could have contributed to the 

inverse correlation between the transcriptomic and proteomic levels of SPDYC. For instance, the improved 

quantification of the mRNA isoform and differential exon usage for the gene underlying the protein, the depth 

used in sequencing the cases, and potential considerable difference of proteins in vivo half-lives as compared 

to the mRNA and vice versa [9].  

 
 

 



Supplementary (C) 

Supplementary (C) Table A: Genes associated with Distant Metastasis Free Survival (DMFS) identified by 
Artificial Neural Network analysis (Transcriptomic Cohort, n=112) 

Gene Id initial_alias description 
AANAT ENSG00000129673 aralkylamine N-acetyltransferase [Source: HGNC Symbol;Acc:HGNC:19] 
AC004893.10 ENSG00000238109 ring finger protein 14(RNF14) pseudogene 
AC005042.4 ENSG00000204380 PKP4 antisense RNA 1 [Source: HGNC Symbol; Acc:HGNC:52580] 
AC007750.5 ENSG00000236841 novel transcript 
AC012358.4 ENSG00000227799 pseudogene similar to RIKEN cDNA 2210021J22 
AC020931.1 ENSG00000257110 novel transcript 
AC064852.4 ENSG00000241409 novel transcript 

AC068491.3 ENSG00000223973 
platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa 
(PAFAH1B1) pseudogene 

AC079305.10 ENSG00000222043 novel transcript 
AC079807.2 ENSG00000233230 novel transcript 
AC084809.2 ENSG00000226377 novel transcript 
AC093724.2 ENSG00000213222 translocase of outer mitochondrial membrane 40 (TOMM40) pseudogene 
AC094019.4 ENSG00000236732 ribosomal protein L21 (RPL21) pseudogene 
AC098824.6 ENSG00000232202 istidine-rich domain (CHORD)-containing 1 (CHORDC1) pseudogene 

ACSM4 ENSG00000215009 
acyl-CoA synthetase medium chain family member 4 [Source: HGNC 
Symbol;Acc:HGNC:32016] 

ACSM5 ENSG00000183558 Acyl-CoA Synthetase Medium Chain Family Member 5 
ANO1-AS1 ENSG00000254902 ANO1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:40016] 
AP001062.7 ENSG00000184441 novel transcript, antisense to C21orf2 
AP001189.4 ENSG00000236304 uncharacterized LOC107984360 [Source: NCBI gene;Acc:107984360] 
AP004290.1 ENSG00000236583 insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) pseudogene 

ARMS2 ENSG00000254636 
age-related maculopathy susceptibility 2 [Source: HGNC 
Symbol;Acc:HGNC:32685] 

ASIP ENSG00000101440 agouti signaling protein [Source: HGNC Symbol;Acc:HGNC:745] 
ATP6V1G1P4 ENSG00000233346 novel transcript 

BANF1P4 ENSG00000223828 
barrier to autointegration factor 1 pseudogene 4 [Source: HGNC 
Symbol;Acc:HGNC:43884] 

BICC1 ENSG00000122870 
BicC family RNA binding protein 1 [Source: HGNC 
Symbol;Acc:HGNC:19351] 

BRD7P4 ENSG00000218676 
bromodomain containing 7 pseudogene 4 [Source: HGNC 
Symbol;Acc:HGNC:37630] 

BRI3P1 ENSG00000225169 brain protein I3 pseudogene 1 [Source: HGNC Symbol;Acc:HGNC:33533] 
C14orf1 ENSG00000133935 ergosterol biosynthesis 28 homolog [Source: HGNC Symbol;Acc:HGNC:1187] 
C1orf204 ENSG00000188004 small nucleolar RNA host gene 28 [Source: HGNC Symbol;Acc:HGNC:27647] 
CBX3P5 ENSG00000257666 chromobox 3 pseudogene 5 [Source: HGNC Symbol;Acc:HGNC:42877] 
CCDC54 ENSG00000138483 coiled-coil domain containing 54 [Source: HGNC Symbol;Acc:HGNC:30703] 
CCDC6 ENSG00000108091 coiled-coil domain containing 6 [Source: HGNC Symbol;Acc:HGNC:18782] 

CEACAM6 ENSG00000086548 
carcinoembryonic antigen related cell adhesion molecule 6 [Source: HGNC 
Symbol;Acc:HGNC:1818] 

CEMP1 ENSG00000205923 cementum protein 1 [Source: HGNC Symbol;Acc:HGNC:32553] 
CEP164 ENSG00000110274 centrosomal protein 164 [Source: HGNC Symbol;Acc:HGNC:29182] 
CEP89 ENSG00000121289 centrosomal protein 89 [Source: HGNC Symbol;Acc:HGNC:25907] 
CLUHP2 ENSG00000228947 novel transcript 
COL5A1-AS1 ENSG00000204011 COL5A1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:31368] 
COL5A2 ENSG00000204262 collagen type V alpha 2 chain [Source: HGNC Symbol;Acc:HGNC:2210] 
CRYM ENSG00000103316 crystallin mu [Source: HGNC Symbol;Acc:HGNC:2418] 
CTB-33G10.1 ENSG00000243829 ribosomal protein S9 (RPS9) pseudogene 
CTB-47B11.3 ENSG00000248544 novel transcript, antisense to CYFIP2 
CTSZ ENSG00000101160 cathepsin Z [Source: HGNC Symbol;Acc:HGNC:2547] 
CUBNP3 ENSG00000235690 cubilin pseudogene 3 [Source: HGNC Symbol;Acc:HGNC:44985] 
DBNL ENSG00000136279 drebrin like [Source: HGNC Symbol;Acc:HGNC:2696] 
DCC ENSG00000187323 DCC netrin 1 receptor [Source: HGNC Symbol;Acc:HGNC:2701] 
DCTN1-AS1 ENSG00000237737 DCTN1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:44151] 



DHODH ENSG00000102967 
dihydroorotate dehydrogenase (quinone) [Source: HGNC 
Symbol;Acc:HGNC:2867] 

DNAH3 ENSG00000158486 dynein axonemal heavy chain 3 [Source: HGNC Symbol;Acc:HGNC:2949] 
DOCK10 ENSG00000135905 dedicator of cytokinesis 10 [Source: HGNC Symbol;Acc:HGNC:23479] 
DSP ENSG00000096696 desmoplakin [Source:HGNC Symbol;Acc:HGNC:3052] 

EIF5B ENSG00000158417 
eukaryotic translation initiation factor 5B [Source: HGNC 
Symbol;Acc:HGNC:30793] 

ERP44 ENSG00000023318 endoplasmic reticulum protein 44 [Source: HGNC Symbol;Acc:HGNC:18311] 
EWSAT1 ENSG00000212768 novel transcript 

EXOSC3P1 ENSG00000229007 
exosome component 3 pseudogene 1 [Source: HGNC 
Symbol;Acc:HGNC:33989] 

FAM138E ENSG00000248894 novel transcript 
FAM196A ENSG00000188916 inhibitory synaptic factor 2A [Source: HGNC Symbol;Acc:HGNC:33859] 
FAM212A ENSG00000185614 inka box actin regulator 1 [Source: HGNC Symbol;Acc:HGNC:32480] 

