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Abstract: 

Reinforcement-related cognitive processes, such as reward processing, inhibitory control and 

social-emotional regulation are critical components of externalising and internalising 

behaviours. It is unclear to what extent the deficit in each of these processes contributes to 

individual behavioural symptoms, how their neural substrates give rise to distinct behavioural 

outcomes, and if neural activation profiles across different reinforcement-related processes 

might differentiate individual behaviours. We created a statistical framework that enabled us 

to directly compare functional brain activation during reward anticipation, motor inhibition 

and viewing emotional faces in the European IMAGEN cohort of 2000 14-year-old 

adolescents. We observe significant correlations and modulation of reward anticipation and 

motor inhibition networks in hyperactivity, impulsivity, inattentive behaviour and conduct 

symptoms, and describe neural signatures across cognitive tasks that differentiate these 

behaviours. We thus characterise shared and distinct functional brain activation patterns 

underling different externalising symptoms and identify neural stratification markers, while 

accounting for clinically observed co-morbidity.  
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Introduction 

Reinforcement-related behaviours are commonly implicated in normal behaviour and 

psychopathology. Symptoms of dysfunctional reinforcement-related cognitive processes may 

present as hyperactivity, inattention, conduct and emotional problems 1. These symptoms are 

manifest in common psychiatric disorders, such as depression, ADHD, addictions, conduct 

disorder and psychosis 2, 3, and share similar reinforcement-related cognitive processes, 

including reward processing, inhibitory control and social-emotional regulation 4. However, 

while similar cognitive processing deficits are involved in different disorders, there are clear 

differences in their behavioural presentation in each disorder. It is unclear if and how the 

reinforcement-related cognitive processes are modulated to achieve the observed 

behavioural differences among these disorders. Identifying the brain activity patterns related 

to various manifestations of dysfunctional reinforcement-related behaviour might aid in the 

characterisation of underlying biological mechanisms, and the identification of targets for 

therapeutic intervention 5. Furthermore, clinically relevant psychiatric symptoms typically are 

characterised by dysfunctions not only in one but often in several reinforcement-related 

cognitive processes. For example, ADHD symptoms are known to involve dysfunctional 

inhibitory control 1, as well as dysfunctional reward processing 6. We were interested in 

dissecting the contribution of different domains of reinforcement-related cognitive processes 

to distinct disorder symptoms, and thus characterise a profile of brain activation specific for 

each disorder. 
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Whereas animal models have identified networks of multiple cortical and subcortical 

brain regions involved in reinforcement-related cognitive processes 7, analyses in humans are 

often based on a few pre-defined regions of interest (ROI). These include the ventral striatum 

(VS) and orbital frontal cortex (OFC) for reward processing 8, right inferior frontal cortex (rIFC) 

for inhibitory control 9, and amygdala and superior temporal sulcus (STS) for social-emotional 

regulation 10, 11. Often, the underlying assumption is that a cognitive process can be 

represented by a few key brain regions. However, we 12 and others 13-16 have shown that task-

induced brain activity may involve a complex network of cortical and subcortical brain regions. 

We do not know, however, how activity in these networks relate to observable behaviour. 

In this paper we provide a systematic characterisation of brain activity in reinforcement–

related behaviour, measuring BOLD-response during tasks targeting reward anticipation, 

motor inhibition and social-emotional processing. We compare their common and distinct 

brain activity patterns and assess the modulation of task-specific networks in externalising 

(e.g. hyperactivity, inattention, impulsivity and conduct symptoms) and internalising (e.g. 

emotional and anxiety symptoms) behavioural symptoms 17. We also identify signatures of 

brain activity across tasks that best characterise symptoms of externalising disorders, as well 

as helping to distinguish one symptom domain from the other. 

 

Results 

Summary of Analysis Strategy 
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We aim to compare brain activity during functional neuroimaging tasks measuring reward 

anticipation, motor inhibition and social-emotional processing of 1506 14-year-old 

adolescents from IMAGEN project 4. Of the 1506 participants investigated in this study, clinical 

DAWBA ratings are available from 1190 individuals. Of these individuals 131 have one or more 

diagnoses. 33 individuals were diagnosed with ADHD, 59 with emotional problems, 12 with 

anxiety (general + other) and 33 with depression (major + other). We reduced the 

dimensionality of brain activation by applying a weighted voxel co-activation network analysis 

(WVCNA) 12, 18, followed by a hierarchical clustering analysis. The combination of both 

methods could efficiently reduce dimensionality while still preserving localised network 

features from WVCNA. We then calculated the overall correlation between fMRI clusters and 

symptoms of externalising or internalising behaviours using ridge-regularised canonical 

correlation analysis (RCCA) 19, a method to detect multivariate relations between different 

data types.  

First, we tested for an overall significant correlation of externalising or internalising 

symptoms with brain network activation across all fMRI tasks. In cases where we established 

an overall correlation, we looked for associations of each fMRI network with externalising or 

internalising behaviours. Finally, we investigated the sensitivity and specificity of fMRI clusters 

across different behaviour components. The above workflow was illustrated as Figure 1. 

 

Identification of Reinforcement-related Brain fMRI Networks 
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We defined brain networks underlying reinforcement-related behaviour by using the 

Monetary Incentive Delay (MID) task to measure reward processing 20, the Stop Signal Task 

(SST), to assess motor inhibition 21 and the Emotional Faces Task (EFT) to examine social-

emotional processing 22. In these tasks, we analysed contrasts that are most relevant to the 

reinforcement-related behaviour and eliciting the largest BOLD-difference, namely the ‘large 

win vs no win’ contrast during the reward anticipation phase in the MID task, the ‘successful 

stop vs successful go’ contrast in the SST, and the ‘angry face vs control’ contrast in the EFT.  

We applied WVCNA 12, 18, which was established by combining the scale-free network 

assumption with a dynamic cut of the dendrogram 23, to maximise the resolution of localised 

brain network features (see Materials and Methods for details). Using this approach, we 

identified in the MID a brain network consisting of 500 nodes (25130 voxels, Figure 2A); in the 

SST 487 nodes (24571 voxels, Figure 2B) and in the EFT 79 nodes (3923 voxels, Figure 2C). We 

further removed redundant information by applying an additional hierarchical clustering on 

these nodes with a static cut at the 90th percentile, keeping the 10% most distinctive 

branches (representing clusters) in each dendrogram. This two-step procedure enabled us to 

efficiently reduce dimensionality while still preserving localised network features from 

WVCNA (Table S1A-C). Using this approach, we identified 46 clusters in MID, 41 clusters in 

SST and 9 clusters in EFT (Table S1A-C and Extended Data Figure 1).  

In all three networks, activated clusters were widely spread across cortical and sub-

cortical regions, as well as in the cerebellum (Figure 2 and Extended Data Table 1). Brain 

regions activated in the three networks were often overlapping (Figure 2D). It is notable that 
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none of the regions of interest typically associated with reward processing or impulsiveness 

or social-emotional processing was specific to their corresponding networks. For example, VS 

and OFC typically linked to reward processing 8 were activated in both MID and SST; rIFC often 

associated with inhibitory control 9 was activated in both SST and EFT. STS, which is regarded 

as an essential component of the social brain 11 was also activated in both SST and EFT. The 

dorsal amygdala, a central node of emotional processing 10, was activated not only in EFT but 

also in MID. However, some activations were network-specific, for example, distinct 

activations during the MID in the superior post-central gyrus (i.e. the superior primary 

somatosensory cortex SPSC), primary auditory cortex (PAC), dorsal striatum and most of the 

cerebellar vermis; distinct activations in the SST were observed in the frontal operculum and 

the orbital part of rIFC (rIFC-Orb), inferior primary somatosensory cortex (iPSC) and the lingual 

part of the cerebellar vermis; and the EFT showed distinct activations in the medial 

orbitofrontal cortex (mOFC), dorsal posterior cingulate cortex (dPCC), temporal pole and the 

ventral amygdala (Figure 2D and Extended Data Table 1). 

 

Modulation of Reinforcement-related Brain fMRI Networks in Different 

Behaviours. 

Clinical psychopathology in adolescents is grouped into externalising and internalising 

disorders 24. We were interested in examining if externalising and internalising behavioural 

symptoms correlate with distinct configurations of reinforcement related networks. From the 

Strength and Difficulties Questionnaire (SDQ) and the Development and Well-Being 



10 

 

Assessment (DAWBA), we selected the entry-level questions, including 44 externalising items 

(Table 1A) covering symptoms of attentional deficit/hyperactivity disorder (ADHD; 23 items), 

oppositional defiance disorder (ODD; 11 items) and conduct disorder (CD; 10 items), and 21 

internalising items (Table 1B) covering symptoms of depression (12 items) and anxiety (8 

items) (see Materials and Methods for more details). To evaluate the overall relationship of 

behavioural symptoms and patterns of brain activation we carried out ridge-regularised 

canonical correlation analysis (RCCA) 19. This method seeks to find subsets of variables in two 

datasets that best correlate with each other while stabilising the result through penalisation 

of correlations within each dataset. We first investigated the overall correlation between 

externalising behaviours and 96 clusters from the three fMRI networks and found a significant 

canonical correlation (η2=0.854, 90%CIs=[0.839,0.869], adj-η2= 0.160, dffMRI=(1506,96), 

dfbehaviour=(1506,44), Pperm<0.001; see Materials and Methods for details; Table 2 and S2). 

