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Abstract. Aerospace production systems face increasing requirements for flex-

ibility and reconfiguration, along with considerations of cost, utilisation, and ef-

ficiency. This drives a need for systems with a small number of automation 

platforms (e.g. industrial robots) that can make use of a larger number of end 

effectors that are potentially flexible or multifunctional. This leads to the chal-

lenge of ensuring that the configuration and location of each end effector is 

tracked by the system at all times, even in the face of manual adjustments, to 

ensure that the correct processes are applied to the product at the right time. We 

present a solution based on a Data Distribution Service that provides the system 

with full awareness of the context of its automation platforms and end effectors. 

The solution is grounded with an example use case from WingLIFT, a research 

programme led by a large aerospace manufacturer. The WingLIFT project in 

which this solution was developed builds on the adaptive systems approach 

from the Evolvable Assembly Systems project, with focus on extending and in-

creasing the aerospace industrial applicability of plug and produce techniques. 

The design of this software solution is described from multiple perspectives, 

and accompanied by details of a physical demonstration cell that is in the pro-

cess of being commissioned. 

Keywords: Aerospace Assembly, Context Awareness, Distributed Data Ser-

vice, Flexible Manufacturing Systems, Manufacturing Service Bus, Multi-

Agent Systems, Plug and Produce, Robotic Assembly. 

1 Introduction 

Global air travel has seen significant growth in recent decades, doubling every 15 

years and demonstrating strong demand for new aircraft. This delivers a challenge to 

aircraft manufacturers to ramp up production to higher rates in order to keep pace 

with demand. One of the biggest challenges to the introduction of a new product is 

industrialising the new automation technologies that enable the required ramp up to 
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full production rate. The industrialisation process requires the development and vali-

dation of a wide variety of technologies in a short period of time. This can be accom-

plished at a reduced cost through flexible, reconfigurable, and modular production 

systems that enable multiple processes to be evaluated concurrently without large 

commissioning efforts. Such systems also enable reduction in cost by enabling adap-

tation in the automated system to cope with component variation and process uncer-

tainty. This supports delivery of automated assembly processes (e.g. drilling, fas-

tening etc.) to the correct location on the actual product. Such technology contributes 

to reduction in manufacturing costs, both non-recurring (e.g. production systems de-

sign and commissioning) and recurring (e.g. reduction in changeover, human inter-

vention, and cycle time). 

The WingLIFT project [1] has identified a number of specific aims in support of 

the industry requirements when considering the assembly of aircraft wings. One as-

pect of these aims is the application of innovative information management technolo-

gy to optimise flow and distribution of both internal and external information across a 

wing sub-assembly factory. Intelligent assembly systems are required to monitor the 

key parameters of the entire manufacturing system, which supports quality assurance, 

geometric deviation awareness and control, and data feedback for real-time continu-

ous improvement. 

The work presented in this paper contributes to this technology solution specifical-

ly by monitoring the configuration of the system in real time. This technology is 

grounded in a specific use case that describes an automated assembly cell containing a 

set of process end effectors, each with a potentially large set of possible configura-

tions, that are shared between a relatively small number of automation platforms. 

This paper is organised as follows: Section 2 provides an overview of the current 

state of the art in flexibility in manufacturing systems, with particular reference to 

previous projects carried out at this institution in the area on which WingLIFT builds. 

Section 3 describes the motivating use case for the work, before Section 4 develops 

the architectural concept for WingLIFT. Section 5 specifies the demonstration scenar-

io that will be used to validate the work, along with an outline of the solution devel-

oped. Finally, Section 6 summarises the work presented. 

2 Flexibility in Manufacturing Systems 

2.1 Flexible and Reconfigurable Manufacturing Systems 

In a manufacturing sector characterised by market unpredictability, increased global 

labour costs, and growing consumer demand for highly personalised goods and ser-

vices, producers are naturally pushed to remain competitive by maintaining shorter 

times to market, increased product diversity and specialisation, and shorter product 

lifecycles. This has resulted in a growing body of research into production systems 

that can incorporate new technologies and provide high levels of robustness, resili-

ence, and responsiveness. 
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There are a number of approaches to delivering these characteristics, including 

flexible manufacturing systems [2, 3], reconfigurable manufacturing systems [4], 

automatic and adaptive control [5], and manufacturing systems modelling and simula-

tion [6]. One specific technology that has been developed in this area is “plug and 

produce” [7], named by analogy to the concept of “plug and play” in computing. The 

EU FP7 PRIME project [8] developed a multi-agent approach to plug and produce 

with commercially available components for simple robotic assembly tasks in a fixed 

system dealing with dynamic product changes and unexpected disruptions [9–11]. 