FGD1 ENSG00000102302 
FYVE, RhoGEF and PH domain containing 1 [Source: HGNC 
Symbol;Acc:HGNC:3663] 

FGL2 ENSG00000127951 fibrinogen like 2 [Source: HGNC Symbol;Acc:HGNC:3696] 
FOXQ1 ENSG00000164379 forkhead box Q1 [Source: HGNC Symbol;Acc:HGNC:20951] 
FUCA2 ENSG00000001036 alpha-L-fucosidase 2 [Source: HGNC Symbol;Acc:HGNC:4008] 

GAPDHP70 ENSG00000249489 
glyceraldehyde 3 phosphate dehydrogenase pseudogene 70 [Source: HGNC 
Symbol;Acc:HGNC:4148] 

GBP7 ENSG00000213512 guanylate binding protein 7 [Source: HGNC Symbol;Acc:HGNC:29606] 
GFOD1-AS1 ENSG00000237786 GFOD1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:40956] 

GPD1 ENSG00000167588 
glycerol-3-phosphate dehydrogenase 1 [Source: HGNC 
Symbol;Acc:HGNC:4455] 

GPR132 ENSG00000183484 G protein-coupled receptor 132 [Source: HGNC Symbol;Acc:HGNC:17482] 

GTF3C6 ENSG00000155130 
general transcription factor IIIC subunit 6 [Source: HGNC 
Symbol;Acc:HGNC:20872] 

HARBI1 ENSG00000180423 harbinger transposase derived 1 [Source: HGNC Symbol;Acc:HGNC:26522] 
HEPHL1 ENSG00000181333 hephaestin like 1 [Source: HGNC Symbol;Acc:HGNC:30477] 

HIGD2A ENSG00000146066 
HIG1 hypoxia inducible domain family member 2A [Source: HGNC 
Symbol;Acc:HGNC:28311] 

HIRIP3 ENSG00000149929 HIRA interacting protein 3 [Source: HGNC Symbol;Acc:HGNC:4917] 
HLA-F-AS1 ENSG00000214922 HLA-F antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:26645] 

HNRNPA1P30 ENSG00000233780 
heterogeneous nuclear ribonucleoprotein A1 pseudogene 30 [Source: HGNC 
Symbol;Acc:HGNC:39548] 

HNRNPA1P44 ENSG00000249271 
heterogeneous nuclear ribonucleoprotein A1 pseudogene 44 [Source: HGNC 
Symbol;Acc:HGNC:48774] 

HSP90B1 ENSG00000166598 
heat shock protein 90 beta family member 1 [Source: HGNC 
Symbol;Acc:HGNC:12028] 

IGFL1 ENSG00000188293 IGF like family member 1 [Source: HGNC Symbol;Acc:HGNC:24093] 

IGHG3 ENSG00000211897 
immunoglobulin heavy constant gamma 3 (G3m marker) [Source: HGNC 
Symbol;Acc:HGNC:5527] 

IPO9-AS1 ENSG00000231871 IPO9 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:40892] 
IQCC ENSG00000160051 IQ motif containing C [Source: HGNC Symbol;Acc:HGNC:25545] 
KIF11 ENSG00000138160 kinesin family member 11 [Source: HGNC Symbol;Acc:HGNC:6388] 
KRT18P57 ENSG00000215867 keratin 18 pseudogene 57 [Source: HGNC Symbol;Acc:HGNC:48884] 
LEF1-AS1 ENSG00000232021 LEF1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:40339] 

LILRA6 ENSG00000244482 
leukocyte immunoglobulin like receptor A6 [Source: HGNC 
Symbol;Acc:HGNC:15495] 

LOXL4 ENSG00000138131 lysyl oxidase like 4 [Source: HGNC Symbol;Acc:HGNC:17171] 
LRRC45 ENSG00000169683 leucine rich repeat containing 45 [Source: HGNC Symbol;Acc:HGNC:28302] 

MAP3K14 ENSG00000006062 
mitogen-activated protein kinase kinase kinase 14 [Source: HGNC 
Symbol;Acc:HGNC:6853] 

MARCKSL1 ENSG00000175130 MARCKS like 1 [Source: HGNC Symbol;Acc:HGNC:7142] 
MARS ENSG00000166986 methionyl-tRNA synthetase [Source: HGNC Symbol;Acc:HGNC:6898] 
METTL1 ENSG00000037897 methyltransferase like 1 [Source: HGNC Symbol;Acc:HGNC:7030] 

MEX3A ENSG00000254726 
mex-3 RNA binding family member A [Source: HGNC 
Symbol;Acc:HGNC:33482] 

MOGAT1 ENSG00000124003 
monoacylglycerol O-acyltransferase 1 [Source: HGNC 
Symbol;Acc:HGNC:18210] 

MSRB3 ENSG00000174100 novel transcript 

MT-CO1 ENSG00000198804 
mitochondrially encoded cytochrome c oxidase I [Source: HGNC 
Symbol;Acc:HGNC:7419] 



MTRNR2L10 ENSG00000256048 novel transcript 

MUC5AC ENSG00000215182 
mucin 5AC, oligomeric mucus/gel-forming [Source: HGNC 
Symbol;Acc:HGNC:7515] 

NANOGP2 ENSG00000228670 Nanog homeobox pseudogene 2 [Source: HGNC Symbol;Acc:HGNC:23100] 

NDUFA4L2 ENSG00000185633 
NDUFA4, mitochondrial complex associated like 2 [Source: HGNC 
Symbol;Acc:HGNC:29836] 

NIFK-AS1 ENSG00000236859 NIFK antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:27385] 

NOP56P3 ENSG00000257956 
NOP56 ribonucleoprotein pseudogene 3 [Source: HGNC 
Symbol;Acc:HGNC:49801] 

NRM ENSG00000137404 nurim [Source: HGNC Symbol;Acc:HGNC:8003] 
NSRP1P1 ENSG00000235614 novel transcript 

NUTF2P2 ENSG00000258300 
nuclear transport factor 2 pseudogene 2 [Source: HGNC 
Symbol;Acc:HGNC:19934] 

OR10AD1 ENSG00000172640 
olfactory receptor family 10 subfamily AD member 1 [Source: HGNC 
Symbol;Acc:HGNC:14819] 

OR13G1 ENSG00000197437 
olfactory receptor family 13 subfamily G member 1 [Source: HGNC 
Symbol;Acc:HGNC:14999] 

OR4C46 ENSG00000185928 novel transcript 

OTUB2 ENSG00000089723 
OTU deubiquitinase, ubiquitin aldehyde binding 2 [Source: HGNC 
Symbol;Acc:HGNC:20351] 

OTUD4P1 ENSG00000118976 OTUD4 pseudogene 1 [Source: HGNC Symbol;Acc:HGNC:33912] 

PABPC1L ENSG00000101104 
poly(A) binding protein cytoplasmic 1 like [Source: HGNC 
Symbol;Acc:HGNC:15797] 

PAXBP1-AS1 ENSG00000238197 PAXBP1 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:39603] 