Please note that a predefined scheme of regulation parameters has been evaluated 

throughout for all RCCAs and highly stable results were obtained as shown in Extended Data 

Table 2. For simplicity, we only show results with regulation parameter 0.1 in the main text. 

The number of permutations to calculate p-values in this and all subsequent analyses is 

10,000 unless otherwise specified. Also, presented p-values are always corrected for 

experimental-wise multiple comparisons wherever applicable. We then investigated the 

RCCA between internalising behaviours and the same 96 fMRI clusters but found no overall 

significance (η2=0.574, 90%CIs=[0.547,0.602], adj-η2=-0.024, dffMRI=(1506,96), 

dfbehaviour=(1506,20), PPerm=0.786, see Extended Data Table 3 for more results with alternative 
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parameters). We also did not find significant overall correlations with internalising behaviours 

when analysing each fMRI network separately (Extended Data Table 3). We, therefore, 

constrained our subsequent analyses to externalising behaviours only. 

Next, we investigated the contribution of each brain network to different behavioural 

conditions. For the reward anticipation network, we found an overall significant correlation 

with externalising behaviours (η2 = 0.579, 90%CIs = [0.551,0.607], adj-η2 = 0.052, dffMRI = 

(1506,46), dfbehaviour = (1506,44), PPerm=0.036, Table 2 and S2). This correlation was then 

observed significant with ADHD behaviours (η2 = 0.365, 90%CIs = [0.335,0.394], adj-η2 = 0.038, 

dffMRI = (1506,46), dfbehaviour = (1506,23), PPerm=0.029, Table 2 and S2), but not so with ODD/CD 

behaviours (η2 = 0.338, 90%CIs = [0.307,0.370], adj-η2 = 0.017 dffMRI = (1506,46), dfbehaviour = 

(1506,21), PPerm=0.203, Table 2 and S2), indicating that reward anticipation might be 

important for ADHD symptoms. For the motor inhibition network, we found an overall 

significant correlation with externalising behaviours (η2 = 0.573, 90%CIs = [0.543,0.603], adj-

η2 = 0.103, dffMRI = (1506,41), dfbehaviour = (1506,44), PPerm <0.001, Table 2 and S2). This 

correlation was then observed significant with ADHD behaviours (η2 = 0.352, 90%CIs = 

[0.320,0.384], adj-η2 = 0.052, dffMRI = (1506,41), dfbehaviour = (1506,23), PPerm=0.003, Table 2 

and S2), as well as with ODD/CD behaviours (η2 = 0.343 90%CIs = [0.309,0.376], adj-η2 = 0.054, 

dffMRI = (1506,41), dfbehaviour = (1506,21), PPerm=0.003, Table 2 and S2), indicating that motor 

inhibition might play a role in both ADHD and ODD/CD symptoms. For the social-emotional 

processing network, we found neither significant correlation with externalising behaviours 

(η2 = 0.175, 90%CIs = [0.148,0.203], adj-η2 = 0.005, dffMRI = (1506,9), dfbehaviour = (1506,44), 
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PPerm=0.392, Table 2 and S2), nor with ADHD behaviours (η2 = 0.089, 90%CIs = [0.068,0.110], 

adj-η2 = -0.004, dffMRI = (1506,9), dfbehaviour = (1506,23),PPerm=0.634, Table 2 and S2) or ODD/CD 

behaviours (η2 = 0.092, 90%CIs = [0.071,0.112], adj-η2 = 0.004, dffMRI = (1506,9), dfbehaviour = 

(1506,21), PPerm=0.294, Table 2 and S2) alone. While the above RCCA results provide no 

indication on the direction of correlation, brain activations during reward anticipation (the 

MID task) and motor inhibition (the SST) show predominantly negative correlations with 

externalising behaviours through univariate correlation analyses as shown in the following 

sections (see Table 3 and Table S2-S4). 

 

Functional brain characterisation of behaviours across different tasks.  

While both reward anticipation and motor inhibition networks show significant canonical 

correlations with ADHD behaviours, neither correlation, between the first components of 

RCCA (its square is known as Roy’s largest root25) was significant on its own (RRoy =0.234, 

ZFisher=0.237, 90%CIs(ZFisher)=[0.202,0.274], PPerm=0.087 for reward anticipation; RRoy=0.225, 

ZFisher=0.229, 90%CIs(ZFisher)=[0.193,0.266], PPerm=0.151 for motor inhibition) and was 

additional shown to be significantly smaller than a meaningful effect through an equivalence 

test for inferiority 26 (t=-3.98, p<0.001 for UZ = 0.324 of reward anticipation; t=-4.06, p<0.001 

for UZ = 0.319 of motor inhibition; LZ=-∞; the upper bound UZ was calculated as the estimated 

inflation of ZFisher plus a small effect size ΔZ=0.1 27, see Materials and Methods for more 

details). These results therefore showed that the overall significant correlation was unlikely 

to be represented by an individual RCCA component. Therefore, we hypothesised that 
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distinctive neural bases may underlie different ADHD behaviours and investigated profiles 

across brain networks that may characterise the ADHD components hyperactivity, inattention 

or impulsivity (see Materials and Methods). As the factors generated by RCCA are not 

optimised to detect differences in the brain function underlying these behaviours, we applied 

a more sensitive multiple linear regression model. Together, reward anticipation and motor 

inhibition networks were found in significant association with the summed score (i.e. the total 

score) of ADHD behaviours (R2=0.085, 90%CIs=[0.063,0.106], adj-R2=0.029, F(87,1418)=1.51, 

P=0.002, where R2 is the coefficient of determinant that represents the proportion of 

behavioural variance explained by the fMRI networks in the multiple linear model), as well as 

the total scores of ADHD components hyperactivity (R2=0.089, 90%CIs=[0.067,0.110], adj-

R2=0.033, F(87,1418)=1.58, P<0.001), impulsivity (R2=0.077, 90%CIs=[0.057,0.098], adj-R2=0.021, 

F(87,1418)=1.37, P=0.017) and inattention (R2=0.079, 90%CIs=[0.058,0.100], adj-R2=0.022, 

F(87,1418)=1.40, P=0.011). However, we did not find evidence for identical  associations of 

these ADHD behaviours with reward anticipation and motor inhibition networks: while the 

motor inhibition network was found in significant association with the total scores of all three 

ADHD components (R2=0.045, 90%CIs=[0.028,0.061], adj-R2=0.018, F(41,1464)=1.67, P=0.005 for 

hyperactivity; R2=0.051, 90%CIs=[0.033,0.069], adj-R2=0.024, F(41,1464)=1.92, P=<0.001 for 

impulsivity; R2=0.042, 90%CIs=[0.026,0.059], adj-R2=0.016, F(41,1464)=1.58, P=0.011 for 

inattention), the reward anticipation network showed a significant association with the total 

score of hyperactivity (R2=0.043, 90%CIs=[0.027,0.059], adj-R2=0.013, F(46,1459)=1.427, 

P=0.033), however, we found no evidence for an association with impulsivity (R2=0.027, 
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90%CIs=[0.014, 0.040], adj-R2=-0.004, F(46,1459)=0.885, P=0.691) and inattention (R2=0.037, 

90%CIs=[0.022, 0.052], adj-R2=0.006, F(46,1459)=1.214, P=0.156). 

 

fMRI signature for hyperactivity 

The hyperactivity total score was significantly associated with reduced activation in six 

out of 46 brain regions in the reward anticipation network: superior parietal lobule (SPL), 

middle central sulcus (mid-CS), thalamus, primary auditory cortex (PAC), middle cingulate 

cortex (MCC) and superior frontal junction (SFJ) (Figure 3A, Table 3A and Table S2). We 

investigated the specificity of the observed associations and found that SPL, mid-CS and 

thalamus were also associated with inattention, and mid-CS and MCC were associated with 

ODD/CD behaviours, whereas no significant association was found with impulsivity (Table 3A 

and Table S2). The brain regions showed no significant difference in association strength with 

hyperactivity and with inattention (ΔZsum=-0.142, 95%CIs=[-0.384,0.100], PPerm=0.834), as well 

as with ODD/CD behaviours (ΔZsum=-0.128, 95%CIs=[-0.377,0.121], PPerm=1 (Table 4), which 

were further found significantly smaller than a meaningful effect size with equivalence tests 

(for inattention: t=3.71, Pone-tailed <0.001 for LΔZ = -0.10 and t=6.02, Pone-tailed <0.001 for UΔZ = 

0.10; for ODD/CD behaviours: t=3.71, Pone-tailed <0.001 for LΔZ = -0.10 and t=5.72, Pone-tailed 

<0.001 for UΔZ = 0.10), but significantly weaker in the case of impulsivity (ΔZsum=-0.308, 

95%CIs=[-0.522,-0.094], PPerm =0.017) (Table 4). Thus, our findings suggest a shared specificity 

of brain activation during reward anticipation in hyperactivity, inattention and ODD/CD 

behaviours, but not in impulsivity (Figure 3E). 
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In the motor inhibition network, however, despite the overall significant association, 

none of the six brain regions was significantly associated with hyperactivity (Table S3A), 

suggesting that the observed overall association was based on multiple fMRI regions of the 

motor inhibition network, each with a minor contribution. 

