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Abstract 

Integration of graphene and hexagonal boron nitride (hBN) into lateral heterostructures has drawn 

focus due to the ability to broadly engineer the material properties. Hybrid monolayers with 

tuneable bandgaps have been reported, while the interface itself possesses unique electronic and 

magnetic qualities. Herein, we demonstrate lateral heteroepitaxial growth of graphene and hBN by 

sequential growth using high-temperature molecular beam epitaxy (MBE) on highly ordered 

pyrolytic graphite (HOPG). We find, using scanning probe microscopy, that graphene growth 

nucleates at hBN step edges and grows across the surface to form nanoribbons with a controlled 

width that is highly uniform across the surface. The graphene nanoribbons grow conformally from 

the armchair edges of hexagonal hBN islands forming multiply connected regions with the growth 

front alternating from armchair to zigzag in regions nucleated close to the vertices of hexagonal hBN 

islands. Images with lattice resolution confirm a lateral epitaxial alignment between the hBN and 

graphene nanoribbons, while the presence of a moiré pattern within the ribbons indicates that some 

strain relief occurs at the lateral heterojunction. These results demonstrate that high temperature 

MBE is a viable route towards integrating graphene and hBN in lateral heterostructures. 
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Introduction 

The use of hexagonal boron nitride (hBN) as a supporting substrate for high quality graphene results 

in striking improvements in carrier mobility and device performance[1–3]. The advantages of hBN 

arise, in part, from its atomically flat terraces, its low lattice mismatch with graphene (approximately 

1.8 %), and its isostructural hexagonal crystal lattice. In addition, graphene/hBN heterostructures 

have interesting structural properties including commensurate-incommensurate stacking[4], and 

quantum effects such as the introduction of a graphene bandgap[5], the fractional quantum Hall 

effect[6,7], and the formation of Hofstadter’s butterfly electronic statesat large magnetic fields[8–

10]. Furthermore, van der Waals heterostructures formed by placing few-layer hBN between 

graphene contacts can be used as tunnelling transistors[11–15], with many additional possibilities 

when used in combination with other two-dimensional (2D) materials[11,16]. 

Despite the increasing interest in graphene/hBN heterostructures, the direct growth of graphene on 

hBN is relatively uncommon and most graphene/hBN vertical heterostructures consist of stacks of 

layers mechanically exfoliated from bulk material[17]. The growth of vertical structures by chemical 

vapour deposition  (CVD), in which a layer of graphene is formed on top of hBN appears problematic 

and has been reported by only a few groups[3,18–21]. Owing to the small lattice mismatch it is also 

possible to incorporate graphene and hBN in a lateral heterostructure[3,22]. The hybrid monolayer 

has been predicted to possess a widely tuneable electronic bandgap [23,24], while an atomically 

precise interface between graphene and hBN can host novel electronic and magnetic states[25–27]. 

In short, the properties of the lateral heterostructure are dictated by the size, geometry and 

interface structure of hBN and graphene domains. There has been progress in growing lateral 

heterostructures using CVD[3,28–33] or direct chemical conversion of graphene layers[34,35]. These 

efforts have culminated in the fabrication of atomically thin devices[36] and circuitry[37] 

constructed from laterally connected hBN and graphene layers. 
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We have recently investigated the growth of graphene and hBN using high-temperature molecular 

beam epitaxy (MBE) and demonstrated that this is a viable approach, resulting in monolayers and 

heterostructures with properties that have not, to date, been realised in CVD-grown materials. For 

example, graphene grown on hBN by MBE has residual tensile strain and can even be lattice-

matched with the hBN substrate[38,39], while a crossover to a direct band gap has been observed in 

MBE-grown hBN monolayers on highly oriented pyrolytic graphite (HOPG), accompanied by 

photoluminescence in the deep ultra-violet region of the spectrum[40–42]. 

In this paper we present the sequential high-temperature MBE growth of hBN and graphene and 

show that this leads to lateral heterostructures, principally through step-flow growth. First, hBN is 

grown on HOPG using plasma-assisted MBE, with the nucleation of hBN growth primarily at steps on 

the graphite substrate. This is followed by the MBE growth of graphene using an electron beam 

carbon source. In some cases, hBN/HOPG samples are directly transferred to a second MBE chamber 

for graphene growth, while others are investigated ex situ using atomic force microscopy (AFM) 

after hBN growth, before re-introduction to the MBE system. Graphene grown in both cases 

nucleates at step edges of epitaxially-grown hBN, and grows laterally across the surface to form 

graphene nanoribbons, with a width which is highly uniform and tuneable across the substrate 

surface. 