PCDHGC5 ENSG00000240764 
protocadherin gamma subfamily C, 5 [Source: HGNC 
Symbol;Acc:HGNC:8718] 

PCOLCE-AS1 ENSG00000224729 PCOLCE antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:40430] 

PHTF1 ENSG00000116793 
putative homeodomain transcription factor 1 [Source: HGNC 
Symbol;Acc:HGNC:8939] 

PIK3CD-AS1 ENSG00000179840 PIK3CD antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:32346] 
PP7080 ENSG00000188242 uncharacterized LOC25845 [Source: NCBI gene;Acc:25845] 
PPL ENSG00000118898 periplakin [Source: HGNC Symbol;Acc:HGNC:9273] 

PRPS1 ENSG00000147224 
phosphoribosyl pyrophosphate synthetase 1 [Source: HGNC 
Symbol;Acc:HGNC:9462] 

PRR13P1 ENSG00000232824 proline rich 13 pseudogene 1 [Source: HGNC Symbol;Acc:HGNC:50614] 
PRSS8 ENSG00000052344 serine protease 8 [Source: HGNC Symbol;Acc:HGNC:9491] 

PSMB8-AS1 ENSG00000204261 
PSMB8 antisense RNA 1 (head to head) [Source: HGNC 
Symbol;Acc:HGNC:39758] 

RASA4CP ENSG00000228903 
RAS p21 protein activator 4C, pseudogene [Source: HGNC 
Symbol;Acc:HGNC:44185] 

RELL1 ENSG00000181826 RELT like 1 [Source: HGNC Symbol;Acc:HGNC:27379] 

RLIMP1 ENSG00000229456 
ring finger protein, LIM domain interacting pseudogene 1 [Source: HGNC 
Symbol;Acc:HGNC:39682] 

RNF217 ENSG00000146373 ring finger protein 217 [Source: HGNC Symbol;Acc:HGNC:21487] 

RNU6V ENSG00000206832 
RNA, U6 small nuclear variant sequence with SNRPE pseudogene sequence 
[Source: HGNC Symbol;Acc:HGNC:10230] 

RP1-310O13.7 ENSG00000226239 novel transcript 

RP11-101O6.2 ENSG00000234937 
proteasome (prosome, macropain) 26S subunit, non-ATPase, 7 (Mov34 
homolog) (PSMD7) pseudogene 

RP11-1379J22.2 ENSG00000244951 novel transcript 
RP11-153N17.1 ENSG00000233961 novel transcript 
RP11-15B17.1 ENSG00000245322 novel transcript 
RP11-178L8.1 ENSG00000243705 ribosomal protein L39 (RPL39) pseudogene 
RP11-214D15.2 ENSG00000227175 novel transcript 
RP11-228B15.4 ENSG00000225032 novel transcript 
RP11-23J18.1 ENSG00000258352 interferon induced transmembrane protein 3 (1-8U) (IFITM3) pseudogene 

RP11-254B13.4 ENSG00000234040 
ribosomal protein L10 pseudogene 12 [Source :HGNC 
Symbol;Acc:HGNC:52345] 

RP11-281O15.7 ENSG00000253144 
pseudogene similar to part of cold shock domain containing E1, RNA-binding 
CSDE1 

RP11-293A21.2 ENSG00000248340 family with sequence similarity 64, member A (FAM64A) pseudogene 
RP11-29H23.5 ENSG00000246203 novel pseudogene 
RP11-307L3.4 ENSG00000233368 novel transcript 
RP11-342F17.1 ENSG00000213755 ribosomal protein L29 (RPL29) pseudogene 



RP11-351I21.7 ENSG00000254423 ubiquitin specific peptidase 17-like 2 ( USP17L2) pseudogene 
RP11-386G21.1 ENSG00000253976 novel transcript 
RP11-397E7.4 ENSG00000251411 actin related protein 2/3 complex, subunit 1A, 41kDa (ARPC1A) pseudogene 

RP11-409C19.2 ENSG00000253223 
PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae) (PRPF3) 
pseudogene 

RP11-460I13.2 ENSG00000227050 novel transcript 
RP11-473M20.5 ENSG00000205890 novel transcript 

RP11-473N11.2 ENSG00000256238 
SPT16 homolog, facilitates chromatin remodeling subunit pseudogene 1 
[Source: HGNC Symbol;Acc:HGNC:31388] 

RP11-530C5.1 ENSG00000258048 novel transcript 
RP11-603J24.7 ENSG00000237493 RAB13 member RAS oncogene family pseudogene 
RP11-6B6.3 ENSG00000236942 GABA(A) receptor-associated protein (GABARAP) pseudogene 
RP11-705C15.3 ENSG00000257028 novel transcript 
RP11-863P13.4 ENSG00000205037 novel transcript 
RP11-867G23.12 ENSG00000254756 novel transcript 
RP11-996F15.2 ENSG00000257176 novel transcript 
RP13-93L13.1 ENSG00000225461 novel transcript 
RP3-521E19.2 ENSG00000257494 novel transcript 
RP5-1063M23.1 ENSG00000250770 tetraspanin 11 (TSPAN11) pseudogene 
RP5-955M13.4 ENSG00000232358 novel transcript 

RPL10AP1 ENSG00000244691 
ribosomal protein L10a pseudogene 1 [Source: HGNC 
Symbol;Acc:HGNC:19813] 

RPL5P5 ENSG00000213051 
ribosomal protein L5 pseudogene 5 [Source: HGNC 
Symbol;Acc:HGNC:35564] 

RPL7P57 ENSG00000224401 
ribosomal protein L7 pseudogene 57 [Source: HGNC 
Symbol;Acc:HGNC:35901] 

RPS10P18 ENSG00000229455 
ribosomal protein S10 pseudogene 18 [Source: HGNC 
Symbol;Acc:HGNC:36239] 

RPS15A ENSG00000134419 ribosomal protein S15a [Source: HGNC Symbol;Acc:HGNC:10389] 

RPS15AP12 ENSG00000232134 
ribosomal protein S15a pseudogene 12 [Source: HGNC 
Symbol;Acc:HGNC:36759] 

RPS3AP47 ENSG00000205873 novel transcript 

SEL1L ENSG00000071537 
SEL1L, ERAD E3 ligase adaptor subunit [Source: HGNC 
Symbol;Acc:HGNC:10717] 

SEMA6A ENSG00000092421 semaphorin 6A [Source: HGNC Symbol;Acc:HGNC:10738] 
SETD9 ENSG00000155542 SET domain containing 9 [Source: HGNC Symbol;Acc:HGNC:28508] 

SF3A3P2 ENSG00000254449 
splicing factor 3a, subunit 3 pseudogene 2 [Source: HGNC 
Symbol;Acc:HGNC:23277] 

SLC16A13 ENSG00000174327 
solute carrier family 16 member 13 [Source: HGNC 
Symbol;Acc:HGNC:31037] 

SLC16A6P1 ENSG00000232457 SLC16A6 pseudogene 1 [Source: HGNC Symbol;Acc:HGNC:48932] 
SLC16A8 ENSG00000100156 solute carrier family 16 member 8 [Source: HGNC Symbol;Acc:HGNC:16270] 