 

fMRI signature for impulsivity 

The left temporoparietal junction (TPJ) of the motor inhibition network was associated 

with impulsivity (R=-0.092, 95%CIs=[-0.142,-0.041], t=-3.563, PPerm=0.010) (Figure 3B, Table 

3B and Table S3B), and additionally - in exploratory analyses - associated with hyperactivity 

(R=-0.067, 95%CIs=[-0.117,-0.016], t=-2.59, PPerm=0.025) and ODD/CD behaviours (R=-0.071, 

95%CIs=[-0.118,-0.017], t=-2.64, PPerm=0.016), but not so with inattention (R=-0.058, 

95%CIs=[-0.109,-0.008], t=-2.270, P=0.062) (Table 3B and Table S3B), where no significant 

difference in the strength of association was observed ( Δ ZHyper=-0.025, 95%CIs=[-

0.073,0.022], PPerm=0.823; Δ ZInatt=-0.033, 95%CIs=[-0.079,0.012], PPerm=0.456; Δ ZODDCD=-

0.021, 95%CIs=[-0.069,0.027], PPerm =1) (Table 5A), which were further found significantly 

smaller than a meaningful effect size with equivalence tests (for hyperactivity: t=3.10, Pone-

tailed <0.001 for LΔZ = -0.10 & t=5.17, Pone-tailed <0.001 for UΔZ = 0.10; for inattention: t=2.86, Pone-

tailed =0.002 for LΔZ = -0.10 & t=5.73, Pone-tailed <0.001 for UΔZ = 0.10; for ODD/CD behaviours: 

t=3.21, Pone-tailed <0.001 for LΔZ = -0.10 & t=4.93, Pone-tailed <0.001 for UΔZ = 0.10). Together, this 

suggests a shared specificity across ADHD and ODD/CD behaviours during motor inhibition 

(Figure 3E).  
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fMRI signature for inattention 

In the motor inhibition network, we found significant association of the right anterior 

inferior frontal sulcus (aIFS) with inattention (R=-0.087, 95%CIs=[-0.137,-0.037], t=-3.392, 

PPerm=0.019), as well as - in exploratory analyses - association with ODD/CD behaviours (R=-

0.084, 95%CIs=[-0.126,-0.026], t=-2.957, PPerm=0.004), but not with impulsivity (R=-0.056, 

95%CIs=[-0.106,-0.006], t=-2.184, PPerm=0.073) and hyperactivity (R=-0.017, 95%CI=[-0.068, 

0.033], t=-0.666, PPerm=0.833) (Figure 3C, Table 3C and Table S3C). The strength of association 

of aIFS with inattention is not significantly different to those with impulsivity (ΔZ=-0.031, 

95%CIs=[-0.080,0.018], PPerm=0.562) and ODD/CD behaviours ( Δ Z=-0.004, 95%CIs=[-

0.052,0.045], PPerm=1) (Table 5B), which were further found significantly smaller than a 

meaningful effect size with equivalence tests (for impulsivity: t=2.77, Pone-tailed =0.003 for LΔZ 

= -0.10 and t=5.26, Pone-tailed <0.001 for UΔZ = 0.10; for ODD/CD: t=3.98, Pone-tailed <0.001 for LΔZ 

= -0.10 and t=4.18, Pone-tailed <0.001 for UΔZ = 0.10). However, the strength of association of 

aIFS with inattention is significantly stronger than that with hyperactivity ( Δ Z=-0.070, 

95%CIs=[-0.124,-0.017], PPerm=0.017) (Table 5B), suggesting distinct specificities of 

hyperactivity and inattention during motor inhibition, and shared specificity of inattention 

with impulsivity and ODD/CD behaviours (Figure 3E). 

 

fMRI signatures for ODD/CD behaviours 
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ODD/CD behaviours were found only in a significant canonical correlation with the motor 

inhibition network. Right aIFS (R=-0.084, 95%CIs = [-0.126,-0.026], t=-2.96, PPerm=0.027) and 

right IFC/anterior insula (R=-0.090, 95%CIs=[-0.133,-0.033], t=-3.25, PPerm=0.011) were 

associated with the summed score of ODD/CD behaviours (Figure 3D, Table 3D and Table S4). 

While both regions were also significantly associated with ODD behaviours alone and the right 

IFC/anterior insula was associated with CD behaviours (Table S4), their association strength 

with ODD behaviours is significantly stronger than that with CD behaviours (ΔZsum = -0.090, 

95%CIs =[-0.175,-0.006], PPerm = 0.039), suggesting a predominant role of ODD behaviours in 

the associations with both brain regions. Together ODD/CD prominent regions showed no 

significant difference in association strength with ODD/CD behaviours and with inattention (

ΔZsum=-0.041, 95%CIs=[-0.122,0.055], PPerm=1), as well as with impulsivity (ΔZsum=-0.073, 

95%CIs=[-0.164,0.019], PPerm=0.274) (Table 5C), which were further found significantly 

smaller than a meaningful effect size with equivalence tests (for inattention: t=3.68, Pone-

tailed<0.001 for LΔZ=-0.10 and t=5.16, Pone-tailed<0.001 for UΔZ=0.10; for impulsivity: t=2.72, Pone-

tailed=0.003 for LΔZ=-0.10 and t=5.83, Pone-tailed <0.001 for UΔZ=0.10), but significantly lower than 

the association strength with hyperactivity ( Δ Zsum=-0.0143, 95%CIs=[-0.237,-0.049], 

PPerm=0.007) (Figure 3E and Table 5C). 

In conclusion of the above results, ADHD and ODD/CD may share several distinctive 

neural bases during reward anticipation and motor inhibition.  

 

Discussion 
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Here we characterise clinically relevant behaviours in adolescents by describing brain 

activation during reinforcement-related cognitive processes. These behaviours include 

externalising symptoms of hyperactivity, impulsiveness and inattention, oppositional 

defiance and conduct, and internalising symptoms of anxiety and depression. We have used 

quantitative measures to assess these behaviours, as empiric evidence shows that 

psychopathology is generally more dimensional than categorical 28, one of the basic premises 

of the Research Domain Criteria (RDoC) 29. We interrogate the neural basis of each of these 

behaviours by measuring brain activity during reinforcement-related cognitive tasks of 

reward processing, motor inhibition and social-emotional processing.  

We find that activation of similar brain regions is often associated with different tasks 

(and behaviours). While well-known representative brain areas (e.g. VS and OFC for reward 

anticipation 8, right-IFC for inhibitory control 9, and amygdala and STS for social-emotional 

processing 10, 11) were activated as expected, these activations were not restricted to one task 

alone (Figure 2D). This might represent the involvement of shared cognitive components in 

different behaviours that might be less specific to individual tasks. For example, the VS 

activation during motor inhibition was due to the anticipation of a random event 30, thus 

sharing the anticipatory component with the reward anticipation network that also activates 

the same region. In some instances, it may also be caused by brain activation that reflects 

task presentation (for example, motor cortex activation in the ‘active’ MID and SST, but not 

in the passive viewing EFT). Our observation is consistent with the notion of a basic neural 

function that underlies a complex profile of different behaviours 31.  
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However, the overlap of brain activation across cognitive tasks might also indicate the 

presence of different functional or structural domains within a given brain region that relate 

differentially to each task 32. This latter hypothesis is supported by the observation of low 

correlations of the same brain regions across tasks. In contrast, we found high correlations 

between different brain regions within each task, suggesting network constellations that are 

specific to each individual cognitive task. This specificity was further suggested by the 

observation that the variance of hyperactivity explained by reward anticipation and motor 

inhibition networks are additive (i.e. adj-R2 were 0.033, 0.013 and 0.018 for both networks, 

reward anticipation and motor inhibition, respectively), and thus not overlapping. The 

specificity of cognitive neural networks might thus be defined as much by their internal 

collaborative structure as by the individual brain regions involved 33. 