2.2 Evolvable Assembly Systems, Context Awareness, and WingLIFT 

EPSRC Evolvable Assembly Systems (EAS) [12] was a fundamental research project 

following on from PRIME. It aimed to deliver adaptable and cost effective manufac-

ture by enabling a compressed product life cycle through the delivery of robust and 

compliant manufacturing systems that can be rapidly configured and optimised. In 

turn, this should enable the reduction of production ramp-up times and programme 

switchovers. In summary the project proposed a multi-agent system [13] to provide 

manufacturing control systems with the characteristics of agility, multi-functionality, 

adaptability, and resilience. Further information on the EAS project can be found 

elsewhere [14–17], but the remainder of this section focusses on how EAS viewed the 

concept of context-awareness in terms of intelligent production systems. One product 

of the EAS project was the concept of a context-aware cyber-physical production 

system, shown in Fig. 1 and discussed in more detail in [18]. 
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Fig. 1. Conceptual framework for Context-Aware Cyber-Physical Production Systems 

The basis of the concept is that of a shared context for the system, where the con-

text is knowledge about the system and its current state. This context allows all the 

elements of the system to share the relevant knowledge and information required to 

accomplish the system function. The foundation of the context is the digital infor-

mation concerning the system, starting with the information created at design and 

commissioning (“digital twin”), and added to throughout life by the operation of the 

system (“digital thread”). This contextual information is gathered and handled by 

distributed intelligence across a set of modular system components. Pervasive metrol-

ogy1 allows for the highest quality information at all times. The information can be 

used to allow the system to self-adapt and maintain its correct functioning. The final 

aspect of the concept allows for the human workforce and the automation to work 

together most effectively by assigning decision-making and operations in a hybrid 

manner to best allocate responsibilities. In summary, the context-aware cyber-

physical production systems concept enables the smart integration of all equipment in 

order to best leverage the available information and thereby accomplish the produc-

tion aims in the most efficient manner possible with the available resources. 

                                                           
1 Pervasive metrology is where metrology is used throughout the system, named by analogy 

with pervasive computing [31], an offshoot of ubiquitous computing [32]. 
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WingLIFT focusses on a specific instantiation of part of this concept in order to 

prove its applicability in an industrial environment. The WingLIFT approach involves 

the aspects of data sharing that enable smart integration of dynamic modular produc-

tion systems through the use of distributed intelligence. This distributed intelligence is 

presumed to be based on multi-agent technology, but an agent is not a “hard require-

ment” for every resource in the system, as will be discussed later. Other parts of the 

WingLIFT project include some aspects of pervasive metrology, but they will not be 

included in this paper. 

3 Use Case 

3.1 High-level Use Case Motivation 

The high-level use case identified in the WingLIFT project for this work is as follows. 

A semi-automated aerospace assembly cell exists in which a small number of automa-

tion platforms (e.g. industrial robots) share a larger number of process end effectors 

(e.g. end effectors designed to either drill, fasten, seal, or position components). Each 

end effector may have a large number of possible configurations (e.g. for the drilling 

end effector, there may be a variety of cutting tool sizes; for the fastening end effector 

there may be a variety of fastener diameters and lengths; and so on). These configura-

tions may be changed dynamically during operations either by the automation control 

system, or by the operator. Both the automation platforms and end effectors are ex-

pected to be moveable around the cell through the use of automatic tool changers and 

either rails or moveable platforms. The system therefore requires some method for 

maintaining knowledge of the current configuration state of the whole system, includ-

ing the hardware configurations and positions of both automation platforms and end 

effectors, and the software configuration of the control system. 

