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ABSTRACT   

In this paper, we propose a light scattering method to identify classes of structured surface topographies and estimate 
their main geometric properties. The method is based on a cascaded machine learning model, designed as a two-layer 
architecture implemented using neural networks. The first layer consists of a classification model designed to determine 
which type/class of surface is being observed amongst a set of predefined surfaces The second layer, cascaded to the first 
one, is designed to infer geometric properties specific to the individual structured surface being measured within each 
class, for example, pitch and height for a grating-type surface. The training datasets for the cascaded machine learning 
model, i.e. scattering signals from different surfaces, are generated through rigorous scattering simulation applied to 
computer-generated surfaces and based on a boundary element method. Once the model is trained, any scattering signal 
obtained from a real surface belonging to the considered classes can be fed into the model, and both the surface class and 
specific values for its geometric properties can be quickly estimated. For validation, we developed a prototype 
experimental apparatus to generate light scattering data from real surface samples. Different grating patterns (classes) 
were considered, as well as different values for the main geometric properties specific to each class. Validation consisted 
both in the assessment of classification performance in recognising instances of each specific class and in quantification 
of estimation accuracy in determining the geometric properties of each instance, by comparison with measurements 
performed with atomic force microscopy.  
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1. INTRODUCTION  

Measurement of surface topography plays an important role in the manufacturing industry, as surface topography is one 
of the key factors to ensure the performance of a functional component [1]. Optical surface topography measurement [2], 
such as imaging confocal microscopy, focus variation microscopy and coherence scanning interferometry, may have 
difficulty to measure complex surface structures such as sharp edges and vee-grooves with high accuracy [3, 4]. Atomic 
force microscopy (AFM) [5] and scanning tunnelling microscope (STM) [6] has been demonstrated for on-machine 
measurement of micro-structured surfaces, but besides the low scanning speed, AFM and STM are limited by a 
compromise between range and resolution [7]. Light scattering techniques such as scatterometry are used for in-process 
surface measurement as they can infer surface information from scattering patterns [8], and they have the advantages of 
being non-contact, high speed and low-cost. Scatterometry has been widely used for the measurement of critical 
dimension in semiconductor chips [9] and measurement of surface roughness [10]. However, full reconstruction of 
surface topography from scattering patterns is still challenging, due to the complexity of the inverse scattering problem, 
in particular, because very similar scattering patterns may be generated by different surfaces.  

Our work stems from the consideration that, when information on the measured surface is available in advance (e.g. 
types of surface structure, range of values for its defining geometric parameters), one can infer a sizeable amount of 
information from any measured surface by testing against a finite range of alternative estimates. Such an approach works 
both when assessing what class a surface may belong to (by implementing classifiers), and when assessing the specific 
values for geometric/dimensional parameters that define the surface within a specific class (by implementing regressors). 
As the performance of any reconstruction solution based on such an approach is affected by breadth and heterogeneity of 
classes/parameter values that must be addressed at the same time, in this work we propose a solution specifically 



 
 

 

 

 

 

dedicated to addressing surface gratings, a family of structured surfaces characterised by periodic structures. Our 
solution covers multiple types/classes of gratings, each defined by geometric/dimensional parameters such as pitch and 
height. The solution consists of a cascaded model, i.e. a sequence of a classifier (to determine what class/type of grating 
each surface belong to) followed by a regressor (to determine the values for the geometric parameters specific to each 
class of grating). The model is cascaded because the type of regressor adopted to estimate the geometric parameters 
(second stage) depends on the result of the classifier (first stage). Both stages are based on machine learning models. The 
second stage is for each class addressed in the first stage but trained with different data.  

The highlight of the proposed cascaded machine learning model is that training can be performed on simulated data, 
whilst the trained model can then operate on real (experimental) light scattering data. A prototype system was built to 
demonstrate the surface reconstruction using this method for several types of grating surfaces.  

2. METHOD  

2.1 Cascaded machine learning model  

The diagram of the proposed cascaded machine learning model is shown in Fig. 1. The scattering signal is first fed into a 
classification machine learning model and the surface class can be identified. For each class of surface, corresponding 
regression machine learning models are trained to estimate the surface defining parameters for that particular class (e.g. 
pitch and height) for each specific type of grating. Once class and geometric parameters have been determined, the 
reference topography that is most representative of the measured one can be obtained by geometric reconstruction.  