We also found highly activated regions (Cohen’s D>0.30) in the MID task that were 

normally not expected in the anticipation of a visually presented reward. They included, for 

instance, the primary auditory cortex (PAC) that we observed to be activated in the absence 

of any auditory stimulus. As the PAC has been found to predict reward value 16 and is 

associated with anticipatory motor response 34 upon auditory stimulation, our findings point 

towards the possibility of the PAC underlying these cognitive processes in a way that is not 

dependent on the quality of the sensory stimulus. In addition, wide areas within the 

somatosensory cortex were also activated in the MID task, further suggesting the recruitment 

of sensory cortices (including the visual cortices) during reward anticipation irrespective of 

the quality of the signal input 35. 
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We found a strong overall correlation (adj-η2 = 0.160, i.e. 16% of variance explained after 

adjusting for inflation due to the involvement of multiple variables) of neural networks with 

externalising behaviours (ADHD and ODD/CD), particularly in reward anticipation and motor 

inhibition, but did not observe a significant correlation with internalising behaviours (adj--η2 

= -0.024). While ADHD behaviours were related to both reward anticipation and motor 

inhibition networks, we found specific neural signatures that distinguished each of the 

individual behaviours. While brain activity in the reward anticipation network was correlated 

with both hyperactivity and inattention (Table 3A), their activation patterns were not 

significantly different (Figure 3E and Table 4), and in fact equivalent. However, in the motor 

inhibition network, the correlation with inattention was significantly stronger than that with 

hyperactivity (Figure 3E, Table 3C and Table 5B), consistent with a greater effort to maintain 

sustained attention during the task. This interpretation is supported by the strong correlation 

during successful motor inhibition of inattention with right inferior frontal cortical activity 

(Figure 3C and Table 3C), a brain region previously implicated in attentional detection, 

monitoring and motor inhibition 9. 

In contrast, in impulsivity we found no significant correlation with the reward anticipation 

network. In the motor inhibition network, its strongest correlation was with activation of the 

left temporal-parietal junction (TPJ) (Figure 3B and Table 3B), but there were no significant 

differences and in practical equivalence of the activation patterns of both hyperactivity and 

inattention (Figure 3E and Table 5B). This observation is in line with the previous finding of 

reduced bilateral TPJ activity in ADHD patients 36. 
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We, thus, identify neural signatures that distinguish hyperactivity, inattention and 

impulsivity on the basis of brain activation patterns during reward anticipation and motor 

inhibition. These signatures enable a more refined characterisation of ADHD behaviour than 

the currently used distinction between motivational vs motor inhibitory processes 37. 

ODD/CD behaviours were only related to the motor inhibition network, but not reward 

anticipation, which is in line with previous findings 38, 39. Activation patterns for ODD and CD 

behaviours in the motor inhibition network were similar, although dominated by ODD 

behaviours, suggesting a shared neural basis (Table S4) 40. Surprisingly, we were not able to 

distinguish activation patterns in the motor inhibition network in conduct and inattention 

symptoms (Figure 3 C-E, Table 3 C&D, Table 5 B&C), which were also found practically 

equivalent. While this may indicate in part a shared neural basis, the phenotypic differences 

between these behaviours also suggest the presence of a distinguishing cognitive domain, 

which we have not captured in our tasks. Nevertheless, the shared neural signatures between 

ODD/CD and ADHD symptoms indicate a shared neural basis underlying the high comorbidity 

between ODD/CD and ADHD 41, 42, supporting the idea of unifying ADHD and ODD/CD into a 

single spectrum disorder 43. 

It is a limitation of this work, and indeed of all task-based fMRI studies that none of the 

tasks selected represents all aspects of the behavioural domain interrogated. For example, 

the ‘Research Domain Criteria’ (RDoC) divide reward processing into three different 

constructs and nine sub-constructs. The MID interrogates only two sub-constructs, reward 

anticipation and early response to reward. Nonetheless, it is well established that MID, SST 
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and EFT capture important and clinically relevant aspects of reward processing 12, 

impulsiveness (and in particular response inhibition) 44 and social-emotional processing 10, 

respectively. While we showed distinctive patterns in neural networks that stratify ADHD 

subtypes/components during reward anticipation (i.e. the motivational pathway) and motor 

inhibition, the explained variance from individual regions of these neural networks is low 

(R2<1%), which might be partly due to a task-dependent, incomplete representation of neural 

pathways underlying ADHD. However, given that together the neural networks could explain 

up to 16% variance of externalising behaviours (i.e. adj-η2=0.160 for RCCA after adjusting for 

the number of variables; also note this effect could be even larger should the ridge restriction 

not be applied), the observed small effect size in the univariate analyses might be due to two 

additional factors: first, the current behavioural constructs, for example hyperactivity, 

impulsivity and inattention of ADHD, might themselves hide heterogeneity leading to reduced 

explanation of variance; second, neural networks might not be homogenous, for example, 

despite a significant overall association of the motor inhibition network with hyperactivity 

across all 40 brain clusters (adj-R2=0.018), no cluster survived correction for multiple 

comparisons (Table S3A). This is in striking contrast to the greater homogeneity of the reward 

anticipation network, where 6 out of 46 brain clusters were in significant association with 

hyperactivity (Table 3A and Table S2), despite a smaller overall explained variance (adj-R2 = 

0.013). Thus, the reduced effect size may highlight the heterogeneity of behavioural 

components as well as neural networks. 
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Our approach provides a unified framework to investigate brain activity in reinforcement-

related behaviour enabling the characterisation of shared and distinct functional brain 

activation patterns that underlie different externalising symptoms. It also results in the 

identification of neural signatures that may help to stratify these symptoms, while accounting 

for clinically observed co-morbidity.   
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Materials and Methods 

Ethical Approval 

The IMAGEN study was approved by local ethics research committees at each research 

site: King’s College London, University of Nottingham, Trinity College Dublin, University of 

Heidelberg, Technische Universität Dresden, Commissariat à l’Energie Atomique et aux 

Energies Alternatives, and University Medical Center. Informed consent was sought from all 

participants and a parent/guardian of each participant. 

 

Participants 

One thousand five hundred and six adolescents (mean age = 14.44 y old; SD = 0.42; range 

= 12.88–16.44 y old, female-male ratio=783/723) from the baseline assessment of the 

IMAGEN sample with complete data in fMRI and behavioural measurements were included 

in the analyses. Of the 1506 participants investigated in this study, clinical DAWBA ratings are 

available from 1190 individuals. Of these individuals 131 have one or more diagnoses: 33 

individuals were diagnosed with ADHD, 59 with emotional problems, 12 with anxiety (general 

+ other) and 33 with depression (major + other). Detailed descriptions of this study have 

previously been published 4. Gender, handedness and imaging sites were regressed out 

before conducting canonical correlation analyses and henceforward in all rest analyses.  

 

Strength Difficulty Questionnaire (SDQ) and DAWBA 
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The Strength and Difficulties Questionnaire (SDQ) 45 is a brief 25-item behavioural 

screening tool probing hyperactivity, emotional symptoms, conduct problems, peer problems 

and prosocial behaviour for 3-16 years old. In the current study, we chose parent-rated 

hyperactivity (5 items) and conduct problem (5 items) to present externalising problems 

(Table 1A), and child-rated emotional problem (5 items) to represent internalising problems 

(Table 1B). Such a choice is based on findings that externalising problems scores from parents 

is more reliable than those from children themselves, and vice versa 46. 

In DAWBA 47, similar to SDQ, parents-rated ADHD and ODD/CD items (Table 1A), and 

child-rated special phobia, social phobia, general anxiety, fear and depressions items (Table 

1B) are included in the analyses. 

 

fMRI Data Acquisition and Analysis  

Structural and functional MRI data were acquired at eight IMAGEN assessment sites with 

3T MRI scanners of different manufacturers (Siemens, Philips, General Electric, Bruker). The 

scanning variables were specifically chosen to be compatible with all scanners. The same 

scanning protocol was used in all sites. In brief, high-resolution T1-weighted 3D structural 

images were acquired for anatomical localization and co-registration with the functional time-

series. Blood-oxygen-level-dependent (BOLD) functional images were acquired with gradient-

echo, echo-planar imaging (EPI) sequence. For all tasks, 300 volumes were acquired for each 

participant, and each volume consisted of 40 slices aligned to the anterior 

commission/posterior commission line (2.4 mm slice thickness, 1 mm gap). The echo-time 
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(TE) was optimized (TE=30 ms, repetition time (TR)=2,200 ms) to provide reliable imaging of 

subcortical areas.  

Functional MRI data were analysed with SPM8 (Statistical Parametric Mapping, 

http://www.fil.ion.ucl.ac.uk/spm). Spatial preprocessing included: slice time correction to 

adjust for time differences due to multi-slice imaging acquisition, realignment to the first 

volume in line, non-linearly warping to the MNI space (based on a custom EPI template 

(53x63x46 voxels) created out of an average of the mean images of 400 adolescents), 

resampling at a resolution of 3x3x3mm3 and smoothing with an isotropic Gaussian kernel of 

5 mm full-width at half-maximum.  

At the first level of analysis, changes in the BOLD response for each subject were assessed 

by linear combinations at the individual subject level, for each experimental condition (e.g. 

reward anticipation high gain of Monetary Incentive Delay (MID) task), each trial was 

convolved with the hemodynamic response function to form regressors that account for 

potential noise variance, e.g. head movement, associated with the processing of reward 

anticipation. Estimated movement parameters were added to the design matrix in the form 

of 18 additional columns (three translations, three rotations, three quadratic and three cubic 

translations, and every three translations with a shift of ±1 TR). 