3.2 Specific Use Case Scenarios 

Further developing the high-level use case described above, the project defines a set 

of specific use case scenarios. The scenarios are as follows: 

 Resource addition and resource removal 

 End effector pick-up and end effector drop-off 

 Configuration change (hardware) and configuration change (software) 

For the purposes of this paper, we will describe in detail the end effector pick-up 

use case and a generalised “configuration change” use case that combines both hard-

ware and software changes. The project utilises a multifunctional UML approach (i.e. 

according to the Object Management Group’s Unified Modeling Language [19]) to 

describe the use cases and solution; for this paper we will describe each use case with 

a table. 
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End Effector Pick-up. The end effector pick-up use case scenario shown in Table 1 

describes a situation where the system is required to change the currently equipped 

end effector on a given automation platform (in this case a robot) to a specific end 

effector. This requires that the system is aware of the locations of the robot and end 

effector, and also the current and desired configurations of the end effector. 

Table 1. End effector pick-up use case scenario in tabular format 

Name: End Effector Pick-Up 

Actors 

 Existing production system 

 Existing robot requiring end effector 

 Existing end effector to be picked up 

 Operator/integrator 

Pre-Conditions 

 System and all relevant resources are functioning correctly, support plug & produce, and 

have compatible interfaces. 

 Robot is part of production system, is functioning correctly and has interfaces compatible 

with the end effector. 

 End effector is part of production system, is functioning correctly and has interfaces compat-

ible with the robot. 

 End effector is not already on (any) robot, but is in a known location that is reachable by 

robot. 

 End effector has (or can be given) definition of capabilities and configuration. 

Basic Flow 

1. Start: System requires end effector to be added to robot. 

2. System identifies current (or last known) location of end effector. 

3. Robot and end effector are brought to the same location and connected together. Details of 

this physical process are out of scope, but this could happen in three ways: 

a. Robot moves to end effector and picks it up. 

b. End effector is brought to robot, which picks it up. 

c. Robot and end effector move to same location, where robot picks up end effector.  

4. Robot/system reads current configuration setting of end effector. The system becomes 

aware of the end effector configuration. The “Change Configuration” use case is executed – 

the configuration change is the joining of the robot and end effector. 

5. Robot and end effector are now considered “joined”. 

6. System checks that end effector configuration matches expected configuration and notifies 

operator of successful pick up. Either: 

a. Configuration is as expected – success. 

b. Configuration is not as expected – a change is required. 

7. Completion: The end effector in the internal representation of the production system has 

been set as being joined to the representation of the robot: all resources in the system should 

be aware of the new capabilities/configuration and location/connectivity of the joint robot 

with end effector. 

Post-Conditions 



7 

 The new end effector is part of the production system (attached to the robot); system and all 

relevant resources are functioning correctly, support plug & produce, and have compatible in-

terfaces. 

 All resources in the system should be aware of the new end effector’s capabili-

ties/configuration and location/connectivity. 

 The new end effector can be given commands and generate output as expected. 

 

Configuration Change. The configuration change use case scenario shown in Table 

2 shows a situation where a change has been made to a resource (e.g. end effector) in 

the system that must be communicated to the rest of the system. Examples of this 

change could include an end effector being mounted to a given robot (which updates 

both the robot configuration and the end effector configuration), an end effector being 

placed in a tool rack (which updates the “location” configuration of the end effector), 

or an end effector setting being changed (for example the size of fastener being held). 

Table 2. Configuration change use case scenario in tabular format 

Name: Configuration Change 

Actors 

 Existing production system 

 Existing resource to be configured 

 Operator/integrator 

Pre-Conditions 

 System and all relevant resources are functioning correctly and support being configured. 

 Resource to be configured is part of production system and is functioning correctly, but is not 

in the correct configuration. 

 Resource to be configured can be given definition of capabilities and configuration. 

 The change to the configuration is such that the rest of the system needs to be made aware of 

the change (i.e. it will impact planning or production processes). 

Basic Flow 

1. Start: A change is made to the configuration of a resource in the system that is significant 

enough to be communicated to the rest of the system. The details of what this configuration 

change is are out of scope. It may include changes to the settings on an end effector (e.g. 

which size bolt is loaded). 

2. Resource reads new configuration. The details of this are out of scope, but examples include: 

a. Some resource in the system – or the system controller – requested a configuration change 

be applied, so already communicated the change to the resource. 

b. The resource automatically detects the configuration change; this could be through specif-

ic sensors or because the resource automatically determined the required configuration 

change so is already aware of it. 

c. The operator adjusts hardware selector switches on the resource, which are read by the re-

source controller. 

d. The operator inputs the configuration change on an HMI, which is read by the resource 

controller or system (which would then pass it to the resource controller). 
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3. The resource updates its internal representation to reflect the new configuration. 