SLC25A39P1 ENSG00000226148 
solute carrier family 25 member 39 pseudogene 1 [Source: HGNC 
Symbol;Acc:HGNC:43859] 

SLC9A7 ENSG00000065923 
solute carrier family 9 member A7 [Source: HGNC 
Symbol;Acc:HGNC:17123] 

SNORA65 ENSG00000201302 
small nucleolar RNA, H/ACA box 65 [Source: HGNC 
Symbol;Acc:HGNC:10222] 

SNORD45 ENSG00000200706 novel transcript 
SNORD99 ENSG00000221539 small nucleolar RNA, C/D box 99 [Source: HGNC Symbol;Acc:HGNC:32762] 

SPDYC ENSG00000204710 
speedy/RINGO cell cycle regulator family member C [Source: HGNC 
Symbol;Acc:HGNC:32681] 

SPNS2 ENSG00000183018 sphingolipid transporter 2 [Source: HGNC Symbol;Acc:HGNC:26992] 

SRP72P2 ENSG00000188451 
signal recognition particle 72 pseudogene 2 [Source: HGNC 
Symbol;Acc:HGNC:31096] 

STARD4-AS1 ENSG00000246859 STARD4 antisense RNA 1 [Source: HGNC Symbol;Acc:HGNC:44117] 
SYCP3 ENSG00000139351 synaptonemal complex protein 3 [Source: HGNC Symbol;Acc:HGNC:18130] 
TADA1 ENSG00000152382 transcriptional adaptor 1 [Source: HGNC Symbol;Acc:HGNC:30631] 
TCTN1 ENSG00000204852 tectonic family member 1 [Source: HGNC Symbol;Acc:HGNC:26113] 
TERF2 ENSG00000132604 telomeric repeat binding factor 2 [Source: HGNC Symbol;Acc:HGNC:11729] 
TGFB3 ENSG00000119699 transforming growth factor beta 3 [Source: HGNC Symbol;Acc:HGNC:11769] 

TIMM22 ENSG00000177370 
translocase of inner mitochondrial membrane 22 [Source: HGNC 
Symbol;Acc:HGNC:17317] 

TOP1 ENSG00000198900 DNA topoisomerase I [Source: HGNC Symbol;Acc:HGNC:11986] 



 

• Bolded are the transcripts overlapping between DMFS &BCSS identified by Artificial Neural Network analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TRIM75P ENSG00000250374 
tripartite motif containing 75, pseudogene [Source: HGNC 
Symbol;Acc:HGNC:32686] 

UBE2L2 ENSG00000131982 
ubiquitin conjugating enzyme E2 L2 (pseudogene) [Source: HGNC 
Symbol;Acc:HGNC:12487] 

WDR55 ENSG00000120314 WD repeat domain 55 [Source: HGNC Symbol;Acc:HGNC:25971] 
WDR88 ENSG00000166359 WD repeat domain 88 [Source: HGNC Symbol;Acc:HGNC:26999] 
ZACN ENSG00000186919 zinc activated ion channel [Source: HGNC Symbol;Acc:HGNC:29504] 

ZBED2 ENSG00000177494 
zinc finger BED-type containing 2 [Source: HGNC 
Symbol;Acc:HGNC:20710] 

ZBTB2 ENSG00000181472 
zinc finger and BTB domain containing 2 [Source: HGNC 
Symbol;Acc:HGNC:20868] 

ZNF181 ENSG00000197841 zinc finger protein 181 [Source: HGNC Symbol;Acc:HGNC:12971] 
ZNF213 ENSG00000085644 zinc finger protein 213 [Source: HGNC Symbol;Acc:HGNC:13005] 
ZNF354C ENSG00000177932 zinc finger protein 354C [Source: HGNC Symbol;Acc:HGNC:16736] 

ZNF75BP ENSG00000258212 
zinc finger protein 75B, pseudogene [Source: HGNC 
Symbol;Acc:HGNC:13147] 

ZSCAN16 ENSG00000196812 
zinc finger and SCAN domain containing 16 [Source: HGNC 
Symbol;Acc:HGNC:20813] 



Supplementary (C) Table B: Genes associated with Breast Cancer Specific Survival (BCSS) identified by 
Artificial Neural Network analysis (Transcriptomic Cohort, n=112) 

 

Gene ID initial_alias description 
ABCA4 ENSG00000198691 ATP binding cassette subfamily A member 4 [Source:HGNC Symbol;Acc:HGNC:34] 
AC003075.4 ENSG00000237773 novel transcript 
AC004951.6 ENSG00000228434 novel transcript 
AC020931.1 ENSG00000257110 novel transcript 
AC072052.7 ENSG00000231360 novel transcript 
AC073834.3 ENSG00000237655 novel transcript, antisense to TTC30A 
AC079305.10 ENSG00000222043 novel transcript 
AC080125.1 ENSG00000225406 pseudogene similar to part of E74-like factor 2 (ets domain transcription factor) (ELF2) 
AC084809.2 ENSG00000226377 novel transcript 
ACBD6 ENSG00000230124 acyl-CoA binding domain containing 6 [Source:HGNC Symbol;Acc:HGNC:23339] 

ACSM4 ENSG00000215009 
acyl-CoA synthetase medium chain family member 4 [Source:HGNC 
Symbol;Acc:HGNC:32016] 

ADAMTS5 ENSG00000154736 
ADAM metallopeptidase with thrombospondin type 1 motif 5 [Source:HGNC 
Symbol;Acc:HGNC:221] 

ADORA2B ENSG00000170425 adenosine A2b receptor [Source:HGNC Symbol;Acc:HGNC:264] 
AKAP8L ENSG00000011243 A-kinase anchoring protein 8 like [Source:HGNC Symbol;Acc:HGNC:29857] 

ALG1L5P ENSG00000226943 
asparagine-linked glycosylation 1-like 5, pseudogene [Source:HGNC 
Symbol;Acc:HGNC:44374] 

ANKRD34B ENSG00000189127 ankyrin repeat domain 34B [Source:HGNC Symbol;Acc:HGNC:33736] 
ANO5 ENSG00000171714 anoctamin 5 [Source:HGNC Symbol;Acc:HGNC:27337] 
ASXL3 ENSG00000141431 ASXL transcriptional regulator 3 [Source:HGNC Symbol;Acc:HGNC:29357] 
ATP1B2 ENSG00000129244 ATPase Na+/K+ transporting subunit beta 2 [Source:HGNC Symbol;Acc:HGNC:805] 

B3GNT5 ENSG00000176597 
UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 [Source:HGNC 
Symbol;Acc:HGNC:15684] 