For the MID anticipation phase we contrasted brain activation during ‘anticipation of high 

win [here signaled by a circle] vs anticipation of no-win [here signaled by a triangle]’; For the 

emotional faces task (EFT) we contrasted brain activation during ‘viewing Angry Face vs 

viewing Control [circles]’; For the stop signal task (SST) we contrasted brain activation during 

http://www.fil.ion.ucl.ac.uk/spm
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‘successful stop vs successful go’. The single-subject contrast images were then taken to the 

population-based weighted co-activation network analysis. 

 

The Monetary Incentive Delay Task for fMRI 

Participants performed a modified version of the Monetary Incentive Delay (MID) task to 

examine neural responses to reward anticipation and reward outcome 20. The task consisted 

of 66 10-second trials. In each trial, participants were presented with one of three cue shapes 

(cue, 250 ms) denoting whether a target (white square) would subsequently appear on the 

left or right side of the screen and whether 0, 2 or 10 points could be won in that trial. After 

a variable delay (4,000-4,500 ms) of fixation on a white crosshair, participants were instructed 

to respond with left/right button-press as soon as the target appeared. Feedback on whether 

and how many points were won during the trial was presented for 1,450 ms after the 

response (Extended Data Figure 26). Using a tracking algorithm, task difficulty (i.e. target 

duration varied between 100 and 300 ms) was individually adjusted such that each participant 

successfully responded on ~66% of trials. Participants had first completed a practice session 

outside the scanner (~5 minutes), during which they were instructed that for each 5 points 

won they would receive one food snack in the form of small chocolate candies.  

Based on prior research suggesting reliable associations between ADHD-symptoms and 

fMRI BOLD responses measured during reward anticipation, the current study used the 

contrast ‘anticipation of high-win vs anticipation of no-win’. Only successfully ‘hit’ trials were 

included here. 
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The Emotional Reactivity fMRI Paradigm (Emotional Faces Task) 

This task was adapted from 22. Participants watched 18-second blocks of either a face 

movie (depicting anger or neutrality) or a control stimulus. Each face movie showed black and 

white video clips (200-500ms) of male or female faces. Five blocks each of angry and neutral 

expressions were interleaved with nine blocks of the control stimulus. Each block contained 

eight trials of 6 face identities (3 female). The same identities were used for the angry and 

neutral blocks. The control stimuli were black and white concentric circles expanding and 

contracting at various speeds that roughly matched the contrast and motion characteristics 

of the face clips (Extended Data Figure 3). 

The neutral blocks contained emotional expressions that were not attributable to any 

particular emotion (e.g. nose twitching); however previous research has suggested that 

neutral stimuli are not always interpreted as such. Functional imaging studies have found 

significant activation of the amygdala in response to the presentation of neutral faces in 

healthy adult males 48, social anxiety patients and matched control participants 49, 

adolescents with conduct disorder problems 50 and young men with violent behaviour 

problems 51. This suggests that neutral faces may be interpreted as emotionally ambiguous. 

This study focused specifically on the effects of viewing angry faces (vs control) to eliminate 

this ambiguity so that any significant relationships between behaviour and brain could be 

interpreted as the consequence of viewing negative social stimuli (anger). 
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The Stop Signal Task for fMRI 

Participants performed an event-related stop signal task (SST) task designed to study 

neural responses to successful and unsuccessful inhibitory control 21. The task was composed 

of Go trials and Stop trials. During Go trials (83%; 480 trials) participants were presented with 

arrows pointing either to the left or to the right. During these trials, subjects were instructed 

to make a button response with their left or right index finger corresponding to the direction 

of the arrow. In the unpredictable Stop trials (17%; 80 trials), the arrows pointing left or right 

were followed (on average 300 ms later) by arrows pointing upwards; participants were 

instructed to inhibit their motor responses during these trials (Extended Data Figure 452). A 

tracking algorithm changes the time interval between Go signal and Stop signal onsets 

according to each subject’s performance on previous trials (average percentage of inhibition 

over previous Stop trials, recalculated after each Stop trial), resulting in 50% successful and 

50% unsuccessful inhibition trials. The inter-trial interval was 1,800 ms. The tracking algorithm 

of the task ensured that subjects were successful on 50% of Stop trials and worked at the 

edge of their own inhibitory capacity. 

 

Population-based Weighted Voxel Co-Activation Network Analysis 

The weighted voxel co-activation network analysis (WVCNA) 12, 18 was applied to 

parcellate those highly co-activated voxels in all three fMRI contrasts, e.g. large win vs no win 

contrast anticipation phase of MID task, angry face vs control contrast of face task and 

successful stop vs successful go contrast of SST. Such a parcellation procedure could 



30 

 

effectively reduce the dimensionality without losing too much information. The procedure is 

summarised as below: 

Pre-processing. For all three tasks, the initial pre-processing steps involved removing null 

voxels (including the removal of out-brain voxels based on Automated Anatomical Labelling 

(AAL) template) and potential participant outliers from contrast data based on low inter-

sample correlations. The activation maps of pre-processed data were then generated and 

only those positive activations with at least a medium effect size, i.e. Cohen’s D>0.3 (see the 

following section for more details), will be included in the following analyses. 

Parameter Selection. To minimize the arbitrary choice of parameters, we took the default 

and suggested settings of R package ‘WGCNA’ 53, except for the soft-thresholds of adjacency 

matrices, which were determined as 7 for the MID, 8 for the EFT and 7 for the SST based on 

the fitness of scale free topology criteria (Extended Data Figure 5). The above adjacency 

matrices will then be used to generate the topology overlapping matrices (TOMs), which 

capture both the direct and indirect connections among voxels. The hierarchical clustering 

will then be applied on the distance matrices, as 1-TOMs, and together with the dynamic cut 

tree function, the fMRI modules will be generated as functional ROIs. The first principle 

component of each module will be included in the following analysis to represent the brain 

activation (or BOLD response). No merge of modules will be conducted after the hierarchical 

clustering to avoid using an arbitrary threshold.  

 

The Effect Size Threshold for Brain Activation 
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Cohen’s D is defined as 
β1−β2

σpooled
, and Cohen proposed (although reluctantly) to use 

Cohen’s D=0.5 for a two-sample t-test, as well as an alternative option of using correlation 

coefficient r=0.3, as the threshold for a median effect size 27. As pointed out by Cohen, these 

two effect sizes (i.e. D and r) could be mutually transformed (i.e. a two-sample t-test could be 

alternatively understood as testing for a correlation between the group label and the pooled 

sample) that (in case the variances are equal in both groups and the total sample is N): 

t

√N
=
D2−sample

k
=

r

√1 − r2
 

, where t is the t-statistic and k is determined by the percentage of each group in the full 

sample (i.e. p and q respectively) as √1 𝑝𝑞⁄ , of which the minimum value 2 is acquired when 

the sample sizes are equal in both groups, i.e. p=q. A clear difference between D and r in a 

two-sample t-test could therefore be readily understood as while the achieved statistical 

power depends on the exact sample size in each group for Cohen’s D, the achieved statistical 

power of r (i.e. the correlation coefficient) only depends on the full sample size. Therefore, 

the proposed thresholds for median effect size (i.e. D=0.5 and r=0.3) are not equivalent, and 

r=0.3 is more stringent than D=0.5 (equivalent to or less than r=0.243 depends on the exact 

sample size in each group). This highlights the fact that the choice of a threshold for effect 

size is of certain flexibilities if not completely arbitrary. 

In the case of a one-sample t-test, however, with the same definition of D, the 

relationship between the t-statistic and effect size D now changes to 
t

√N
= D1−sample . 

Therefore, Cohen’s D in a one-sample t-test shares a similar relationship to the achieved 

statistical power with the correlation coefficient r in a two-sample t-test that only the total 



32 

 

sample size matters. Therefore, to achieve the same statistical power as of r=0.30 (i.e. the 

threshold of median effect size) with the same sample size, the equivalent Cohen’s D of a one-

sample t-test could be calculated as 0.32. 

In addition, Cohen 27 also discussed the differences of Cohen’s D in the cases of two-

sample and one-sample t-tests (Case 3 in Chapter 2), where he suggested of using the 

transformation D1−sample =
D2−sample

√2
⁄  to re-calculate the critical values for the one-

sample t-test, of which the corresponding threshold of median effect size is therefore D = 

0.35. This transformation, however, aims to achieve an equal statistical power between the 

one-sample and two-sample t-tests on the condition that the sample size in the one-sample 

t-test is half of that in the two-sample t-test with balanced sample sizes in both groups. 

Nevertheless, despite alternative strategies in calculation, both thresholds are indeed 

similar, and therefore we propose to use Cohen’s D=0.30 as the threshold of median effect 

size for a one-sample t-test, agreeable with both calculations when keeping one decimal. 