4. The resource communicates its new configuration to the system, which notifies all relevant 

resources and incorporates the change into its internal representation. 

5. Completion: The resource has its new configuration reflected in its internal representation. 

The system and all relevant resources are aware of the new configuration. This new infor-

mation may be used by other resources as a trigger for other processes. 

Post-Conditions 

 System and all relevant resources functioning correctly and support configuration. 

 Resource has new configuration; remainder of system is aware of new configuration as ap-

propriate. 

 Resource to be configured can be given definition of capabilities and configuration. 

 

4 Reference Architecture Concept 

4.1 Generic Process Flow 

Based on the use cases developed in the project discussed in Section 3, a generic 

process flow has been identified and is presented diagrammatically in Fig. 2 using the 

example of the “end effector pick-up” use case. This generic process flow allows a 

solution to be designed that will address the range of problem scenarios facing the 

system, where each use case is a specific example, rather than designing a solution 

specifically for each use case and then attempting to combine them. Each use case 

follows the following process: 

1. Trigger: An event occurs to trigger the use case. In this case it is a requirement for 

the end effector B to be fitted to the robot A.  

2. Handle: An entity in the system either chooses to handle the event, or is assigned 

to handle it. In this case the WingLIFT software will gather the required data (e.g. 

end effector location) from the distributed system context and assign the specific 

required processes to the relevant robot controller. 

3. Update: The system configuration is updated. This happens both at the local level 

by each individual resource, and at the network level where the shared context is 

updated. The robot controller configuration will be updated to include the new end 

effector, and the end effector context will reflect its new location and configura-

tion. 

4. Notify: Once the use case has been completed, one or more entities in the system 

are notified of the success or failure of the process. In this case, the operator is no-

tified through an HMI. 
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Fig. 2. Generic use case flow for WingLIFT, using the example of end effector pick-up 

4.2 Architectural Concept 

Placing some of the terms used in the previous section into context, the top-level 

agent-oriented architectural concept, based on that of the EAS project, is shown in 

Fig. 3. Each resource maintains a local internal model for low-level decision-making 

and control. All resources in the system are connected to a shared context which 

forms a “joint model” from the many local internal models. High-level decision-
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making can be performed on this joint model. The shared context is also the link to 

the wider enterprise and any additional external data sources or storage locations. 

 

Fig. 3. Top-level agent-oriented architectural concept 

Building on the EAS project, it is assumed that the majority of the resources in the 

system will be controlled by intelligent agents [13]. In Section 4.4, integration cases 

will be discussed where no agent is present. 
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4.4 Hardware / Software Stack 

Physical hardware resources in the WingLIFT architecture are usually controlled 

by intelligent agents deployed on embedded computers. Each agent is connected to 

the resource using a resource-specific translation layer and to the rest of the system 

using a DDS. In the EAS project this was the most common type of stack, but Wing-

LIFT aims to address a wider range of resource types. Fig. 4 shows this more com-

plete view: the physical resource may provide a software interface, or may require a 

hardware interface; the system can also interface with humans though software run-

ning on portable devices; and the system may include software services running on 

other computing hardware. There should be no difference to the architecture whether 

the resource being managed is physical automation, a human, or a software service. 

Also shown in Fig. 4 are the data flows from the resources up to the databus, the 

options for where each piece of functionality is deployed in hardware terms, and the 

likely division between provided and developed functionality. Resource hardware is 

controlled by its own controller as normal. That controller then interfaces with the 

system databus either through an agent on an embedded computer, an agent deployed 

directly on the controller (in the case of a software PLC for example), or directly 

through its own network application programming interface (API). In most cases 

some translation will be required from vendor specific semantics to open common 

semantics for use on the databus. Some resource hardware will provide an API and 

open communication standards for interfacing with. Some “legacy” resource hard-

ware may require a more complex translation layer that features hardware technical 

interconnectivity as well as semantic translation. Human resources communicate with 

resource agents via human-machine interfaces (HMIs). In the case of resources that 

directly connect to the databus through their own network API without an agent, they 

can only act as publishers and/or subscribers of data. If any decision-making takes 

place, it must either be handled entirely inside the resource, or a separate agent must 

be deployed on the databus to act on the data published and/or subscribed to by the 

resource.  
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Fig. 4. Integration approaches for different resources types 
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5 Validation 

5.1 Demonstration Scenario 

In order to validate the proposed solution, we have developed a demonstration scenar-

io based around the project use cases. In this scenario, two robots share a number of 

end effectors through the use of automatic tool changers as described in Section 3.1. 