BICC1 ENSG00000122870 BicC family RNA binding protein 1 [Source:HGNC Symbol;Acc:HGNC:19351] 
BLVRB ENSG00000090013 biliverdin reductase B [Source:HGNC Symbol;Acc:HGNC:1063] 
BMS1 ENSG00000165733 BMS1, ribosome biogenesis factor [Source:HGNC Symbol;Acc:HGNC:23505] 
C11orf24 ENSG00000171067 chromosome 11 open reading frame 24 [Source:HGNC Symbol;Acc:HGNC:1174] 
C19orf12 ENSG00000131943 chromosome 19 open reading frame 12 [Source:HGNC Symbol;Acc:HGNC:25443] 
C1orf147 ENSG00000162888 chromosome 1 open reading frame 147 [Source:HGNC Symbol;Acc:HGNC:32061] 
C1QBP ENSG00000108561 complement C1q binding protein [Source:HGNC Symbol;Acc:HGNC:1243] 
C2orf70 ENSG00000173557 chromosome 2 open reading frame 70 [Source:HGNC Symbol;Acc:HGNC:27938] 
CCDC54 ENSG00000138483 coiled-coil domain containing 54 [Source:HGNC Symbol;Acc:HGNC:30703] 
CEP350 ENSG00000135837 centrosomal protein 350 [Source:HGNC Symbol;Acc:HGNC:24238] 
CGNL1 ENSG00000128849 cingulin like 1 [Source:HGNC Symbol;Acc:HGNC:25931] 
CMB9-
22P13.1 ENSG00000173727 

Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (FAU) 
pseudogene 

CMYA5 ENSG00000164309 cardiomyopathy associated 5 [Source:HGNC Symbol;Acc:HGNC:14305] 
CNTN4-AS1 ENSG00000237990 CNTN4 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:39985] 
CNTNAP2 ENSG00000174469 contactin associated protein like 2 [Source:HGNC Symbol;Acc:HGNC:13830] 
CSDC2 ENSG00000172346 cold shock domain containing C2 [Source:HGNC Symbol;Acc:HGNC:30359] 
CTAGE12P ENSG00000215441 CTAGE family member 12, pseudogene [Source:HGNC Symbol;Acc:HGNC:37297] 
CTC-
498J12.3 ENSG00000248664 novel transcript 
CTD-
2026K11.6 ENSG00000203394 novel transcript 
CTD-
2228K2.2 ENSG00000214278 mitochondrial translational initiation factor 3 (MTIF3) pseudogene 
CTD-
2290C23.2 ENSG00000241739 ribosomal protein L21 (RPL21) pseudogene 
CTNS ENSG00000040531 cystinosin, lysosomal cystine transporter [Source:HGNC Symbol;Acc:HGNC:2518] 
CUBN ENSG00000107611 cubilin [Source:HGNC Symbol;Acc:HGNC:2548] 
CYP1B1-AS1 ENSG00000232973 CYP1B1 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:28543] 
DCTN1-AS1 ENSG00000237737 DCTN1 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:44151] 
DDA1 ENSG00000130311 DET1 and DDB1 associated 1 [Source:HGNC Symbol;Acc:HGNC:28360] 
DNAH7 ENSG00000118997 dynein axonemal heavy chain 7 [Source:HGNC Symbol;Acc:HGNC:18661] 

DNAJC17 ENSG00000104129 
DnaJ heat shock protein family (Hsp40) member C17 [Source:HGNC 
Symbol;Acc:HGNC:25556] 



DOCK10 ENSG00000135905 dedicator of cytokinesis 10 [Source:HGNC Symbol;Acc:HGNC:23479] 
DST ENSG00000151914 dystonin [Source:HGNC Symbol;Acc:HGNC:1090] 
EEF1D ENSG00000104529 eukaryotic translation elongation factor 1 delta [Source:HGNC Symbol;Acc:HGNC:3211] 
EGFR ENSG00000146648 epidermal growth factor receptor [Source:HGNC Symbol;Acc:HGNC:3236] 

ERV3-1 ENSG00000213462 
endogenous retrovirus group 3 member 1, envelope [Source:HGNC 
Symbol;Acc:HGNC:3454] 

ETV3 ENSG00000117036 ETS variant 3 [Source:HGNC Symbol;Acc:HGNC:3492] 
EXOSC5 ENSG00000077348 exosome component 5 [Source:HGNC Symbol;Acc:HGNC:24662] 
F8 ENSG00000185010 coagulation factor VIII [Source:HGNC Symbol;Acc:HGNC:3546] 

FAM151A ENSG00000162391 
family with sequence similarity 151 member A [Source:HGNC 
Symbol;Acc:HGNC:25032] 

FAM47C ENSG00000198173 
family with sequence similarity 47 member C [Source:HGNC 
Symbol;Acc:HGNC:25301] 

FAM86KP ENSG00000163612 
family with sequence similarity 86 member K, pseudogene [Source:HGNC 
Symbol;Acc:HGNC:44098] 

FAM86MP ENSG00000186234 
family with sequence similarity 86 member M, pseudogene [Source:HGNC 
Symbol;Acc:HGNC:44100] 

FANCF ENSG00000183161 FA complementation group F [Source:HGNC Symbol;Acc:HGNC:3587] 
FANCG ENSG00000221834 novel transcript 
FCRLB ENSG00000162746 Fc receptor like B [Source:HGNC Symbol;Acc:HGNC:26431] 
FIGN ENSG00000182263 fidgetin, microtubule severing factor [Source:HGNC Symbol;Acc:HGNC:13285] 
FMR1-IT1 ENSG00000236338 novel transcript 
FOXD1-AS1 ENSG00000248003 novel transcript 
FOXD3 ENSG00000187140 forkhead box D3 [Source:HGNC Symbol;Acc:HGNC:3804] 
FZD5 ENSG00000163251 frizzled class receptor 5 [Source:HGNC Symbol;Acc:HGNC:4043] 
GIT1 ENSG00000108270 novel transcript 
GPR183 ENSG00000169508 G protein-coupled receptor 183 [Source:HGNC Symbol;Acc:HGNC:3128] 

GPR33 ENSG00000214943 
G protein-coupled receptor 33 (gene/pseudogene) [Source:HGNC 
Symbol;Acc:HGNC:4489] 

GPRIN3 ENSG00000185477 GPRIN family member 3 [Source:HGNC Symbol;Acc:HGNC:27733] 
GS1-251I9.3 ENSG00000253358 novel transcript 
GTF3C6 ENSG00000155130 general transcription factor IIIC subunit 6 [Source:HGNC Symbol;Acc:HGNC:20872] 
GUCY2F ENSG00000101890 guanylate cyclase 2F, retinal [Source:HGNC Symbol;Acc:HGNC:4691] 
HAMP ENSG00000105697 hepcidin antimicrobial peptide [Source:HGNC Symbol;Acc:HGNC:15598] 
HARBI1 ENSG00000180423 harbinger transposase derived 1 [Source:HGNC Symbol;Acc:HGNC:26522] 
HDDC2 ENSG00000111906 HD domain containing 2 [Source:HGNC Symbol;Acc:HGNC:21078] 
HEPACAM ENSG00000165478 hepatic and glial cell adhesion molecule [Source:HGNC Symbol;Acc:HGNC:26361] 
HEXDC ENSG00000169660 hexosaminidase D [Source:HGNC Symbol;Acc:HGNC:26307] 
IGFBP5 ENSG00000115461 insulin like growth factor binding protein 5 [Source:HGNC Symbol;Acc:HGNC:5474] 
IGKV1OR10-
1 ENSG00000237592 

immunoglobulin kappa variable 1/OR10-1 (pseudogene) [Source:HGNC 
Symbol;Acc:HGNC:44978] 

