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ABSTRACT: The one-carbon homologation of carboxylic acids is a valuable route to construct families of homologues, which play
fundamental roles in chemistry and biology. However, known procedures are based on multistep sequences, use harsh conditions or
are limited in scope. Thus, almost a century after the discovery of the original Arndt−Eistert homologation sequence, a general
method to directly convert carboxylic acids into their corresponding homologues remains elusive. Exploiting the photoredox
reactivity of nitroethylene, we disclose a practical visible-light-induced homologation of unmodified carboxylic acids. Iterations of the
procedure reveal an exceptionally tunable strategy for the construction of inert carbon spacers, opening new opportunities in
synthesis.

Methylene homologues�i.e., structural analogues differ-
ing in the length of a carbon chain�play fundamental

roles in chemistry and biology.1 β-Amino acids 1 (Scheme 1a)
represent a striking example of biologically relevant methylene
homologues, constituting essential components of numerous
antibiotics and peptidomimetics.2−4 Homologue structures
also often play key roles in structure−activity relationship
studies in drug design. For instance, the use of flexible carbon
chain spacers is common in lead optimization, and their length
is frequently observed to impact the affinity for specific targets,
e.g., 3.5,6

The homologation reaction�i.e., the elongation of carbon
chains by a single carbon unit�constitutes a fundamental
strategy to access structural homologues of complex mole-
cules.7,8 Given the exceptional abundance of carboxylic acids in
natural products and medicinally relevant molecules,9,10 their
homologation represents an attractive target, which has
inspired significant research over the last century. The
Arndt−Eistert synthesis and its variants have historically
constituted the main route to homologate carboxylic
acids,11−19 although their applicability is severely limited by
drawbacks such as the use of highly reactive reagents, the
multistep nature of the process, and the limited functional
group tolerance. Various strategies based on classic radical
chemistry,20,21 transition metal catalysis,22 and other photo-
chemical methods23−25 have recently provided milder
conditions for carboxylic acid homologation. Nevertheless,
these procedures are often limited in scope, may require
difficult-to-access reagents, are reliant on substrate preactiva-
tion, and provide products which require further chemical
manipulation to reveal the desired homologated carboxylic
acid (Scheme 1b). The resulting multistep sequences are
cumbersome and have limited applicability, given that
functional group compatibility issues often arise along the
activation/deprotection line. Furthermore, the lengthy pro-
cesses preclude iterative homologative synthesis, which would
enable a versatile chemical canvas for the design of carbon
chains with tailored length.

Thus, after almost a century from the discovery of the
Arndt−Eistert synthesis,7,8 a direct method to homologate
unmodified carboxylic acids remains elusive. Herein we outline
our strategy to address this long-standing challenge, presenting
a practical route for iterative one-carbon homologation that
enables the practical design of carbon chains with user-defined
length.
In our conceptual plan, we speculated that a photoredox

decarboxylative radical generation,26−30 followed by addition
to an appropriate radical acceptor,31−33 would provide a viable
route for our goal. As presented in Scheme 1c, in our design
plan, radical 5 would be generated upon the single-electron
oxidation of carboxylic acid 4. The open-shell species would
then undergo addition to nitroethylene (6), a Michael acceptor
which has found a relatively wide use in synthesis as an
electrophile.34−44 Although sporadic examples of its use in
radical chemistry are known, i.e., in thiohydroxamic acid ester
group transfer reactions,45−48 its use in Giese hydroalkylation
reactions is unprecedented. As a result of the planned radical
addition, intermediate nitro compound 7 would be generated.
We then speculated that mild conversion of this intermediate
to a carboxylic acid49 in situ in the reaction solution would
enable direct access to the desired homologue product 8,
which ideally would be isolated through a simple acid−base
extraction workup from the crude mixture. Since both the
starting material 4 and its homologue product 8 bear the
carboxylic acid functionality, practical iterations of our
methodology would enable the tunable construction of carbon
chains and application on complex substrates thanks to the
mild conditions offered by photoredox catalysis.50−54 How-
ever, given that the use of nitroethylene is unprecedented in
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photocatalysis, we predicted that its high reactivity and
propensity to polymerize with or without irradiation55,56

would constitute a significant challenge for our strategy.
Although basic reactivity and synthetic applicability studies

of nitroethylene are known,57 information regarding its
stability and storability are vague. Therefore, we commenced
our investigation by performing a systematic study to assess the
stability of nitroethylene (see the Supporting Information for
details). Although spontaneous polymerization was observed in
a variety of polar aprotic solvents and in the presence of weak
bases, full stability was observed when nitroethylene was stored
as a dichloromethane solution. Analogously to other common
laboratory reagents, the in-house-prepared solution can be
practically stored for months in a regular refrigerator (5−10
°C), with no decomposition detected, in a glass bottle kept
under inert gas through a standard commercial rubber septum
(Scheme 1c, bottom).
We then investigated the feasibility of our photocatalytic