The aim of the demonstrator is to show how the two robots can share the end effec-

tors and how the system can maintain awareness of the current configuration of both 

the robots and the end effectors in the face of manual changes. A visual representation 

of an example usage flow of the demonstrator is given in Fig. 5 in the format of a 

UML activity diagram. 

 

Fig. 5. Example flow of the demonstrator in UML activity diagram format 

This shows the example of an end effector pick-up: first the use case is triggered 

by the operator making a selection on the HMI. This is handled by the software once 

it receives the ChangeEEorToolCmd request. Once the end effector has been picked 
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notified once the change is complete. 
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5.2 Outline Solution 

Based on the WingLIFT architecture, databus concept, and integration approaches all 

described in Section 4, Fig. 6 shows the overall logical structure of the demonstration 

cell described in this section. Each robot is controlled by its own controller, which is 

in turn connected to a WingLIFT agent that is connected to the DDS databus. Also 

connected to the databus is an HMI for the operator, and an agent connected to each 

end effector. The end effector information is transmitted onto the bus through this 

agent. The bus carries all configuration and state information for all resources in the 

cell: the location of the robots and end effectors, the configuration state of all end 

effectors, and which end effector is connected to each robot. The remainder of this 

section describes the implementation of the cell in some more detail. 

 

Fig. 6. WingLIFT demonstration cell architecture 

Resource, Controller, and Code. Production resources must be orchestrated by the 
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PLC on which a module can be installed to communicate with the agent). WingLIFT 

uses an intelligent agent to virtualise each resource. 

Agent. The WingLIFT architecture uses an agent-based approach to integrate re-

sources that do not support intelligent integration. Each agent is based around a 

streamlined version of the JADE agent platform [27]. The JADE Abstract Architec-

ture and Application frameworks have been utilized, but the Agent Communication 

and Agent Message Transport has been replaced by the RTI Connext DDS Pro pub-

lish-subscribe databus. Each WingLIFT agent extends the abstract JADE agent class, 

to provide structure for agent data management and behaviours.  

Communication. The WingLIFT agent communicates along two main channels: via 

the agent-resource translation layer, and via the inter-agent communication method 

(e.g. DDS): 

 Agent-resource translation layer: This translation layer allows the agent to com-

municate with the resource it is controlling. Where the resource is an HMI, it also 

allows the system to communicate with the human operator. While the agent side 

of this translation layer is common to all agents, the resource side of the layer must 

be customised to some degree to the specific (type/brand/make/model of) resource. 

This allows the agent to deal with the specific datatypes required by whatever in-

terface is available in the resource in order to trigger operations and receive data. 

 Inter-agent communication: Agents communicate with each other across a publish-

subscribe RTI Connext DDS Pro databus [28]. This is based on the OMG DDS 

standard [20], with individual message formats defined in turn using the OMG In-

terface Definition Language (IDL) [29], part of Common Object Request Broker 

Architecture (CORBA) [30]. Connext Pro allows both the use of standard publish-

subscribe communication and also request-reply messaging patterns as well. We 

use the request-reply pattern where appropriate, for example when sending com-

mands to specific resources and receiving the responses.  

6 Summary and Acknowledgements 

This paper has presented the WingLIFT approach to context-aware plug and produce 

for flexible robotic aerospace assembly based on a Data Distribution Service. This 

approach allows the system to accurately and dynamically track the configuration and 

status of the process end effectors in a flexible and reconfigurable production cell. 

This is grounded in an industrial use case where the potential end effector configura-

tions far outnumber the available automation platforms. The solution is presented as a 

set of design specifications along with a summary of a physical demonstration cell 

based at the University of Nottingham. 

The authors gratefully acknowledge the support provided by Innovate UK through 

the Aerospace Technology Institute WingLIFT project (project reference 113162). 
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