IKZF5 ENSG00000095574 IKAROS family zinc finger 5 [Source:HGNC Symbol;Acc:HGNC:14283] 
ITGA9 ENSG00000144668 integrin subunit alpha 9 [Source:HGNC Symbol;Acc:HGNC:6145] 
KIAA0355 ENSG00000166398 KIAA0355 [Source:HGNC Symbol;Acc:HGNC:29016] 
KIAA1462 ENSG00000165757 junctional cadherin 5 associated [Source:HGNC Symbol;Acc:HGNC:29283] 
KLHL41 ENSG00000239474 kelch like family member 41 [Source:HGNC Symbol;Acc:HGNC:16905] 
KRTAP3-3 ENSG00000212899 keratin associated protein 3-3 [Source:HGNC Symbol;Acc:HGNC:18890] 
LGALS4 ENSG00000171747 galectin 4 [Source:HGNC Symbol;Acc:HGNC:6565] 
LINC01074 ENSG00000227612 novel transcript 
LIPE ENSG00000079435 lipase E, hormone sensitive type [Source:HGNC Symbol;Acc:HGNC:6621] 
LRRC3C ENSG00000204913 leucine rich repeat containing 3C [Source:HGNC Symbol;Acc:HGNC:40034] 
MAP2K6 ENSG00000108984 mitogen-activated protein kinase kinase 6 [Source:HGNC Symbol;Acc:HGNC:6846] 

MAP3K4 ENSG00000085511 
mitogen-activated protein kinase kinase kinase 4 [Source:HGNC 
Symbol;Acc:HGNC:6856] 

MED14 ENSG00000180182 mediator complex subunit 14 [Source:HGNC Symbol;Acc:HGNC:2370] 
MED22 ENSG00000148297 mediator complex subunit 22 [Source:HGNC Symbol;Acc:HGNC:11477] 
MEX3A ENSG00000254726 mex-3 RNA binding family member A [Source:HGNC Symbol;Acc:HGNC:33482] 
MIR199A1 ENSG00000207752 microRNA 199a-1 [Source:HGNC Symbol;Acc:HGNC:31571] 
MMP25 ENSG00000008516 matrix metallopeptidase 25 [Source:HGNC Symbol;Acc:HGNC:14246] 
MPND ENSG00000008382 MPN domain containing [Source:HGNC Symbol;Acc:HGNC:25934] 
MRGBP ENSG00000101189 MRG domain binding protein [Source:HGNC Symbol;Acc:HGNC:15866] 
NAPA ENSG00000105402 NSF attachment protein alpha [Source:HGNC Symbol;Acc:HGNC:7641] 

NDUFA4L2 ENSG00000185633 
NDUFA4, mitochondrial complex associated like 2 [Source:HGNC 
Symbol;Acc:HGNC:29836] 



NIPSNAP1 ENSG00000184117 nipsnap homolog 1 [Source:HGNC Symbol;Acc:HGNC:7827] 
NLRP5 ENSG00000171487 NLR family pyrin domain containing 5 [Source:HGNC Symbol;Acc:HGNC:21269] 
NPAP1 ENSG00000185823 nuclear pore associated protein 1 [Source:HGNC Symbol;Acc:HGNC:1190] 
ODF2-AS1 ENSG00000225951 ODF2 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:49461] 

OR10K1 ENSG00000173285 
olfactory receptor family 10 subfamily K member 1 [Source:HGNC 
Symbol;Acc:HGNC:14693] 

OR1I1 ENSG00000094661 
olfactory receptor family 1 subfamily I member 1 [Source:HGNC 
Symbol;Acc:HGNC:8207] 

OR1S1 ENSG00000172774 novel transcript 

OR2A1 ENSG00000221970 
olfactory receptor family 2 subfamily A member 1 [Source:HGNC 
Symbol;Acc:HGNC:8229] 

OR7A17 ENSG00000185385 
olfactory receptor family 7 subfamily A member 17 [Source:HGNC 
Symbol;Acc:HGNC:8363] 

OR8B4 ENSG00000198657 novel transcript 
PAXBP1-
AS1 ENSG00000238197 PAXBP1 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:39603] 
PAXIP1-AS2 ENSG00000214106 PAXIP1 antisense RNA 2 [Source:HGNC Symbol;Acc:HGNC:48958] 
PCDHB1 ENSG00000171815 protocadherin beta 1 [Source:HGNC Symbol;Acc:HGNC:8680] 

PDIA4 ENSG00000155660 
protein disulfide isomerase family A member 4 [Source:HGNC 
Symbol;Acc:HGNC:30167] 

PHOSPHO1 ENSG00000173868 
phosphoethanolamine/phosphocholine phosphatase [Source:HGNC 
Symbol;Acc:HGNC:16815] 

POM121L3P ENSG00000167390 
POM121 transmembrane nucleoporin like 3, pseudogene [Source:HGNC 
Symbol;Acc:HGNC:16440] 

PPIAP31 ENSG00000217094 peptidylprolyl isomerase A pseudogene 31 [Source:HGNC Symbol;Acc:HGNC:44962] 
PPL ENSG00000118898 periplakin [Source:HGNC Symbol;Acc:HGNC:9273] 
QRSL1P3 ENSG00000257957 QRSL1 pseudogene 3 [Source:HGNC Symbol;Acc:HGNC:43669] 
RLBP1 ENSG00000140522 retinaldehyde binding protein 1 [Source:HGNC Symbol;Acc:HGNC:10024] 
RNF5 ENSG00000204308 ring finger protein 5 [Source:HGNC Symbol;Acc:HGNC:10068] 
ROPN1B ENSG00000114547 rhophilin associated tail protein 1B [Source:HGNC Symbol;Acc:HGNC:31927] 
RP1-274L7.1 ENSG00000229702 novel transcript 
RP11-
252O18.3 ENSG00000213155 zinc finger, CCHC domain containing 10 (ZCCHC10) pseudogene 
RP11-
262H14.11 ENSG00000219693 fibroblast growth factor 7 pseudogene 8 [Source:HGNC Symbol;Acc:HGNC:34516] 
RP11-
286N22.8 ENSG00000256591 novel transcript 
RP11-
298I3.1 ENSG00000257285 novel transcript 
RP11-
29H23.5 ENSG00000246203 novel transcript 
RP11-
409C19.2 ENSG00000253223 PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae) (PRPF3) pseudogene 
RP11-
429J17.5 ENSG00000254549 novel transcript 
RP11-
466G12.2 ENSG00000249758 novel transcript 
RP11-
542G1.3 ENSG00000251384 novel transcript 
RP11-
544M22.3 ENSG00000232879 glutaredoxin 5 (GLRX5) pseudogene 
RP11-
592N21.1 ENSG00000212673 novel transcript 
RP11-
619A14.2 ENSG00000254933 novel transcript 
RP11-
798K23.3 ENSG00000251545 novel pseudogene 
RP11-
967K21.2 ENSG00000255953 novel transcript 
RP3-
508I15.9 ENSG00000228274 novel transcript, antisense to CBY1 
RP4-622L5.7 ENSG00000224066 novel transcript 
RPL15P18 ENSG00000228501 ribosomal protein L15 pseudogene 18 [Source:HGNC Symbol;Acc:HGNC:36515] 
RPL21P134 ENSG00000233254 ribosomal protein L21 pseudogene 134 [Source:HGNC Symbol;Acc:HGNC:36006] 
RPL27A ENSG00000166441 ribosomal protein L27a [Source:HGNC Symbol;Acc:HGNC:10329] 