Experimental 

To grow hBN on HOPG we followed similar protocols to those described previously [41,42]; HOPG 

substrates (1 x 1 cm2) were cleaned by heating to 400 oC for approximately 8 hours in an Ar/H2 (95:5) 

atmosphere and then transferred to a custom-designed high-temperature dual chamber GENxplor 

MBE system operating under ultra-high vacuum (UHV) conditions (base pressure ~ 10-10 mbar). hBN 

was then grown by plasma-assisted MBE at a substrate temperature of 1390 oC , with a high-

temperature Veeco effusion cell operated at 1875 oC to sublime boron, and a conventional Veeco 

radio-frequency (RF) plasma source to generate the active nitrogen flux; this was operated at an N2 
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flow of 2 sccm and an RF power of 550 W. A growth time of 3 hours was used, resulting in hBN 

covering over ~80% of the HOPG substrate surface. 

The hBN/HOPG samples were cooled to room temperature and transferred within the UHV system 

to the graphene MBE growth chamber. In some cases, the samples were removed temporarily from 

the UHV system in order to acquire images of their morphology using atomic force microscopy 

(AFM) allowing a direct comparison of regions of the surface before and after graphene growth; 

these samples were then returned to the MBE system for graphene growth. In our previous 

work[38,39], carbon was deposited using a heated graphitic filament in a SUKO63 source, but here 

we use a vertical electron beam evaporator EBVV 63-T4, fitted with a high purity carbon anode 

target; both sources are produced by Dr. Eberl MBE-Komponenten GmbH. During growth the e-

beam current was increased to, typically, 300 mA, with a ramp rate of 10 mA/min, and held at this 

value during the growth time (up to a several minutes), then ramped down at a rate of 100 mA/min. 

The accelerating voltage was 5 kV and the substrate temperature was 1390  oC for all samples. This 

method of growth has allowed for more controlled deposition compared to the carbon filament 

source, due to the increased stability and tunability of the e-beam source.  

AFM and conductive AFM (cAFM) images were acquired under ambient conditions using an Asylum 

Research Cypher-S instrument with a mixture of NuNano Scout 70 and Spark 70 Pt (for cAFM) 

probes, and Budget Sensors MultiAl-75 and ElectriMulti75-G (for cAFM) probes. Conductive AFM 

measurements were recorded with a -50 mV bias applied to the sample. Topographic images were 

acquired in both AC (tapping) and contact mode; in contact mode, the deflection channel allows for 

clear identification of step edges, while in tapping mode the phase channel is found to provide good 

contrast between hBN and graphene. STM images were acquired using an Agilent Technologies 4500 

PicoPlus STM instrument in ambient conditions with mechanically formed PtIr tips. The bias voltage 

is applied to the tip with the sample grounded. Image processing was performed using the 

Gwyddion software package[43].  
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Results and Discussion 

Figure 1 shows a direct comparison of the morphology of a specific area of an HOPG substrate on 

which a near monolayer of hBN has been grown both before (a-c) and after (d-f) subsequent 

graphene growth. AFM images of the surface acquired ex situ before graphene growth show that 

hBN has grown laterally across the HOPG surface from three-dimensional aggregates which are 

formed, primarily at HOPG step edges[41,44]. The hBN is revealed in contact mode deflection 

channel images, panels a) and c), and topographic maps (panel b). From the topography image in 

panel b) we determine the layer thickness (see inset); the hBN layer number and regions of 

uncovered areas of the HOPG substrate are labelled in panel a). Islands of hBN nucleated at different 

points form separate domains that merge as the surface coverage increases. The boundaries 

between domains are difficult to resolve in topographic images but appear more clearly in the 

deflection images a) and c), with one such boundary highlighted in c). In these areas there are many 

hBN step edges as well as partially formed hexagonal bilayer and multilayer hBN islands. This 

morphology is very similar to that reported in our previous studies of the MBE growth of hBN on 

HOPG[41,44,45]. 

This particular sample (hBN on HOPG) was returned to the MBE system and, after growth of 

graphene, further AFM images of the same area were acquired (Figs. 1d-f). In comparison with Figs. 