The classification model can deal with various classes of surfaces (not limited to four as shown in Fig. 1). For each class 
of surface, multiple defining parameters can be determined (not limited to two as shown in Fig. 1). The regression 
models are independent of each other and can be reused when adding more surface types into the existing model. As a 
result, the design of the cascaded machine learning model is highly flexible and extendable.  

 
Figure 1. Diagram of the proposed cascaded machine learning model. 

2.2 Prototype system  

A prototype system was developed to evaluate the proposed method, as shown in Fig. 2. A collimated laser beam 
(wavelength = 633 nm, beam width ≈ 1 mm) is incident onto the surface of the measured sample at an angle of 45º. A 
sensor module (SM) constructed with a pinhole, a focusing lens and a photodiode is mounted on a rotation stage to 
capture the scattered light in an arc trajectory (similar to a goniometer). The scanning range is from 0º (the initial 
position is shown in Fig. 2) to 120º. The angular resolution is 0.1º for the scanning. The analogue scattering signal is 
processed by an amplifier (AMP), then converted to a digital signal by an analogue-to-digital converter (ADC), and 
finally recorded by a computer. The scattering signal can then be fed into the designed machine learning model.     



 
 

 

 

 

 

 
Figure 2. Designed of the prototype system. 

2.3 Machine learning models  

Two types of machine learning models are implemented in the proposed method, one for the classification stage, the 
other for the regression stage (estimation of the geometric parameters of the surface). The surface classes selected for 
this work are one-directional gratings so that two-dimensional (2D) scattering signals measured orthogonally to the 
grating direction can be considered as an adequate approximation of a fully three-dimensional (3D) case, and numerical 
simulation of the far-field is less complex and time consuming. The simulation can, therefore, be implemented to 
replicate the experimental set-up, with the same angle for the incident light (45°) and the same angular resolution in the 
resulting, simulated spectrum (0.1º over a 120° arc).  

A conceptual diagram for the classification stage (first stage of the cascaded model) is shown in Fig. 3, the core element 
being a neural network. In training, computer-generated surface instances (2D cross-sectional grating profiles) are 
inserted into the light scattering simulation model based on a boundary element method (BEM) [11, 12]. The far-field 
spectrum resulting from the simulation, binned into 0.1° arc intervals, is normalised (intensities converted to the 0 to 1 
interval) and fed into the input layer of the neural network (number of neurons equal to the number of bins). The neural 
network is fully connected, with a hidden layer and an output layer. The number of nodes in the output layer is equal to 
the number of classes handled by the classifier. Each node containing a 0 to 1 value representing the likelihood for each 
class. The classification result is taken as the node with the highest likelihood value. The neural network is trained by 
minimising the loss function designed as sparse categorical cross-entropy [13] and the optimisation algorithm is designed 
as the adaptive moment estimation [14]. The activation functions are rectified linear units (ReLU) [15]. For training, 
multiple scattering spectra are generated for each class by simulation. Each is characterised by small variations (incident 
illumination angle, the relative position of the illuminated region of the grating, values of the parameters defining the 
individual grating within each class) so that intrinsic variability in the input can be incorporated and classifier robustness 
can be increased.   

 
Figure 3. Diagram of the machine learning model for surface classification. 

In Fig. 4, the conceptual diagram for the regression stage of the cascaded model is shown. Whilst each regression unit 
will have the same architecture, training will be different as each is trained on data relative to a specific class of grating, 



 
 

 

 

 

 

and only one of its defining parameters. The pitch of a sinusoidal grating-class is considered as an example in Fig. 4. The 
regression stage is also powered by a neural network made of three layers: an input layer, a hidden layer and an output 
layer. As for the classifier, the input layer of the regressor consists of binned intensities of the scattering spectrum, again 
normalised to the 0 to 1 interval. However, compared to the classifier, there is only one neuron in the output layer, 
containing the value for the estimated geometric parameter (e.g. pitch). Again simulation is used to train the model, and 
again natural variability is included in the training set (incident illumination angle, the relative position of the surface 
cross-section and geometric parameters themselves) to increase the robustness of the regressor to variations across 
instances of the specific class of surfaces covered. The loss function for the neural network is modelled as the mean 
square error (MSE), the optimisation algorithm is RMSprop [16]. The activation functions are ReLUs [15]. As stated 
previously, a dedicated and separately trained regression model is needed of every geometric parameter to be estimated 
for each one of the classes being covered by the cascaded model.  

