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ABSTRACT 

The increased utilization of electrical energy in future aviation requires an efficient method to perform load flow for optimizing 

on-board operating conditions. Load flow models of electrical networks are complex to solve and requires iterative methods to 

obtain a solution due to the non-linear relationship between voltages and currents. This paper will address the complexity of load 

flow for DC systems and will present a linear model that does not require to be solved iteratively and can be included in Mixed 

Integer Linear Programming MILP formulations to allow operational metrics optimization such as loss minimization and reliability 

maximization while converging to optimality. Load flow results have shown that the error margin is considerably small.   

1. INTRODUCTION 

The MEA power distribution system allows delivery of electrical energy produced at power sources to the 

load terminals at a specific voltage level and format (AC or DC). Several network configurations are possible 

depending on the power conversion requirements of the loads [1]–[4]. In all cases, optimal power flow is essential to 

increase overall efficiency and reliability [5]–[7] on board. In order to assess optimal power flow in the aircraft 

electrical distribution, both an efficient optimization formulation and a power flow model are mandatory.  

Network design [8] has been extensively used in designing and reconfiguring systems when an operational 

metric (or metrics) needs to be optimized. Network design uses optimal path formulations to satisfy load demands [9] 

and it can express a network model with linear balance equations. In the case of power distribution, balance of power  

is expressed on every node 𝑖 as a flow balance between incoming 𝑃𝑗𝑖 and outgoing 𝑃𝑖𝑗 powers from- or to- all buses 𝑗 

connected to it, as expressed in (1).  

∑ 𝑃𝑖𝑗

𝑗

− ∑ 𝑃𝑗𝑖

𝑗

= 𝑃𝑖                                                     ∀𝑖                  (1) 

This balance is equal to 𝑃𝑖 which, depending on the node type, is 0 for step-buses (non-generation, non-load), 

generated power  +𝑃𝑖, or consumed power −𝑃𝑖. In most cases, node types are known and ±𝑃𝑖 in the right-hand side 

of (1) is known a priori. 𝑃𝑖𝑗 and 𝑃𝑗𝑖 in (1) can be determined by solving a network design formulation which includes 

a set of objectives, connectivity rules, and other reliability constraints [10]. However, voltage and currents need to be 

explicitly introduced in (1) [11] to obtain a complete load flow model that allows determination of losses, efficiencies, 
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and other operational parameters, while maintaining the advantages of solving a linear network problem. Nevertheless, 

voltages and currents in DC systems have non-linear relationships that could impede the utilization of efficient 

network design techniques. This paper addresses the problem of introducing a load flow model in a network design 

formulation that can provide accurate load flow results while exploiting the optimization advantages of a network 

design for optimal power assessment with Mixed Integer Linear Programming formulations (MILP).     

2. POWER FLOW FOR DC SYSTEMS 

The voltages and currents in the system’s nodes follow the relations in (2), where 𝑉 is the voltage vector, 𝐼 is the 

current vector, 𝐑 is the resistance matrix, and 𝐆 = 𝐑−𝟏 is the conductance matrix. For a specific bus 𝑖, voltage can be 

written as 𝑉𝑖 = ∑ R 𝑖𝑚𝐼𝑚
𝑛
𝑚=1  or 𝐼𝑖 = ∑ G𝑖𝑚𝑉𝑚

𝑛
𝑚=1 . 

𝑉 = 𝐑𝐼, 𝐼 = 𝐆𝑉                                                                                (2) 

Node currents will depend on the different types of connected components [12], which can be modelled as 

constant conductance 𝑔0, constant current 𝑖0, or constant power 𝑝0 (the knot superscript denotes connection between 

node and ground). Considering that power in node 𝑖 is 𝑃𝑖 = 𝑉𝑖𝐼𝑖, current 𝐼 in (2) can be rewritten as [13]:  

𝐼 = 𝐺𝟎 ∙ 𝑉 +
𝑃0

𝑉
+ 𝐼0 = 𝐆𝑉                                                                       (3) 

According to (3), the total current for node 𝑖 is,  

𝐼𝑖 = 𝐺𝑖
0𝑉𝑖 +

𝑃𝑖
0

𝑉𝑖
+ 𝐼𝑖

0 = ∑ 𝐺𝑖𝑗𝑉𝑗

𝑛

𝑗=1
                                                            (4) 

The total number of nodes (buses) is 𝑛. Some nodes are considered as step-buses (𝐼𝑖 = 0) while others have 

devices that perform as constant impedance (𝐺𝑖
0), constant power (𝑃𝑖

0), or constant current (𝐼𝑖
0). Equation (5) allows 

direct calculation of current, but in order to apply (4) in (1), currents must be expressed as power flows. If current 𝐼𝑖 

in (4) is multiplied by node voltage 𝑉𝑖, the total node 𝑖 power can be written as in (5)  