1a-cWe observe additional features at the edge of the hexagonal partial hBN island at the centre of 

Fig. 1d. These are also present in the topographic image Fig. 1e but are resolved much more clearly 

in Fig. 1f. This phase image provides contrast between different materials and we attribute the 

brighter strip around the edges of the hBN island to graphene which has nucleated at the hBN step 

edge and grown outward across the surface. The profile in Fig. 1e inset shows that there is a very 

small variation in apparent height across the boundary between the hBN and the graphene strip as 

expected for such a growth mode (see regions identified by red arrows; the hBN/graphene 

boundaries are highlighted by white arrows in Fig. 1e and the accompanying profile). This lateral 

growth is observed at every hBN island and step edge.  
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We also observe topographically bright features in Fig. 1e at the graphene/hBN lateral interface; 

these are attributed to graphitic aggregates, commonly seen in MBE growth[39,46] of graphene. In 

some cases these clusters provide the nucleation site for higher layers of graphene. In addition, 

isolated islands of graphene nucleated on hBN at sites remote from step edges are observed, for 

example the island in the lower right of Figs. 1e and 1f (marked by a red arrow).  

A comparison of Figs. 1a and 1d also reveals the presence of meandering linear features, which were 

not resolved in Fig. 1a; these correspond to regions where graphene growth has been nucleated at 

hBN domain boundaries. The presence of this additional graphene is also shown clearly close to the 

domain boundary identified in Fig. 1c; compare with the higher resolution images of the same area 

in Fig. 1e (topographic) and Fig. 1f (phase). 

The graphene strips form a lateral heterojunction with the hBN from which they grow and are 

reminiscent of graphene nanoribbons which are formed using molecular self-assembly and on-

surface polymerisation[47], as well as analogous structures which have been grown using CVD[30]. 

These lateral graphene-hBN heterointerfaces are explored in further detail in the remainder of this 

paper. 

Figure 2 shows a lateral heterostructure formed by sequentially growing hBN and graphene without 

removal of the sample from UHV environment of the MBE system. Figure 2a shows a topographic 

image close to the edge of an hBN island which is predominantly of monolayer height (topographic 

region marked 1), but also has several regions of second (marked 2) and higher layers of hBN. In 

addition, a region of HOPG, which remained uncovered exposed after hBN growth, is present on the 

left-hand side of the image. Figure 2b shows a conductive AFM (cAFM) image of the same region. In 

this mode an AFM tip with a conductive coating is scanned in contact mode across the surface, while 

applying a potential difference between tip and sample and recording the resultant current.  
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In the cAFM images the lower region to the left-hand-side of the topography image Fig. 2a, is the 

exposed HOPG substrate, showing up as highly conducting in Fig. 2b in which bright/dark contrast 

corresponds to high/low current. The monolayer hBN terrace on the right-hand-side of the image, 

appears darker (less conductive) but there are two raised hexagonal islands identified as bi-layer 

hBN islands in the topographic image Fig. 2a. Graphene nanoribbon growth (G) can be seen along all 

hBN step edges within these images and appears with bright contrast in the cAFM images. This is 

particularly clear for the graphene which has grown around the second layer hBN islands. 

Nanoribbon growth is also evident at the edges of the more disordered hBN multilayer on the 

centre-right of these images. In addition, graphene grows across HOPG from the edge of the first 

layer hBN; this is evident from the contrast variation in Fig. 2a. Overall, we do not observe significant 

differences between samples which are imaged ex-situ after first stage of hBN growth and returned 

to the MBE system, and those which are transferred to the second MBE chamber within UHV 

without ex-situ AFM prior to graphene growth. 

The widths of the graphene bands shown in Figs. 1 and 2 appear to have a high degree of uniformity, 

with measured widths of 30 nm and 80 nm, respectively. A more systematic analysis of widths of 

graphene is provided for three samples grown with different amounts of deposited carbon in Figure 

3. The graphene in Fig. 3a was grown by ramping the carbon source e-beam current to 280 mA with 

a rate of 10 mA/min before immediately ramping down with a rate of 100 mA/min. For the samples 

shown in Figs. 3b and 3c the current was ramped up to 300 mA, at the same rate, before being 

ramped down either immediately (b) or after 1 minute (c). The histogram in Fig. 3d shows the 

collated measurements of graphene widths determined by AFM for these three samples and two 

additional samples grown with the same conditions as the sample shown in Fig. 3c. As the amount of 

deposited carbon increases, the graphene width systematically increases from 18 ± 4 nm (Fig. 3a) to 

29 ± 4 nm (Fig. 3b) to 83±11 nm (Fig. 3c). In each case the variance of the distribution is significantly 

smaller than the mean width. These measurements confirm that the graphene widths for a given set 

of growth conditions have a narrow distribution and systematically increase with increased 
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deposition time/carbon flux, confirming the potential tunability of the width of the graphene 

nanoribbons grown using this approach. 