system (Table 1). Established iridium-,28 acridinium-,58 and
cyanoarene-based59 photocatalytic methods (entries 1−3) led
to traces or no formation of the desired nitroalkane adduct,

with nitroethylene polymerization observed. This is consonant
with our stability studies, which suggest nitroethylene
incompatibility with the weak bases and polar solvents typically
required for photoredox decarboxylative radical reactions. We
therefore speculated that an acridine-based photocatalytic
system relying on a proton-coupled electron transfer (PCET)
radical generation from a neutral carboxylic acid,60−64 rather
than a single-electron oxidation of its corresponding
carboxylate conjugate base, would enable the radical reactivity
envisioned.
To our delight, when a methylene chloride solution of

model carboxylic acid 4a and nitroethylene 6 (1.1 equiv) was
irradiated for 4 h with visible light (405 nm) in the presence of
catalytic amounts of acridine PC4, Cu(MeCN)4BF4, and
diphosphine ligand L1, the formation of the desired nitro-
alkane intermediate 7a was observed in 75% yield (entry 4).
An increase in yield to 83% was observed in the presence of 10
mol % hexafluoroisopropanol (HFIP) (entry 5), which was
speculated to activate nitroethylene toward radical addition via
H-bond activation65 and inhibit possible residual anionic
polymerization decomposition pathways.55,56 Using neo-
cuproine (L2) as a ligand, the yield of the intermediate was
further increased to 95%. Addition of a 4:1 dimethyl sulfoxide/
acetic acid solution of NaNO2

49 to the unhandled reaction

Scheme 1. Carboxylic Acid Homologation, Relevance,
Challenges, and This Strategy

Table 1. Optimization Studies

entrya PC base ligand 7a (%)b 8a (%)b,f

1c PC1 K2HPO4 − <5 −
2c PC2 Na2CO3 − <5 −
3c PC3 K2HPO4 − 0 −
4d PC4 − L1 75 −
5d,e PC4 − L1 83 −
6d,e PC4 − L2 95 95 (91)

aReactions were carried out on a 0.1 mmol scale. Full experimental
details are provided in the Supporting Information. b1H NMR yields
using mesitylene as an internal standard. The value in parentheses is
the yield of isolated material from a 0.2 mmol reaction. cReaction
conditions from refs 28, 58, and 59. dReactions were conducted with
PC4 (10 mol %), Cu(MeCN)4BF4 (5 mol %), and L1−2 (5 mol %)
in CH2Cl2 (0.1 M) under 405 nm LED irradiation for 4 h. eHFIP (10
mol %) was added. fNaNO2 (6.0 equiv) and DMSO/AcOH (4:1)
were added to the reaction vessel after irradiation followed by stirring
at 35 °C for 24 h under open air. Mes: mesityl.
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Scheme 2. Scope and Examples of Synthetic Applications of the Carboxylic Acid Homologationa

aReactions were carried out on a 0.2 mmol scale with addition of NaNO2, DMSO, and AcOH to the reaction vessel, without further manipulations,
just after irradiation. Yields refer to isolated materials. Full experimental details are provided in the Supporting Information. b15 mol % PC4 was
used. cThe second step was conducted for 48 h. d>20:1 d.r. eAqueous acidic workup, followed by chromatographic purification. HFIP:
hexafluoroisopropanol; Mes: mesityl; NMM, N-methylmorpholine; EDC: N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide hydrochloride;
HOBt: N-hydroxybenzotriazole.
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vessel just after irradiation, without any solvent evaporation or
workup procedures, and stirring at 35 °C for 24 h under open
air led to the quantitative conversion of intermediate 7a to the
desired carboxylic acid homologue 8a. Remarkably, the
product was isolated in 91% yield through a simple acid−
base extraction workup, with no chromatographic purification
involved (entry 6).
With the optimal conditions in hand, we explored the