 
Figure 4. Diagram of the machine learning model for estimation of one of the surface defining parameters (e.g. pitch of 

sinusoidal grating). 

3. RESULTS AND DISCUSSION 

The range of surfaces selected for this work covered two distinct classes of gratings (blazed grating and sinusoidal 
grating) and two defining geometric parameters for each (pitch of the grating and peak-to-valley amplitude, referred to as 
height). Four physical samples were used for validation: two for the blazed grating class and two for the sinusoidal 
grating class). The blazed grating physical samples had spatial frequencies of 300 lines/mm and 600 lines/mm 
(corresponding pitch values 3.33 µm and 1.67 µm respectively), where their nominal height values were both 0.20 µm. 
The two sinusoidal gratings had spatial frequencies of 125 lines/mm and 400 lines/mm (corresponding pitch values 
8.00 µm and 2.50 µm respectively), where their nominal height values were 0.20 µm and 0.12 µm respectively. The 
reported spatial frequencies are nominal values thus, the surfaces were first measured by an AFM (Bruker FastScan) for 
validation and the results are shown in Fig. 5.  

 
Figure 5. AFM results for the surfaces, (a) blazed grating 300 lines/mm, (b) blazed grating 600 lines/mm, (c) sinusoidal 

grating 125 lines/mm, and (d) sinusoidal grating 400 lines/mm. 

The classification part of the cascaded machine learning model was designed to recognise twelve types of surfaces. They 
are blazed gratings with spatial frequencies of 125 lines/mm, 300 lines/mm, 400 lines/mm, 600 lines/mm, and sinusoidal 
gratings with spatial frequencies of 125 lines/mm, 300 lines/mm, 400 lines/mm, 600 lines/mm, and square gratings with 



 
 

 

 

 

 

spatial frequencies of 125 lines/mm, 300 lines/mm, 400 lines/mm, 600 lines/mm. The twelve classes are summarised in 
Table 1. Essentially, the adopted approach was to subdivide the values of the defining geometric parameters (pitch) into 
intervals, so that a more significant part of the reconstruction problem could be handled by the classifier (as opposed to 
simply discriminating between blazed and sinusoidal gratings), therefore, simplifying the work of the regressor model 
(as each specific regressor would have to deal with a narrower range of values). For each class, six observations were 
obtained by simulation, incorporating the intrinsic variability as illustrated earlier, leading to a total of 512 6 93312   
datasets.      

Table 1.  Surface classes defined for the classification model. 

Surface type Pitch/µm Height/µm Incident angle/º Sample offset in z 
direction/mm 

Alignment error in 
x direction/mm 

Blazed grating  

125 lines/mm 

7.20 to 8.80 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Blazed grating  

300 lines/mm 

2.99 to 3.66 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Blazed grating  

400 lines/mm 

2.25 to 2.75 0.10 to 0.13 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Blazed grating  

600 lines/mm 

1.50 to 1.83 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Sinusoidal grating  

125 lines/mm 

7.20 to 8.80 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Sinusoidal grating  

300 lines/mm 

2.99 to 3.66 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Sinusoidal grating  

400 lines/mm 

2.25 to 2.75 0.10 to 0.13 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Sinusoidal grating  

600 lines/mm 

1.50 to 1.83 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Square grating  

125 lines/mm 

7.20 to 8.80 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Square grating  

300 lines/mm 

2.99 to 3.66 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Square grating  

400 lines/mm 

2.25 to 2.75 0.10 to 0.13 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

Square grating  

600 lines/mm 

1.50 to 1.83 0.18 to 0.22 40.50 to 49.50 -1.00 to 1.00 -1.00 to 1.00 

 

The four physical samples were illuminated using the prototype system and the measured scattering signals (normalised) 
are shown in Fig. 6. Spectral binning led to 1201 data points for each spectrum. The scattering signals were then fed into 
the trained classifier. The classification results are shown in Fig. 7. The results show that all surfaces are successfully 
classified with very high probabilities.  