The uniformity of the graphene width is also evident through the conformal relationship between 

the growing edge of the graphene and the hBN step edge morphology from which it nucleated, i.e. 

the graphene edges follow (and are nearly parallel to) the shape of the hBN edges. An interesting 

exception is revealed close to the vertices where hBN facets meet. An example is shown in the 

topographic image in Fig. 3e (a zoom of the region highlighted by the red square in Fig. 3b); here the 

growing edges of graphene are approximately parallel to the hBN island edge, but an additional 

facet evolves close to the hBN apex at an angle of, approximately, 30° to the hBN edge.  

We attribute this facet to the evolution of a zigzag (ZZ) edge, which, as expected, is at 30o to the hBN 

edges, which are attributed to armchair edges, due to the hexagonal island shape. This is illustrated 

schematically in Fig. 3f. According to numerical modelling of graphene edges the armchair edge is 

expected to have a lower energy than the zigzag termination [48]. However, it has also known zigzag 

edges can undergo a reconstruction thereby reducing their energy [48]. In addition, a zigzag 

termination has been observed to evolve at the edges of holes in graphene under electron 

bombardment [49]. The energetics are thus likely to depend critically on experimental conditions 

such as temperature and substrate, but the transition to a zigzag edge close to hBN vertices was 

observed consistently across our samples. Note that hBN islands terminated by either N- or B- 

terminated ZZ edges are expected to have a triangular shape for ZZ favourable edges[50], whereas 

under our growth conditions hexagonal islands are formed.   

This assignment has been confirmed using lattice resolution imaging of a hexagonal hBN island 

bounded by graphene bands (see cAFM image in Figure 4a; the inset showing the corresponding 

topographic image). Figures 4b and 4c present lattice resolution images of the graphene and hBN 

lattices at the locations indicated in Fig. 4a. Figure 4b is a 10 nm cAFM image, whereas Fig. 4c is a 5 

nm lateral force image. The lattice directions have been extracted from a 2D Fourier transform and 
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are indicated by the red (graphene) and black/white (hBN) arrows in Fig. 4. The hexagonal island 

edges, along with the parallel graphene edges, run at 30° to the lattice direction confirming the 

edges to be armchair terminated, whereas the additional graphene edges are parallel to the lattice 

direction confirming a ZZ termination. Furthermore, these images confirm the epitaxial relationship 

between the hBN island and the growing graphene. Figure 4a also demonstrates the merging of two 

graphene domains growing from separate hBN islands. Images of this region, acquired with lattice 

resolution, show a defect-free merging of the two bands with no obvious domain boundary.  

One of the unique features of graphene grown on hBN using high-temperature MBE[38,39] is the 

intrinsic strain, which results in moiré wavelengths larger than that expected for relaxed graphene 

aligned to the hBN lattice. Moiré patterns with different wavelengths have been observed in cAFM 

and STM images of graphene strips with sufficiently large width. Figures 5a and 5b show STM images 

of graphene, which has grown from the edge of an hBN monolayer across the HOPG substrate, and 

from the edge of a hBN bilayer. In the STM images the hBN layers appear in darker contrast 

compared to the laterally connected graphene regions, similar to the contrast observed in cAFM. 

The images were recorded with a tip bias within the bandgap of hBN and as such the tunnelling 

current is established between the STM tip and the HOPG substrate. In order to maintain the 

tunnelling current, the tip is extended closer to the surface to give an inverted tip-height contrast for 

the hBN layers.  