𝑃𝑖 = 𝐺𝑖
0𝑉𝑖𝑉𝑖 + 𝑃𝑖

0 + 𝑉𝑖𝐼𝑖
0 = 𝑉𝑖 ∑ 𝐺𝑖𝑗𝑉𝑗

𝑗

                                                          (5) 

For DC networks, (5) is the general form of the network balance that can be introduced in (1). For a constant 

impedance load 𝐺𝑖
0 connected to node 𝑖, 𝑃𝑖 = 𝐺𝑖

0𝑉𝑖𝑉𝑖. If a constant power device is connected, 𝑃𝑖 = ±𝑃𝑖
0 depending 

if it is a power source or load device. For a step bus, 𝑃𝑖 = 0 and 𝑉𝑖 ∑ 𝐺𝑖𝑗𝑉𝑗𝑗 = 0. Power sources can be constant voltage 

nodes in some cases (slack buses). In order to solve (5), a combination of known values for 𝑉 and 𝐼 are used. Having 
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solved (5), losses can be calculated by considering connection 𝑗 to 𝑖 current to be 𝐼𝑗𝑖 =
𝑉𝑗−𝑉𝑖

𝑍𝑗𝑖
= 𝐼𝑗 − 𝐼𝑖, and its power 

loss 𝑃𝑗𝑖 = 𝑉𝑗𝑖𝐼𝑗𝑖 = 𝐺𝑖𝑗𝑉𝑗𝑖
2. However, (5) is non-linear due to the bilinear terms involving voltage products 𝑉𝑖𝑉𝑗 and 

cannot be used directly in (1); these equations are quadratic in 𝑉 and call for iterative solvers [13]. A picture depicting 

bilinear terms in Fig. 1 will suggest that in the range [0.9 1.1] (expected operation voltages in MEA), voltage products 

can be approximated either with McCormick envelopes (MCE), or Piecewise Linear Functions of Two Variables 

(PWL2). With these approximations, (5) can be introduced in (1) and network design formulations can be used.     

 

Fig. 1 Bilinear terms in nodal power flow equation for DC systems 

McCormick envelopes will provide higher accuracies when the voltage range is shorter, while PWL2 will be more 

suitable when the voltage range is larger. However, the number of variables is different with both techniques.  

3. NETWORK DESIGN MILP OPTIMIZATION 

Several assessments can be exercised for optimal power, including:  

• Minimum-loss optimization for a given demand, i.e. min ∑ 𝐺𝑖𝑗𝑉𝑗𝑖
2

𝑖,𝑗  or min ∑ 𝑅𝑖𝑗 𝐼𝑗𝑖
2

𝑖,𝑗  

• Optimal power flow [14], i.e. minimize cost of power supplied by generators min ∑ 𝑃𝐺𝐺   

• Optimal transmission switching, i.e. minimize the amount of losses by reconfiguring the system’s topology    

A network design MILP based optimization is chosen due to its strict convergence to optimality and its flexibility 

to accommodate design [15] and reconfiguration problems [16]. Let a set of connections 𝐴 and components 𝑁 in a 

network be represented by a graph 𝒢(𝐴, 𝑁), where connections  𝑦𝑖𝑗 have power flow 𝑃𝑖𝑗 transferred from component 

𝑖 to 𝑗. An operational metric of this network can be optimized by defining an optimization objective, i.e. minimization 

of losses by selecting a number of connections 𝑦𝑖𝑗 to reconfigure the system, as shown in (6a).  
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min
𝑉,𝐼,𝑦

∑ (𝑦𝑖𝑗 + 𝑅𝑖𝑗𝐼𝑖𝑗
2 )

(𝑖,𝑗)∈𝐴

                                                                                                         (6𝑎) 

The constraint of power balance (1) and load flow equations (5) are included in a single equality constraint:  

subject to ∑ 𝑃𝑖𝑗

𝑗|(𝑖,𝑗)∈𝐴

− ∑ 𝑃𝑗𝑖

𝑗|(𝑗,𝑖)∈𝐴

= 𝐺𝑖
0𝑉𝑖𝑉𝑖 + 𝑃𝑖

0 + 𝑉𝑖𝐼𝑖
0                 ∀𝑖 ∈ 𝑁              (6𝑏) 

The selection of connections 𝑦𝑖𝑗 to reconfigure the system can be performed with [17]:  

𝑃𝑖𝑗 ≤ 𝐺𝑖𝑗(𝑉𝑖 − 𝑉𝑗) + 𝑀(1 − 𝑦𝑖𝑗)                                     ∀(𝑖, 𝑗) ∈ 𝐴               (6𝑐) 

𝑃𝑖𝑗 ≥ 𝐺𝑖𝑗(𝑉𝑖 − 𝑉𝑗) − 𝑀(1 − 𝑦𝑖𝑗)                                    ∀(𝑖, 𝑗) ∈ 𝐴               (6𝑑) 

Where 𝑀 is a big value used in MILP to enforce (6c)-(6d) only when 𝑦𝑖𝑗 is selected. Constraint (6e) limits the 

power in connections, (6f) defines integrality on 𝑦𝑖𝑗, (6g) are the voltage constraints, and (6h) limits currents.   