 
 

 

 

 

 

 
Figure 6. Measured scattering signals for the surfaces, (a) blazed grating 300 lines/mm, (b) blazed grating 600 lines/mm, (c) 

sinusoidal grating 125 lines/mm, and (d) sinusoidal grating 400 lines/mm. 

 
Figure 7. Classification results for, (a) blazed grating 300 lines/mm, (b) blazed grating 600 lines/mm, (c) sinusoidal grating 
125 lines/mm, and (d) sinusoidal grating 400 lines/mm. Horizontal axes: surface type 1 to 12 represent blazed gratings with 

125 lines/mm, 300 lines/mm, 400 lines/mm, 600 lines/mm, sinusoidal gratings with 125 lines/mm, 300 lines/mm, 400 
lines/mm, 600 lines/mm and square gratings with 125 lines/mm, 300 lines/mm, 400 lines/mm, 600 lines/mm, respectively. 

Vertical axes: the probabilities (likelihood) that the instance belongs to a specific class. 

Training datasets were also generated by simulation for the regression models. There were a total of 7776 10 77760   
datasets for each one of the 12 × 2 regression models (twelve classes, two parameters per class – pitch and height). The 
results obtained by feeding the trained regressors with real spectra obtained from the four physical samples are shown in 
Table 2. 



 
 

 

 

 

 

To evaluate the results for the regression models, least-squares best-fit values for the surface defining parameters were 
determined using the AFM data. The best-fit results are shown in Table 3. The results show that all predicted results 
using the proposed method are close to the best-fit values using the AFM data, which demonstrate the accuracy of the 
regression model.  

Table 2.  Regression results for surface defining parameters. 

Surface type Estimated pitch value/µm Estimated height value/µm 

Blazed grating 300 lines/mm 3.26  0.19  

Blazed grating 600 lines/mm 1.60  0.20  

Sinusoidal grating 125 lines/mm 7.53  0.18  

Sinusoidal grating 400 lines/mm 2.64  0.10  

 
Table 3.  Best-fit results for surface defining parameters from AFM data. 

Surface type Fitted pitch value/µm Fitted height value/µm 

Blazed grating 300 lines/mm 3.32  0.18  

Blazed grating 600 lines/mm 1.67 0.20 

Sinusoidal grating 125 lines/mm 7.70  0.18  

Sinusoidal grating 400 lines/mm 2.53  0.10  

 
After the surface defining parameters were determined, surface topographies were reconstructed from the estimation of 
their geometric parameters. The reconstructed surfaces were compared with the AFM data and the results are shown in 
Fig. 8 to 11. The AFM results were registered with the reconstructed surfaces using a method described elsewhere [17]. 
The difference between reconstruction and AFM measurement were quantitatively determined as shown in Fig. 8 to 
11(b). The RMS of the error (the local difference between the AFM and reconstructed topography) were 0.018 µm, 
0.025 µm, 0.010 µm and 0.015 µm respectively. The results show that the reconstructed surfaces have sub-micrometre 
level differences compared to the AFM results, which demonstrates the effectiveness of the proposed method.  

 
Figure 8. Reconstructed blazed grating surface (300 lines/mm), (a) registered with AFM data, (b) reconstruction error. 

 
Figure 9. Reconstructed blazed grating surface (600 lines/mm), (a) registered with AFM data, (b) reconstruction error. 



 
 

 

 

 

 

 
Figure 10. Reconstructed sinusoidal grating surface (125 lines/mm), (a) registered with AFM data, (b) reconstruction error. 

 
Figure 11. Reconstructed sinusoidal grating surface (400 lines/mm), (a) registered with AFM data, (b) reconstruction error. 

4. CONCLUSIONS  

This paper presents a cascaded machine learning model for the reconstruction of surface topography from light 
scattering, given the a priori knowledge of classes and ranges of geometric parameters that must be addressed in the 
inspection. The cascaded machine learning model is designed as a top-down structure that begins with a classification 
model followed by multiple regression models. Experiments show that the proposed method is capable of reconstructing 
surface topographies from light scattering signals. The proposed method is intrinsically extendable to cover more surface 
classes in multiple scenarios of industrial inspection.  
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