RPL32P34 ENSG00000239524 ribosomal protein L32 pseudogene 34 [Source:HGNC Symbol;Acc:HGNC:35903] 
RPL3P7 ENSG00000225093 ribosomal protein L3 pseudogene 7 [Source:HGNC Symbol;Acc:HGNC:36797] 
RPS10P18 ENSG00000229455 ribosomal protein S10 pseudogene 18 [Source:HGNC Symbol;Acc:HGNC:36239] 
RPS3AP47 ENSG00000205873 novel transcript 
RPS8 ENSG00000142937 ribosomal protein S8 [Source:HGNC Symbol;Acc:HGNC:10441] 

SCN10A ENSG00000185313 
sodium voltage-gated channel alpha subunit 10 [Source:HGNC 
Symbol;Acc:HGNC:10582] 

SDPR ENSG00000168497 caveolae associated protein 2 [Source:HGNC Symbol;Acc:HGNC:10690] 

SIPA1L3 ENSG00000105738 
signal induced proliferation associated 1 like 3 [Source:HGNC 
Symbol;Acc:HGNC:23801] 

SKP1P1 ENSG00000231234 
S-phase kinase associated protein 1 pseudogene 1 [Source:HGNC 
Symbol;Acc:HGNC:33696] 

SLC27A4 ENSG00000167114 solute carrier family 27 member 4 [Source:HGNC Symbol;Acc:HGNC:10998] 
SLC39A4 ENSG00000147804 solute carrier family 39 member 4 [Source:HGNC Symbol;Acc:HGNC:17129] 
SLC7A9 ENSG00000021488 solute carrier family 7 member 9 [Source:HGNC Symbol;Acc:HGNC:11067] 
SMIM5 ENSG00000204323 small integral membrane protein 5 [Source:HGNC Symbol;Acc:HGNC:40030] 
SNORD99 ENSG00000221539 small nucleolar RNA, C/D box 99 [Source:HGNC Symbol;Acc:HGNC:32762] 

SNRPGP15 ENSG00000224543 
small nuclear ribonucleoprotein polypeptide G pseudogene 15 [Source:HGNC 
Symbol;Acc:HGNC:49371] 

SNU13 ENSG00000100138 small nuclear ribonucleoprotein 13 [Source:HGNC Symbol;Acc:HGNC:7819] 
SORBS2 ENSG00000154556 sorbin and SH3 domain containing 2 [Source:HGNC Symbol;Acc:HGNC:24098] 
SPAG7 ENSG00000091640 sperm associated antigen 7 [Source:HGNC Symbol;Acc:HGNC:11216] 
SPATA31A6 ENSG00000185775 SPATA31 subfamily A member 6 [Source:HGNC Symbol;Acc:HGNC:32006] 

SPDYC ENSG00000204710 
speedy/RINGO cell cycle regulator family member C [Source:HGNC 
Symbol;Acc:HGNC:32681] 

SPRED1 ENSG00000166068 sprouty related EVH1 domain containing 1 [Source:HGNC Symbol;Acc:HGNC:20249] 
SRP72P2 ENSG00000188451 signal recognition particle 72 pseudogene 2 [Source:HGNC Symbol;Acc:HGNC:31096] 

ST13P19 ENSG00000228110 
ST13, Hsp70 interacting protein pseudogene 19 [Source:HGNC 
Symbol;Acc:HGNC:38862] 

ST6GAL1 ENSG00000073849 
ST6 beta-galactoside alpha-2,6-sialyltransferase 1 [Source:HGNC 
Symbol;Acc:HGNC:10860] 

STAT1 ENSG00000115415 
signal transducer and activator of transcription 1 [Source:HGNC 
Symbol;Acc:HGNC:11362] 

SYCE1L ENSG00000205078 
synaptonemal complex central element protein 1 like [Source:HGNC 
Symbol;Acc:HGNC:37236] 

SYNGR1 ENSG00000100321 synaptogyrin 1 [Source:HGNC Symbol;Acc:HGNC:11498] 
SZT2 ENSG00000198198 SZT2, KICSTOR complex subunit [Source:HGNC Symbol;Acc:HGNC:29040] 
TBX1 ENSG00000184058 T-box 1 [Source:HGNC Symbol;Acc:HGNC:11592] 
TDRKH ENSG00000182134 tudor and KH domain containing [Source:HGNC Symbol;Acc:HGNC:11713] 
TEX13B ENSG00000170925 testis expressed 13B [Source:HGNC Symbol;Acc:HGNC:11736] 

TMA16P2 ENSG00000232467 
translation machinery associated 16 homolog pseudogene 2 [Source:HGNC 
Symbol;Acc:HGNC:43781] 

TMCO1 ENSG00000143183 transmembrane and coiled-coil domains 1 [Source:HGNC Symbol;Acc:HGNC:18188] 
TMED10 ENSG00000170348 transmembrane p24 trafficking protein 10 [Source:HGNC Symbol;Acc:HGNC:16998] 
TMEM78 ENSG00000177800 transmembrane protein 78 [Source:HGNC Symbol;Acc:HGNC:32307] 
TMEM80 ENSG00000177042 transmembrane protein 80 [Source:HGNC Symbol;Acc:HGNC:27453] 
TOR1AIP2 ENSG00000169905 torsin 1A interacting protein 2 [Source:HGNC Symbol;Acc:HGNC:24055] 
TRBC2 ENSG00000211772 T cell receptor beta constant 2 [Source:HGNC Symbol;Acc:HGNC:12157] 
TTPA ENSG00000137561 alpha tocopherol transfer protein [Source:HGNC Symbol;Acc:HGNC:12404] 
TUBA3E ENSG00000152086 tubulin alpha 3e [Source:HGNC Symbol;Acc:HGNC:20765] 
TUBB3P1 ENSG00000220418 tubulin beta 3 class III pseudogene 1 [Source:HGNC Symbol;Acc:HGNC:42339] 
U82670.9 ENSG00000229979 high-mobility group nucleosomal binding domain 2 (HMGN2) pseudogene 
UPP2 ENSG00000007001 uridine phosphorylase 2 [Source:HGNC Symbol;Acc:HGNC:23061] 
URB2 ENSG00000135763 URB2 ribosome biogenesis homolog [Source:HGNC Symbol;Acc:HGNC:28967] 
USP51 ENSG00000247746 ubiquitin specific peptidase 51 [Source:HGNC Symbol;Acc:HGNC:23086] 

VSIG8 ENSG00000243284 
V-set and immunoglobulin domain containing 8 [Source:HGNC 
Symbol;Acc:HGNC:32063] 

XXbac-
B444P24.10 ENSG00000161132 proline dehydrogenase (oxidase) 1 (PRODH) pseudogene 