 

Regularised Canonical Correlation Analysis (RCCA) 

CCA has been widely used to investigate the overall correlation between two sets of 

variables 54. However, in our case, due to high intra-correlations in both brain fMRI networks 

and behavioural items, multicollinearity is a potential risk factor that could jeopardise the 

validity of following statistical inference. Therefore, we will adopt the ridge regularised 

canonical correlation proposed by 19, where two ridge regulation parameters, λx and λy, will 

be added to the diagonals of corresponding covariance matrices to avoid the singularity. 
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As our purposes are not to maximise the power of prediction, instead of estimating the 

optimal regulation parameters 55, we will fix the regulation parameters across all analyses. 

Although multiple pre-defined regulation parameters have been experimented, i.e. 0.1, 0.2, 

0.3, 0.4 and 0.5 for both λ, the significance of major results are consistent throughout all 

settings (Extended Data Table 2), and therefore we will simply report the P-values as well as 

relevant statistics based on regulation parameter 0.1. It is also noteworthy that the 

optimisation of regulation parameter will almost surely invalid any attempt of calculating 

internalised P-values through permutation test unless the optimisation procedure is also 

permuted, which is very difficult, if not impossible, due to the extremely high computational 

demanding of optimisation at each iteration. It should also be noted that current optimisation 

procedures of CCA related approaches focus on maximising the prediction power for the first 

component and therefore is not a ‘real’ optimum for our purpose of evaluating the overall 

correlation described below. 

RCCA was then applied on two sets of standardized variables to investigate their overall 

correlation, of which the P-value or significance level will be determined through permutation 

tests, where individual IDs of behaviour items will be randomly shuffled at each iteration to 

generate the null distribution of statistics of interest. Particularly, we use the eta square (η2) 

to represent the proportion of mutually explained variance between the two sets of variables, 

analogue to the R2 (i.e. the coefficient of determinant) in a multiple linear model. η2 is defined 

as 1-λWilks, where λWilks (Wilks’s Lambda) is a commonly used effect size in CCA 56 and could be 

calculated as the multiplication of unexplained variance for the correlation of each pair of 
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components: 

λ𝑊𝑖𝑙𝑘𝑠 =∏(1 − 𝜌𝑖
2)

𝑘

𝑖=1

 

, where 𝜌𝑖
2 denotes the squared correlation (i.e. mutually explained variance) between the 

ith pair of RCCA components, and k denotes the total number of CCA components for each 

set of variables. Please note that η2, similar to R2, will increase when more variables were 

included in the CCA even if all these variables were completely irrelevant. Therefore, we 

further included an adjusted-η2 (analogue to the adjusted-R2) that corrects for the inflation in 

η2 caused by the increased number of variables as: 

η𝑎𝑑𝑗
2 = 1 −

1 − η2

1 − η0
2 

, where η0
2 presents the expected η2 under the null hypothesis that there is no relationship 

between the two sets of variables, i.e. a measure of inflation in η2, and could be directly 

estimated through the permutation test. Clearly, η𝑎𝑑𝑗
2  is a monotonic increasing function of 

η2, where η𝑎𝑑𝑗
2  tends to 0 when η2 → η0

2, and 1 when η2 → 1. 

The standard error (SE) of η2 was then estimated using Jackknife 57, 58, and the 

corresponding 90% confidence intervals were then calculated as [Z5%xSEη2+η2,Z95%xSEη2+η2], 

where Zx% denotes the Z-score at the x% quantile of a standardised normal distribution. 

 

Comparison of Related Associations/Correlations through Permutation 

To compare two correlations, a fisher’s transformation is normally applied to first 

normalise the distributions of correlations. The transformed correlations, now follow the 
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normal distribution, could then be directly compared, and the corresponding difference 

should also follow a normal distribution 59. However, estimation for the variance of such a 

difference should properly count in the relationship of variables involved in calculating the 

correlations. For example, in the present paper, we are interested in the difference between 

two correlations that share one variable in common, i.e. in the form of cor(A,B) vs cor(A,C). 

While the analytical solution of the variance estimation for the above case has been 

extensively investigated in the past 60-62, we will additionally implement the permutation 

process to empirically investigate the variance, which not only is known to be robust even if 

the normality assumption has been violated, but also enable us to investigate multiple 

comparisons altogether, where the variance of summed absolute differences under the null 

hypothesis could be directly estimated through the permutation process.  

In the present paper, we directly calculate the P-value (which is determined by the 

underlying variance) of the observed summed absolute difference through a permutation 

process as the chance of randomly observing (i.e. at each permutation iteration) a summed 

absolute difference larger than the original observation. For the comparison purpose, we also 

include the results from Steiger’s test 61 in relevant tables, which are highly similar to results 

using the permutation test. 

 

Equivalence Test 

 Whenever a null result was observed from a statistical test, no meaningful statistical 

inference could be drawn unless a proper test was conducted to show that the observed non-
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significant effect size is indeed smaller than a meaningful threshold. In the present study, we 

adopted the equivalence test through a “two one-sided tests” (TOST) procedure 26 that the 

observed effect size was tested against a lower equivalence bound (noted as L) with a null 

hypothesis that the observed effect size is lower than this lower bound and an upper 

equivalence bound (noted as U) with a null hypothesis that the observed effect size is larger 

than this upper bound. If both tests are significant, we could then conclude that the observed 

effect size has been statistically found smaller than a meaningful one, hence in that sense 

equivalent to zero. In case that we are only interested in a one-tailed test (e.g. we are only 

interested in a positive correlation or R2, i.e. the coefficient of determinant), “it is also possible 

to test for inferiority, or the hypothesis that the effect is smaller than an upper equivalence 

bound, by setting the lower equivalence bound to ∞” 26. This strategy is generally applicable 

even without the knowledge of the exact distribution of the observed effect size (like RCCA) 

of which the confidence interval could be established based on variance estimated through 

methods like bootstrap or jackknife.  

 The equivalence test for the first eigenvalue of RCCA: Due to the fact that correlations 

between RCCA components are forced non-negative, a test for the first eigenvalue is 

equivalent to that for the correlation, of which the square is also known as Roy’s largest root, 

between the first pair of components in the RCCA. We therefore only test for inferiority in the 

corresponding equivalence test, i.e. where the lower equivalence bound (LZ) was set as -∞, 

and the upper equivalence bound (UZ) of Z-score (i.e. ZFisher, Fisher’s r-to-z transformed 

correlation) was calculated as the inflated ZFisher0 between the first components of RCCA under 
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the null hypothesis (estimated through permutation) plus a small effect size q=0.1 suggested 

by Cohen (i.e. the difference between two Fisher-transformed correlations, known as Cohen’s 

q 27). The standard deviation (σz) of the observed ZFisher could be estimated through jackknife 

57, 58, and the corresponding t-statistic for the one-tailed test could be calculated as 𝑡 =

(𝑍𝐹𝑖𝑠ℎ𝑒𝑟 − 0.1 − 𝑍𝐹𝑖𝑠ℎ𝑒𝑟0)
σ𝑍⁄ . 

 The equivalence test for comparison of related correlations: similar to above, the 

corresponding lower and upper equivalence bounds (LΔZ and UΔZ) of Fisher’s r-to-z 

transformed correlation ZFisher were set as -0.1 and 0.1 to represent a tiny effect size Cohen’s 

D =0.1. The variance (σ𝑍
2 ) of the observed ZFisher was estimated through jackknife, and the 

corresponding t-statistics of one-tailed tests for the lower and upper bounds could be given 

as (0.1 + 𝑍𝐹𝑖𝑠ℎ𝑒𝑟)
σ𝑍⁄  and (

𝑍𝐹𝑖𝑠ℎ𝑒𝑟 − 0.1)
σ𝑍⁄ , respectively. 

 

Data Availability  

IMAGEN data are available from a dedicated database: https://imagen2.cea.fr. 

 

Code Availability 

Custom code that supports the findings of this study is available from the corresponding 

author upon request. 
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Figure Legends: 

 

Figure 1. The workflow of the Analyses. We included the monetary incentive delay task (MID) 

as a measure of reward processing, the stop signal task (SST) as a measure of impulsivity 

(motor inhibition), and the emotional face task (EFT) as a measure of social-emotional 

processing. Only strong brain activation (with effect size Cohen’s D>0.30) was included in the 

analyses. The weighted voxel co-activation network analysis (WVCNA) in combination with a 

further hierarchical clustering was implemented to establish the brain fMRI networks. The 

ridge-restricted canonical correlation analysis (RCCA) was adopted to evaluate the overall 

correlation between the brain networks and reinforcement-related behaviours. Based on the 

RCCA results, we have identified the neural signatures across three brain fMRI networks for 

each reinforcement-related behaviour. 

 

Figure 2. The Activation map of MID (A), SST (B), EFT (C) and their overlay (D). In all figures, 

MID, SST and EFT were represented by red, blue and green. The activation levels were 

measured as the -log10 transformation of P-value and only voxels with P-value < 1.0x10-34 

(i.e. Effect Size Cohen’s D>0.3) were illustrated. 