Due to the lattice mismatch between graphene and hBN, moiré patterns arise in areas where both 

graphene and hBN are present in the heterostructure. In Fig. 5a, no moiré patterns are seen in the 

graphene strip extending over HOPG from the edge of the first hBN layer, indicating that this region 

is unstrained and aligned to the underlying HOPG lattice. A prominent moiré pattern with a 

wavelength, l, of 17.1 nm is observed in the second hBN layer (marked as 2L hBN/HOPG). The 

expected hBN/graphene moiré pattern has a maximum wavelength of   ̴14nm for unstrained, 

rotationally aligned material. The longer moiré wavelength may be due to compressive strain of the 
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hBN lattice by approximately 0.35% due to the underlying HOPG substrate. Though a moiré pattern 

is not clearly resolved on the hBN monolayer (marked as 1L hBN/HOPG) in Fig. 5a, it can be routinely 

imaged under different tunnelling conditions (see Figure S1(a), Supplementary Information which 

shows a moiré wavelength of 18.4 nm), or by cAFM[45]. 

Figure 5a also shows graphene bands, grown from the edges of two hexagonal BN bilayers, which 

have seamlessly merged. On the graphene there is a moiré pattern which was measured to have l = 

17.2 nm from the line profile shown in Fig. 5b. This closely matches the moiré wavelength in the hBN 

region, which suggests that the graphene layer is locally unstrained or minimally strained. Where the 

graphene band laterally extends onto the graphene ribbon supported by HOPG, there is an abrupt 

disappearance of the moiré pattern, marked with a red arrow in Figs. 5a and 5b, indicating that the 

graphene is unstrained and lattice matched to the underlying graphene and HOPG. It is noted that 

the moiré wavelength is not uniform in all regions of the graphene band, which suggests non-

uniform strain. The non-uniformity is highlighted in a different ribbon shown in Fig. 5c, where a short 

moiré wavelength of 13.5 nm exists along one edge of the hBN domain, and a longer wavelength of 

25.2 nm is observed along the bottom edge (line profiles shown in Fig. 5d). The short moiré pattern 

would correspond to relaxed graphene and hBN layers with a small rotational misalignment (~0.25°), 

whereas the longer wavelength would correspond to tensile strain of 0.81% in the graphene strip. 

We can further demonstrate that the moiré patterns arise due to tensile strain in the graphene band 

by imaging stress relaxation after tearing the ribbon with the STM tip (see Figure S1d,e, 

Supplementary Information). Interestingly, there seems to be a sharp boundary between the two 

regions originating at the corner of the hBN island in Fig. 5c and this may suggest that the lattice 

strain is influenced by the hBN/graphene lateral interface. Finally, we note that moiré patterns were 

not observed in narrower graphene ribbons, where the width is comparable to the expected moiré 

wavelength (see Figure S1a, Supplementary Information). 
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In the images acquired to date we have been unable to resolve the atomic detail of the structure 

very close to (within ~ 1 nm) the interfacial boundary between hBN and graphene. This is likely due 

to the presence of defects as well as electron scattering due to the interface itself [51] which is 

known to complicate the local density of states and, thus, the apparent topography as determined 

by STM. We have also investigated these samples using Raman spectroscopy (data are shown in 

Figure S2 Supplementary Information), but, in agreement with our previous work [41], the spectral 

region close to the hBN  E2g peak is dominated by the D peak from the underlying graphite. 

 

Conclusions 

It is clear from the above results that in high-temperature MBE at the growth temperature 1390 oC 

graphene grows preferentially laterally from the edges of hBN in a mode of step-flow growth, which 

results in the formation of lateral graphene-hBN heterojunctions. The graphene and hBN regions 

show a clear epitaxial relationship through the alignment of atomic lattices. However, the variations 

in strain for different regions revealed by different, and locally-varying, moiré periods suggest small 

differences of lattice constant in the graphene and hBN regions. These differences are likely to be 

relieved by defects in the interfacial regions[52,53]. The morphology of the graphene is somewhat 

different to that observed in the MBE growth on exfoliated hBN flakes for which the step density is 

very low[39]. The epitaxial hBN on HOPG studied here has a much higher density of steps, including 

those around hexagonal hBN islands, which are not observed on exfoliated flakes. Growth around 

the hexagonal hBN islands provide a route to the formation multiply connected regions of graphene 

and in addition leads to a free edge, which alternates between armchair and zigzag terminations. 

Interestingly, a complementary structure of hBN strips grown around a hexagonal graphene island 

using chemical vapour deposition has recently reported, but with much larger dimensions [54]. 