YIF1B ENSG00000167645 
Yip1 interacting factor homolog B, membrane trafficking protein [Source:HGNC 
Symbol;Acc:HGNC:30511] 

ZCCHC2 ENSG00000141664 zinc finger CCHC-type containing 2 [Source:HGNC Symbol;Acc:HGNC:22916] 
ZMIZ1 ENSG00000108175 zinc finger MIZ-type containing 1 [Source:HGNC Symbol;Acc:HGNC:16493] 
ZNF397 ENSG00000186812 zinc finger protein 397 [Source:HGNC Symbol;Acc:HGNC:18818] 



ZNF446 ENSG00000083838 zinc finger protein 446 [Source:HGNC Symbol;Acc:HGNC:21036] 
ZNF609 ENSG00000180357 zinc finger protein 609 [Source:HGNC Symbol;Acc:HGNC:29003] 
ZNF804A ENSG00000170396 zinc finger protein 804A [Source:HGNC Symbol;Acc:HGNC:21711] 
ZSWIM1 ENSG00000168614 novel transcript 
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Table 1: Multivariate Cox regression analysis to generate a prognostic score for the two gene signature 
predicting Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) 
(Transcriptomic, n=112)  

Significant P-values are bolded       CI: Confidence interval  

Covariates Breast Cancer specific Survival Distant Metastasis Free Survival

(B) 
value

P-value Hazard 
Ratio

95% CI (B) 
value

P-value Hazard 
Ratio

95% CI

Lower Upper Lower Upper

ACSM4 1.111 < 0.001 3.038 1.653 5.585 1.065 0.001 2.900 1.570 5.358

SPDYC 0.745 0.026 2.016 1.092 4.063 0.833 0.016 2.300 1.166 4.535



Table 2: Multivariate Cox regression analysis for the two gene signature predicting Breast Cancer 
Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (Transcriptomic Cohort, 
n=112) 

• Significant P-values are bolded       CI: Confidence interval  

 

 

Covariates Breast Cancer-Specific Survival Distant Metastasis-Free Survival 

P-value Hazard 
Ratio 

95% CI P-Value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.011 2.343 1.217 4.513 0.015 2.240 1.169 4.294 

Tumor Size 0.085 0.540 0.267 1.089 0.043 0.490 0.246 0.979 

Grade 0.182 2.402 0.663 8.705 0.175 2.454 0.671 8.981 

Vascular 
Invasion 

0.694 1.188 1.053 2.805 0.852 1.084 0.466 2.519 

Nodal Stage 0.033 1.907 1.053 3.454 0.043 1.836 1.020 3.307 

two gene 
signature at 
mRNA level 

< 0.001 3.891 2.041 7.416 < 0.001 3.371 1.780 6.384 



 

Table 3 (A): Multivariate Cox regression analysis for Individual Potential proteins associated with Breast 
Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (IHC Cohort, n=333) 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

P-value Hazard 
Ratio 

95% CI P-value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.011 1.941 1.165 3.234 0.030 1.743 1.055 2.879 

Tumor Size 0.706 0.908 0.551 1.497 0.619 1.136 0.786 1.879 

Grade 0.494 1.267 0.643 2.498 0.385 1.369 0.674 2.782 

Vascular 
Invasion 

0.062 1.697 0.975 2.953 0.178 1.466 0.840 2.558 

Nodal Stage 0.001 1.794 1.261 1.552 0.027 1.513 1.049 2.180 

ACSM4 0.057 1.698 0.983 2.933 0.002 2.267 1.350 3.809 



Table 3 (B): Multivariate Cox regression analysis for Individual Potential proteins associated with Breast 
Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (IHC Cohort, n=333) 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

P-value Hazard 
Ratio 

95% CI P-value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.026 1.711 1.067 2.745 0.042 1.618 1.016 2.576 

Tumor Size 0.467 0.839 0.522 1.348 0.922 1.024 0.638 1.644 

Grade 0.500 1.292 0.614 2.722 0.422 1.387 0.624 3.079 

Vascular 
Invasion 

0.034 1.783 1.041 3.044 0.086 1.596 0.935 2.724 

Nodal Stage 0.002 1.757 1.240 2.489 0.009 1.600 1.123 2.280 

SPDYC 0.015 2.377 1.181 4.783 0.015 2.365 1.178 4.748 



 

Table 4: Combined multivariate Cox regression analysis for potential proteins associated with Breast 
Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (IHC Cohort, n=333) 

 

• Significant P-values are bolded       CI: Confidence interval  

 

 

Covariates 

Breast Cancer-specific Survival Distant Metastasis-Free Survival 

P-value Hazard 
Ratio 

95% CI P-value Hazard 
Ratio 

95% CI 

Lower Upper Lower Upper 

Age 0.049 1.733 1.003 2.995 0.105 1.548 0.913 2.624 

Tumor Size 0.282 0.741 0.430 1.279 0.942 0.980 0.573 1.678 

Grade 0.754 1.128 0.530 2.393 0.641 1.210 0.542 2.700 

Vascular Invasion 0.022 2.018 1.108 3.676 0.077 1.702 0.945 3.067 

Nodal Stage 0.012 1.640 1.114 2.414 0.051 1.477 0.988 2.185 

ACSM4 0.274 1.402 0.766 2.568 0.036 1.826 1.014 3.204 

SPDYC 0.031 2.545 1.086 5.960 0.034 2.508 1.072 5.869 



 

Table 5: Multivariate Cox regression analysis to build prognostic index for the two gene signature 
predicting Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (IHC 
Cohort, n=333) 

 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

(B) 
value 

P-value Hazard 
Ratio 

95.0% CI (B) 
value 

P-value Hazard 
Ratio 

95.0% CI 

Lower Upper Lower Upper 

ACSM4 0.46 0.129 1.587 0.874 2.883 0.69 0.017 1.972 1.130 3.440 

SPDYC 1.05 0.014 2.869 1.232 6.678 1.05 0.015 2.859 1.229 6.651 



Table 6: Multivariate Cox regression analysis for the protein expression prognostic score predicting 
Breast Cancer Specific Survival (BCSS) and Distant Metastasis-Free Survival (DMFS) (IHC Cohort, 
n=333) 

 

• Significant P-values are bolded       CI: Confidence interval  

 

 

 

 

 

 

Covariates 

Breast Cancer specific Survival Distant Metastasis Free Survival 

Significance Hazard 
Ratio 

95.0% CI Significance Hazard 
Ratio 

95.0% CI 

Lower Upper Lower Upper 

Age 0.037 1.782 1.037 3.064 0.080 01.597 0.946 2.698 

Tumour Size 0.237 0.721 0.419 1.240 0.796 0.932 0.545 1.592 

Grade 0.734 1.134 0.549 2.343 0.607 1.227 0.563 2.675 

Vascular Invasion 0.018 2.041 1.130 3.684 0.047 1.802 1.009 3.219 

Nodal Stage 0.009 1.677 1.139 2.468 0.040 1.509 1.019 2.235 

Two gene 
signature at 
protein level 

0.077 1.637 0.946 2.960 0.034 1.867 1.049 3.323 