 

Figure 3. A. Reward anticipation network underlying Hyperactivity (Red: Thalamus, Superior 

Parietal Lobule, middle Central Sulcus, Primary Auditory Cortex, Middle Cingulate Cortex and 

Superior Frontal Junction); B. Motor inhibition network underlying Impulsivity (Blue: left 

middle Temporal-Parietal Junction); C. Motor inhibition network underlying Inattention 

(Green: right anterior Inferior Frontal Sulcus); D. Motor inhibition network underlying 

ODD/CD behaviours (Yellow: right Inferior Frontal Gyrus + anterior Insula and right anterior 

Inferior Frontal Sulcus); E. Neural signatures of ADHD and ODD/CD behaviours. For each 

neural network identified in A-D, its correlations with the corresponding primary behaviour 

and the rest ADHD or ODD/CD behaviours were compared that the corresponding relative 

strength of correlations were plotted (Red: Hyperactivity; Blue: Impulsivity; Green: 

Inattention; Yellow: ODD/CD behaviours). P-values for pairwise significant differences after 

correction for multiple testing were provided

. 

 

 

  

Formatted: Highlight
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Tables 

Table 1. List of (A) Externalising Items from parents-rated SDQ and DAWBA, and (B) 

Internalising Items from child-rated SDQ and DAWBA. 

 

 

(A)   

H
y

p
era

ctiv
ity

 

Restless (SDQ_Parent) 

Fidgety (SDQ_Parent) 

Adhd.fidgets (DAWBA_Parent). 

Adhd.cant.remain.seated (DAWBA_Parent) 

Adhd.runs.or.climbs.when.shouldnt (DAWBA_Parent) 

Adhd.cant.play.quietly (DAWBA_Parent) 

Adhd.cant.calm.down (DAWBA_Parent) 

In
a
tten

tio
n

 

Easily Distracted (SDQ_Parent) 

Attentiveness (SDQ_Parent) 

Adhd.careless.mistakes.inattentive (DAWBA_Parent) 

Adhd.loses.interest (DAWBA_Parent) 

Adhd.doesnt.listen (DAWBA_Parent) 

Adhd.doesnt.finish (DAWBA_Parent) 

Adhd.poor.self.organisation (DAWBA_Parent) 

Adhd.avoids.tasks.needing.thought (DAWBA_Parent) 

Adhd.loses.things (DAWBA_Parent) 

Adhd.distractible (DAWBA_Parent) 

Adhd.forgetful (DAWBA_Parent) 

Im
p

u
lsiv

ity
 

Think before action (SDQ_Parent)  

Adhd.blurts.out.answers (DAWBA_Parent). 

Adhd.cant.wait.for.a.turn (DAWBA_Parent) 

Adhd.butts.into.conversations.or.games 

(DAWBA_Parent) 
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Adhd.unstoppable.talk (DAWBA_Parent) 

O
D

D
 

Tantrum (SDQ_Parent) 

Generally obedient (SDQ_Parent) 

Odd.temper.outbursts.parent1 (DAWBA_Parent) 

Odd.argues.with.adults.parent1 (DAWBA_Parent) 

Odd.ignores.rules.disobedient (DAWBA_Parent) 

Odd.deliberately.annoys.others (DAWBA_Parent) 

Odd.blames.others.for.own.acts (DAWBA_Parent) 

Odd.easily.annoyed (DAWBA_Parent) 

Odd.angry.and.resentful (DAWBA_Parent) 

Odd.spiteful (DAWBA_Parent) 

Odd.vindictive (DAWBA_Parent) 

C
D

 

Fight or bully others (SDQ_Parent) 

Often lie (SDQ_Parent) 

Steal (SDQ_Parent) 

Cd.lies (DAWBA_Parent) 

Cd.fights (DAWBA_Parent) 

Cd.bullies (DAWBA_Parent) 

Cd.stays.out (DAWBA_Parent) 

Cd.steals (DAWBA_Parent) 

Cd.runs.away (DAWBA_Parent) 

Cd.cannot.find.at.school (DAWBA_Parent) 
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(B) 

A
n

x
iety

 

Sepa.any.concerns.about.separations (DAWBA_Self) 

Soph.any.concerns (DAWBA_Self) 

Panic.attacks.in.last.4.weeks (DAWBA_Self) 

Fear.or.avoidance.of.crowds (DAWBA_Self) 

Fear.or.avoidance.of.public.places (DAWBA_Self) 

Fear.or.avoidance.of.travelling.alone (DAWBA_Self) 

Fear.or.avoidance.of.being.far.from.home 

(DAWBA_Self) 

Gena.ever.worries (DAWBA_Self) 

Gena.specific.or.generalised (DAWBA_Self) 

Gena.excessive.worry (DAWBA_Self) 

Many worries (SDQ_Self) 

Many fears (SDQ_Self) 

Anxious in new situations (SDQ_Self) 

D
ep

ressio
n

 

Dep.sad (DAWBA_Self) 

Dep.irritable (DAWBA_Self) 

Dep.loss.of.interest (DAWBA_Self) 

Dep.recent.talk.of.dsh (DAWBA_Self) 

Dep.dsh.recently (DAWBA_Self) 

Dep.dsh.ever (DAWBA_Self) 

Headache/stomach ache (SDQ_Self) 

Unhappy (SDQ_Self) 
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Table 2. Regularised CCA P-values based on 10000 Permutation with penalty λ=0.1 for both 

fMRI and externalising behaviour items. Similar results have been achieved with a pre-

defined scheme of penalty settings as shown in Extended Data Table 2. η2 denotes the 

proportion of behaviour variance explained by the fMRI and is analogue to the R2 in the 

multiple linear regression model.  

 ADHD ODD/CD All Behaviours 

 P-value 
η2 

[90% CIs] 
P-value 

η2 

[90% CIs] 
P-value 

η2 

[90% CIs] 

MID 0.029 
0.356 

[0.328,0.385] 
0.203 

0.331 

[0.301,0.361] 
0.036 

0.565 

[0.530,0.587] 

SST 0.003 
0.344 

[0.314,0.374] 
0.003 

0.334 

[0.303,0.366] 
<0.001 

0.558 

[0.530,0.587] 

EFT 0.634 
0.087 

[0.067,0.108] 
0.294 

0.091 

[0.071,0.110] 
0.392 

0.171 

[0.145,0.197] 

All fMRI     <0.001 
0.836 

[0.820,0.851] 

  



51 

 

Table 3. Prominent clusters of brain networks for (A) hyperactivity, (B) impulsivity, (C) inattention and (D) ODD/CD behaviours. For each 

behaviour component, the prominent clusters in each brain network were identified if their univariate correlations with the sum of 

corresponding behaviour items (i.e. column ‘Primary Behaviour’) were significant after correction for multiple comparisons through 10000-

permutation (column Pcorrected). For all prominent clusters identified in the first step, we further explored their univariate correlations with the 

remaining behaviour components (i.e. column ‘Exploratory Analyses). ‡ these P-values were evaluated based on 10000-permutation to correct 

for multiple comparisons in the corresponding exploratory tests. See Table S2-S4 for the complete results. 

A 

MID Regions 

 Primary Behaviour  Exploratory Analyses 

 Hyperactivity  Impulsivity Inattention ODD/CD 

 R 

[95%CIs] 

Pcorrected 

(t-statistics) 

 R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

Thalamus  
-0.091 

[-0.141,-0.041] 

0.011 

(-3.539) 
 

-0.032 

[-0.089,0.012] 

0.726 

(-1.511) 

-0.074 

[-0.125,-0.025] 

0.040 

(-2.918) 

-0.065 

[-0.109,-0.008] 

0.118 

(-2.276) 

SFJ  
-0.084 

[-0.134,-0.033] 

0.029 

(-3.255) 
 

-0.014 

[-0.073,0.028] 

0.992 

(-0.873) 

-0.066 

[-0.117,-0.016] 

0.105 

[-2.584] 

-0.052 

[-0.073,0.028] 

0.332 

[-1.975] 

PAC  
-0.085 

[-0.135,-0.035] 

0.025 

(-3.309) 
 

-0.025 

[-0.088,0.013] 

0.771 

(-1.442) 

-0.051 

[-0.098,0.002] 

0.445 

(-1.871) 

-0.063 

[-0.110,-0.010] 

0.134 

(-2.340) 

SPL  
-0.094 

[-0.144,-0.044] 

0.007 

(-3.666) 
 

-0.045 

[-0.103,-0.002] 

0.324 

(-2.055) 

-0.077 

[-0.127,-0.027] 

0.031 

(-3.000) 

-0.068 

[-0.113,-0.012] 

0.091 

(-2.436) 

mid-CS  
-0.091 

[-0.141,-0.041] 

0.011 

(-3.552) 
 

-0.040 

[-0.098,-0.003] 

0.452 

(-1.860) 