generality of our homologation strategy (Scheme 2). As per
the model system, most of the substrates 4 investigated led to
the desired homologated products 8 with >95% purity upon
acid−base extraction workup, with silica purifications occa-
sionally performed, mainly to remove traces of C−H or silicon
grease impurities. A variety of model primary carboxylic acids
undergo the homologation process in moderate to high yields
(i.e., 8b−8i). The process tolerates synthetically versatile
alcohol or chloride handles, leading to products 8c and 8d in
81% and 76% yield. Terminal alkenes and alkynes can be
accommodated in the substrate despite their tendency to react
under radical conditions (8e and 8f). Carboxylic acids bearing
secondary amides, sulfones, and phosphonates can be
successfully homologated, affording products 8g−8i. A variety
of carbocyclic as well as O- or N-heterocyclic secondary
carboxylic acids undergo the desired process, with six-, five-,
and even strained four-membered rings giving the desired
homologues in good to excellent yields (8j−8o). Bulky tertiary
carboxylic acids are equally effective substrates (e.g., adamantyl
system 8p), suggesting that steric hindrance does not hamper
the desired process. A carboxylic acid bearing a cyclopropane
ring successfully underwent homologation, leading to 8q in
excellent yield, corroborating the ability of particularly strained
and highly reactive cyclopropyl radicals66 to participate to the
desired process. Bicyclo[1.1.1]pentane and bicyclo[2.2.2]-
octane systems, valuable sp3-rich, nonplanar bioisosteres for
aryl groups,67−70 undergo the homologation procedure in 47%
and 70% yield, respectively (8r and 8s). Bicyclic ketone 8t was
obtained in a moderate 37% yield. These results showcase the
ability of highly reactive and strained bridgehead radical
intermediates to undergo our desired process. The hyper-
lipidemia treatment drug gemfibrozil71 was successfully
homologated to access compound 8u in 51% yield. Lithocholic
acid and oleanolic acid, respectively, primary or tertiary
steroidal carboxylic acids bearing free alcohol and alkene
functionalities, can be homologated to give 8v and 8w in 63%
and 36% yield. These results further demonstrate the
functional group compatibility and the generality of this
homologation procedure.
Next, we envisioned that practical iterations of this

homologation procedure would enable the tunable construc-
tion of user-defined carbon chain spacers with various relevant
synthetic applications (Scheme 2, bottom). We initially
explored application in the synthesis of unnatural amino
acids, valuable molecules in medicinal chemistry.72−75

Protected glutamic acid 4x was homologated to its lateral
chain glutamate 1-C homologue 8x in 84% yield, with no
chromatographic purifications involved in the process. Simple
functional group interconversion of the pendant carboxylic
acid of 8x allowed access to other amino acid homologues, e.g.,
glutamine homologue 9 in 63% yield via simple amide
coupling and serine 3-C higher homologue 10 via selective
carboxylic acid reduction in 57% yield. An iteration of the
homologation process led to glutamate 2-C homologue 8y in
66% yield, again obtained without chromatographic purifica-

tions involved in the process. An “interrupted” version of this
iteration (the intermediate nitro compound was reduced to the
corresponding amine) gave lysine homologue 11 in 48% yield.
We then investigated the application of this methodology in

the design of metabolically stable, tunable carbon spacers for
medicinal chemistry applications. Leelamine 12 inhibits
intracellular cholesterol transport and has been investigated
as a potential treatment for melanoma and other types of
cancer.76−80 Previous structure−activity relationship (SAR)
studies only investigated amine derivatization,76 but the length
of the amine spacer has never been studied. The use of
traditional spacers, e.g., a glycine spacer connected via an
amide bond, would introduce additional functionalities
(potentially impacting target affinity and metabolic stability)
and would not offer access to a fully tunable chain length.
Subjecting dehydroabietic acid 4z to the “interrupted” version
of our homologation (reduction of the intermediate nitro-
alkane to amine) afforded leelamine homologue 13 in 47%
yield. Performing the full homologation process led to the
corresponding carboxylic acid homologue 8z, which can
undergo further iterations to enable the design of a highly
tunable, inert carbon spacer for leelamine.
Based on previous knowledge on acridine photocataly-

sis60−64 and our mechanistic control experiments and
spectroscopic investigations (see the Supporting Information),
we propose the catalytic cycle shown in Scheme 3. Acridine

PC4 and substrate 4 form H-bonded complex PC4-COOH
(detected spectroscopically; see the Supporting Information).
Visible-light excitation of the complex promotes the decarbox-
ylative generation of radical 5 and the reduced photocatalyst
PC4-H•. Carbon-centered radical 5 then engages with
nitroethylene 6 in the presence of Cu(I) cocatalyst 14, leading
to Cu(II)−nitronate 15.81 Protonation of this species by PC4-
H+�formed upon oxidation of PC4-H• by Cu(II) species
16�closes the catalytic cycle and affords nitroalkane 7
(generation of 16 for the first catalytic turnover is proposed
to occur either by disproportionation of the Cu(I) precatalyst
or by protonation of 15 by substrate 4). Intermediate
nitroalkane 7 is finally converted to the desired carboxylic

Scheme 3. Proposed Mechanism
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acid homologue 8 upon in situ treatment with NaNO2/
AcOH.49

In conclusion, we have introduced a direct and general
procedure for homologation of unmodified carboxylic acids.
The methodology features a wide scope and enables late-stage
homologation of complex molecules, opening the route to
iterative homologation chemistry. The synthetic versatility of
this methodology was demonstrated through the synthesis of a
variety of unnatural amino acids and the tunable introduction
of inert carbon spacers into bioactive molecules for biological
chemistry applications. The homologation approach presented
in this report is expected to provide a valuable tool in synthesis.
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