𝑃𝑀𝐼𝑁 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑀𝐴𝑋                                                             ∀(𝑖, 𝑗) ∈ 𝐴               (6𝑒) 

𝑦𝑖𝑗 ∈ {0,1}                                                                             ∀(𝑖, 𝑗) ∈ 𝐴              (6𝑓) 

𝑉0 = 𝑉𝑅𝐸𝐹          𝑉𝑀𝐼𝑁 ≤ 𝑉𝑖 ≤ 𝑉𝑀𝐴𝑋                                         ∀𝑖 ∈ 𝑁              (6𝑔) 

|𝐼𝑖𝑗| ≤ 𝐼𝑀𝐴𝑋𝑦𝑖𝑗                                                                       ∀(𝑖, 𝑗) ∈ 𝐴              (6ℎ) 

If 𝑃0 in (6b) is zero (no constant power devices), (6b) can be linear if divided by 𝑉𝑖 and no further approximations 

were necessary (some power electronic converters [18] and loads [11] can be modelled as constant current). 

Nevertheless, approximations are necessary because constant power devices are present in MEA. The aim of (6a)-(6h) 

is to reconfigure the system (by selecting a group of  𝑦𝑖𝑗) such that losses are minimized and a load flow for the DC 

system is performed within the optimization. Several operating constraints and failure-scenarios can also be included. 

4. MILP OPTIMIZATION AND STUDY CASE 

The formulation (6a)-(6h) will be used to minimize losses on the MEA electrical network shown in Fig. 1(a) for 

different operational scenarios. In Fig. 1(b), optimum during normal operation is shown. In the case no load can be 

shed (all loads are critical), a converter disconnection will have an important impact on losses increase. This is the 

case shown in Fig.3 (1) where failure in converter C1 led to a considerable increase in generation losses. In the case 

of G1 failure, the power system is able to switch to G2 and continue to supply critical loads while temporarily 

disconnecting non-critical ones as shown in Fig. 3 (4); this requires one generator to work at a 0.66 loading capacity 

compared to normal case in Fig. 1. However, converters will work at 0.50 loading capacity during normal conditions 

but will be ready to handle all critical loads if a failure in one of them occurs. 
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Fig. 2 Power system for MEA (a), all loads are critical; optimum power in normal conditions (b) 

 

Fig. 3 Optimal power assessment of MEA power system under failure scenario; (1) failure in C1; (2) failure in C1 and shedding of B11; (3) 

failure in C1 and shedding of loads in B11 and B14; (4) failure in G1 and shedding of loads in B11 and B14. Loads with * can be shed 

The losses for configurations in Fig. 2 and 3 are tabulated in Table 1. Note that the difference between non-linear 

and MILP approximations are not higher than 1% when single McCormick approximation and piecewise linear 

functions with 21 divisions were used. More accurate approximations can increase the load flow solution accuracy.          

TABLE 1: ACTIVE LOSSES FOR THE TOPOLOGY CONFIGURATIONS SHOWN IN FIG. 2 AND FIG. 3. 

System study 

 

Active Losses in kW 

Normal 1 2 3 4 

DC 

system 

Non-linear (iterative solution) 0.727 1.764 1.728 1.570 0.589 

MILP approximation 0.724 1.759 1.723 1.565 0.586 

Difference (%) -0.41 -0.28 -0.29 -0.32 -0.51 

 

The optimization approach in (8a)-(8i) can also assist in several design tasks such as conductor selection and 

component location. These applications will be investigated in the future.     

5. CONCLUSION 

Non-linearities of DC load flow models can be managed with linear approximations via McCormick envelopes 

or Piecewise linear functions approximations. The advantage of using such approximations is the flexibility to use 

network design formulations and MILP techniques to optimize the MEA power distribution system. The load flow 

results of several topologies optimized with MILP based techniques have been compared to the non-linear solution 

and the accuracy is less that 1% in all cases. Future investigations will explore accuracy improvements and the use of 

MILP base network design in other on-board MEA applications.   
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