-0.075 

[-0.124,-0.024] 

0.044 

(-2.888) 

-0.074 

[-0.117,-0.017] 

0.044 

(-2.613) 

MCC  
-0.084 

[-0.134,-0.034] 

0.027 

(-3.269) 
 

-0.017 

[-0.073,0.028] 

0.991 

(-0.882) 

-0.046 

[-0.097,0.004] 

0.500 

(-1.802) 

-0.078 

[-0.129,-0.028] 

0.028 

(-3.059) 
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B 

SST Regions 

 Primary Behaviour  Exploratory Analyses 

 Impulsivity  Hyperactivity Inattention ODD/CD 

 R 

[95%CIs] 

Pcorrected 

(t-statistics) 
 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

Left TPJ  
-0.092 

[-0.142,-0.041] 

0.009 

(-3.570) 
 

-0.067 

[-0.117,-0.016] 

0.025 

(-2.594) 

-0.058 

[-0.109,-0.008] 

0.062 

(-2.270) 

-0.071 

[-0.118,-0.017] 

0.016 

(-2.639) 

 

C 

SST Regions 

 Primary Behaviour  Exploratory Analyses 

 Inattention  Hyperactivity Impulsivity ODD/CD 

 R 

[95%CIs] 

Pcorrected 

(t-statistics) 
 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

Right aIFS  -0.087 

[-0.137,-0.037] 

0.019 

(-3.392) 

 -0.017 

[-0.068,0.033] 

0.833 

(-0.666) 

-0.056 

[-0.106,-006] 

0.073 

(-2.184) 

-0.084 

[-0.126,-0.026] 

0.004 

(-2.957) 

 

D 

SST Regions 

 Primary Behaviour  Exploratory Analyses 

 ODD/CD  Hyperactivity Impulsivity Inattention 

 R 

[95%CIs] 

Pcorrected 

(t-statistics) 
 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

R 

[95%CIs] 

P‡ 

(t-statistics) 

Right IFC + 

aInsula 

 -0.090 

[-0.133,-0.033] 

0.011 

(-3.246) 

 -0.014 

[-0.065,0.036] 

0.980 

(-0.546) 

-0.045 

[-0.095,0.005] 

0.295 

(-1.754) 

-0.053 

[-0.109,-0.003] 

0.158 

(-2.070) 

Right aIFS  -0.084 

[-0.126,-0.026] 

0.027 

(-2.957) 

 -0.017 

[-0.068,0.033] 

0.954 

(-0.666) 

-0.056 

[-0.106,-0.006] 

0.125 

(-2.184) 

-0.087 

[-0.137,-0.037] 

0.005 

(-3.392) 
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Table 4. Evaluating the Specificity of Prominent Brain Regions for Hyperactivity during Reward Anticipation. The specificity of prominent brain 

regions for hyperactivity was evaluated by comparing their correlations/associations to those with the rest behaviours, i.e. ADHD constructs 

impulsivity and inattention, and ODD/CD behaviours. For each brain region, its correlations with all behaviours were firstly transformed into 

normal distributed Z-scores (columns ZHyper, ZImpul, ZInatt and ZODD/CD respectively) through the Fisher transformation, and the pairwise differences 

(column ΔZ) were then tested against null using both Steiger’s test (columns Steiger’s Z-statistic and Psteiger) and Permutation test (column PPerm), 

both of which provided very similar results. The overall significance throughout all brain regions was then evaluated based on the summed ΔZ 

across all brain regions using a Permutation test. The number of permutations was set as 10000. All P-values presented in the table were based 

on two-tailed tests without correction for multiple testing. 

 ZHyper ZImpul ZInatt ZODD/CD 

Hyper-Impul  Hyper-Inatt  Hyper-ODD/CD 

ΔZ 

[95%CIs] 

Steiger's  

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's  

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's  

Z-statistic 
PSteiger PPerm 

Thalamus -0.091 -0.039 -0.075 -0.065 
-0.052 

[-0.100,-0.005] 
-2.270 0.023 0.024 

 -0.016 

[-0.070,0.036] 
-0.634 0.526 0.526 

 -0.026 

[-0.080,0.029] 
-0.955 0.340 0.342 

SFJ -0.084 -0.023 -0.067 -0.053 
-0.061 

[-0.111,-0.011] 
-2.670 0.008 0.008 

 -0.017 

[-0.070,0.035] 
-0.686 0.493 0.491 

 -0.031 

[-0.090,0.028] 
-1.156 0.248 0.247 

PAC -0.085 -0.037 -0.048 -0.064 
-0.048 

[-0.089,-0.007] 
-2.091 0.037 0.036 

 -0.037 

[-0.086,0.012] 
-1.472 0.141 0.139 

 -0.021 

[-0.071,0.028] 
-0.787 0.431 0.431 

SPL -0.094 -0.053 -0.077 -0.068 
-0.041 

[-0.088,0.002] 
-1.801 0.072 0.070 

 -0.017 

[-0.065,0.031] 
-0.681 0.496 0.496 

 -0.026 

[-0.080,0.028] 
-0.976 0.329 0.328 

mid-CS -0.092 -0.048 -0.074 -0.075 
-0.044 

[-0.107,0.001] 
-1.893 0.058 0.058 

 -0.017 

[-0.066,0.031] 
-0.678 0.498 0.496 

 -0.017 

[-0.072,0.038] 
-0.627 0.531 0.529 

MCC -0.084 -0.023 -0.046 -0.078 
-0.062 

[-0.107,-0.016] 
-2.676 0.008 0.008 

 -0.038 

[-0.088,0.013] 
-1.503 0.133 0.133 

 -0.006 

[-0.057,0.045] 
-0.225 0.822 0.822 

Sum -0.530 -0.222 -0.388 -0.402 
-0.308 

[-0.522,-0.094] 

  0.006 
 -0.142 

[-0.384,0.100] 

  0.278 
 -0.128 

[-0.377,0.121] 
  0.411 
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Table 5. Evaluating the Specificity of Prominent Brain Regions for (A) Impulsivity, (B) Inattention and (C) ODD/CD during Motor Inhibition. 

The specificity of prominent brain regions for the corresponding behaviours was evaluated by comparing their correlations/associations to those 

with the rest behaviours from ADHD constructs and ODD/CD behaviours. For each brain region, its correlations with all behaviours were firstly 

transformed into normal distributed Z-scores (columns ZHyper, ZImpul, ZInatt and ZODD/CD respectively) through the Fisher transformation, and the 

pairwise differences (column ΔZ) were then tested using both Steiger’s test (columns Steiger’s Z-statistic and PSteiger) and Permutation test 

(column PPerm), both of which provided very similar results. When there are multiple prominent regions, their overall significance was then 

evaluated based on the summed absolute ΔZ across all brain regions using a Permutation test. The number of permutations was set as 10000. 

All P-values presented in the table were based on two-tailed tests without correction for multiple testing. 

 

A 

 ZImpul ZHyper ZInatt ZODD/CD 

Impul- Hyper  Impul-Inatt  Impul-ODD/CD 

ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

Left TPJ -0.092 -0.067 -0.059 -0.071 
-0.025 

[-0.073,0.022] 
-1.090 0.276 0.274 

 -0.033 

[-0.079,0.012] 
-1.429 0.153 0.152 

 -0.021 

[-0.069,0.027] 
-0.886 0.375 0.375  

 

 

B 

 ZInatt ZHyper ZImpul ZODD/CD 

Inatt-Hyper  Inatt-Impul  Inatt-ODD/CD 

ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

Right 

aIFS 
-0.087 -0.017 -0.056 -0.084 

-0.070 

[-0.124,-0.017] 
-2.795 0.005 0.006 

 -0.031 

[-0.080,0.018] 
-1.330 0.184 0.187 

 -0.004 

[-0.052,0.045] 
-0.146 0.884 0.884  
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C 

 ZODD/CD ZHyper ZImpul ZInatt 

ODD/CD-Hyper  ODD/CD-Impul  ODD/CD-Inatt 

ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

 ΔZ 

 [95%CIs] 

Steiger's 

Z-statistic 
PSteiger PPerm 

Right IFC 

+ aInsula 
-0.090 -0.014 -0.045 -0.053 

-0.076 

[-0.128,-0.024] 
-2.821 0.005 0.004 

 -0.045 

[-0.096,0.005] 
-1.896 0.058 0.058 

 -0.037 

[-0.086,0.012] 
-1.530 0.129 0.131  

Right 

aIFS 
-0.084 -0.017 -0.056 -0.087 

-0.067 

[-0.118,-0.015] 
-2.465 0.013 0.013 

 -0.028 

[-0.077,0.022] 
-1.156 0.248 0.251 

 0.004 

[-0.045,0.052] 
0.146 0.884 0.884  

Sum -0.174 -0.031 -0.102 -0.141 
-0.143 

[-0.237,-0.049] 

  0.002 
 -0.073 

[-0.164,0.019] 

  0.091 
 0.041 

[-0.122,0.055] 
  0.390  

 

 

 