Preservation of the edge termination during sequential MBE growth could lead to selective growth 

of oriented lateral hBN-graphene heterointerfaces, which possess novel electronic and magnetic 
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properties[26]. Most importantly, in this mode of growth the width of the graphene strips shows a 

high degree of uniformity across the hBN, offering the prospect of controllable growth of graphene 

rings and nano-strips with dimensions small enough to lead to measurable quantum confinement 

and magnetic flux quantisation effects. Our results show clearly that high-temperature MBE provides 

a route to the formation of lateral heterojunctions and novel in-plane heterostructures between 

graphene and hBN.  
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Figure 1: a) Contact mode deflection image of hBN grown on HOPG with a surface coverage >80%. 
The numbers indicate the hBN layer, from monolayer (1) to trilayer (3); a region of HOPG is also 
marked. b) and c) show contact mode topography and deflection maps respectively of the region 
bounded by the red box in a). A profile along the red line in b) is shown in the inset. d) Deflection 
image of the same region as a), measured after graphene growth. Figures e) and f) show topographic 
and phase channels acquired in AC mode of the region within the red box in d), both recorded 
following graphene growth. The phase image provides contrast between the graphene and hBN 
regions, highlighting graphene growth at hBN step edges, domain boundaries, and isolated graphene 
islands. A profile along the white line in e) is shown in the inset. Scalebars: 500 nm in a) and d), and 
200 nm in b), c), e) and f).    
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Figure 2: Images of a sample grown without removal from the MBE system. a) and b) show AFM 
images recorded in AC mode (a) and conductive mode (b). The number of hBN layers present are 
indicated in a). The current scale in b) ranges from 0 to 9.4 µA. The scalebars are 250 nm in both a) 
and b). The graphene bands are clearly visible in the current image, b). Figures c) and d) show a top-
down and cross-sectional schematic respectively of the sample structure. MBE graphene growth (G) 
at hBN step edges, on HOPG and surrounding hBN islands, are shown alongside growth of graphene 
only islands. The in-plane lateral direction of graphene step flow growth is highlighted by the arrows. 
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Figure 3: a-c) Three cAFM current images recorded on three separate samples with varying growth 
conditions with increasing graphene widths from left to right. Current values ranging from 0 to 1.5 
µA, 2.5 µA, 2.7 µA in a), b), and c) respectively. The numbers indicate the number of hBN layers, 
from monolayer (1) to trilayer (3). d) shows the recorded distribution for graphene band widths. 41 
measurements were made across the sample shown in figure a), 63 measurements across the 
sample shown in figure b), and 87 measurements spread across 3 samples with the growth 
conditions of the sample shown in figure c). e) An AC topography image of the region bounded by 
the red square in b). In this figure the additional zigzag graphene edge appearing at the hBN corners 
can be clearly seen. Figure f) shows a schematic representation of figure e) with the expected lattice 
termination types indicated. Figure g) shows a diagram indicating the graphene growth with 
extended amount of deposited carbon. The blue edges indicate armchair termination, and the red 
edges indicate zigzag termination in both f) and g). At longer growth times the zigzag edges (red) 
become elongated, as the graphene bands become thicker. Scalebars are 100 nm in a) to c), and 25 
nm in e).  
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Figure 4: a) a cAFM current image showing 75 nm graphene bands with a current scale ranging from 
0 to 1.1 µA. An approximately 18 nm moiré pattern can be seen on the graphene. The inset shows a 
contact topography image of the same region. b) lattice resolution cAFM image recorded on the 
graphene region indicated in a. The red arrows indicate the lattice directions as determined from a 
2D Fourier transform of the image. Similarly, c) shows a lattice resolution lateral force image 
recorded on the hBN region indicated in a), with the black arrows (white in a)) indicating the lattice 
directions. These images confirm the armchair edge type for the hBN islands, and armchair/zigzag 
terminations of the graphene edges. Scalebars are 100 nm in a) and a) inset, 5 nm in b), and 2.5 nm 
in c). 
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Figure 5. (a) and (c) STM images of graphene bands and graphene ribbons templated from the edges 
of hBN monolayers and bilayers grown by MBE on HOPG substrates. (b) and (d) STM tip height 
profiles measured along the associated lines drawn in (a) and (c). The scale bars are 50 nm in (a) and 
(c). The tunnelling parameters are (a) Ubias = 0.4 V; Isetpoint = 0.3 nA, and (c) Ubias = 0.5 V; Isetpoint = 0.5 
nA. 

 

 

 


