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Abstract
Finding the optimal design of experiments in theBayesian setting typically requires estimation andoptimization of the expected
information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function
applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of
interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest
to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to
determine good approximations of the expected information gain is increased further. The Laplace approximation has been
applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring
the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator
applies Laplace’s method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace
approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use
Monte Carlo approximation for the remaining outer integral estimation. We provide four numerical examples demonstrating
the applicability and effectiveness of our proposed estimators.
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1 Introduction

The goal of optimal experimental design (OED) (Chaloner
and Verdinelli 1995) is to provide designs for a given sci-
entific experiment for which the expected information gain
(EIG) (Lindley 1956) is optimal. In the Bayesian setting,
the knowledge of the experimenter about the parameters of
interest before conducting the experiment is expressed as the
prior probability density (pdf) of the parameters of interest,
whereas the knowledge after the experiment is expressed as
the posterior pdf, conditioned on the data. The increase in
knowledge (or the reduction in uncertainty) is given by the
Kullback–Leibler divergence (Kullback 1959; Kullback and
Leibler 1951) between the posterior and prior. The EIG can
be expressed as the expected Kullback–Leibler divergence
over the data. A higher EIG indicates that the data obtained
from the experiment are expected to provide more informa-
tion on the parameters of interest. Therefore, optimizing the
EIG reduces the uncertainty about the parameters of interest.

If additional uncertainty is present in themodel via param-
eters not of interest to the experimenter, we refer to them as
nuisance parameters and marginalize them before optimiz-
ing the EIG. Thus, we find a design that only reduces the
uncertainty about the parameters of interest, not the nuisance
parameters. This approach ultimately maximizes the amount
of information the experiment provides about the parameters
of interest while keeping track of the uncertainty introduced
by the nuisance parameters. A similar setting was considered
in Alexanderian et al. (2022); Bartuska et al. (2022); Feng
andMarzouk (2019). For a more general background on nui-
sance uncertainty, seeBernardo (1979); Levine (2014); Liepe
et al. (2013); Polson (1988).

There is often no closed-form expression for the EIG;
thus, it must be estimated numerically (Ryan 2003), which
involves estimating nested integrals separated by the loga-
rithm function and typically entails high computational costs.
Marginalizing nuisance parameters introduces a second inner
integral, increasing the computational cost further. The
Laplace approximation (Stigler 1986; Tierney and Kadane
1986; Tierney et al. 1989; Kass et al. 1990; Friston et al.
2007) of the inner integral in combination with the Monte
Carlo (MC)method is an effective tool for estimating the EIG
(Beck et al. 2018; Long et al. 2013). In this work, we extend
this approach to the casewith additional nuisance uncertainty
and derive Laplace approximations for two distinct estima-
tors. The first estimator uses Laplace’s method followed by a

Laplace approximation in a nested fashion to approximate the
posterior pdf of the parameters of interest directly, and then
uses theMCmethod for the outer integral. Thismethod intro-
duces a bias relative to the number of experiments performed,
which is considered fixed from a modeling perspective. The
second estimator uses two separate Laplace approximations
as importance sampling measures for the two inner integrals,
which are approximated using the MC method.

Our approach differs from that used in Feng andMarzouk
(2019), as the Laplace approximation is incorporated cen-
trally in both estimators, whereas (Feng and Marzouk 2019)
developed a gradient-free importance sampling scheme to
reduce variance in their proposed MC estimator. Similar to
Feng and Marzouk (2019), we consider reducible nuisance
uncertainty, which is accessible to Bayesian updates. On the
other hand, Alexanderian et al. (2022) considers irreducible
nuisance uncertainty. The studies (Alexanderian et al. 2022)
and Bartuska et al. (2022) assumed Gaussianity for the dis-
tribution of the nuisance parameters. Such assumptions are
not present in Feng and Marzouk (2019) and the present
work. The small-noise approximation derived in Bartuska
et al. (2022) also further restricts the size of the nuisance
uncertainty to be considered.

In Englezou et al. (2022), an approximate Laplace impor-
tance sampling forEIGestimationwas proposed,where outer
samples were used to compute the Hessian for the Laplace
approximation rather than using the maximum a posteri-
ori (MAP). A double-importance sampling scheme for EIG
with nuisance uncertainty based on the Laplace approxima-
tion was first proposed in Englezou et al. (2022). For the
importance sampling density of the nuisance parameters con-
ditioned on the data and the parameters of interest, the joint
density of nuisance parameters andparameters of interestwas
first approximated by the standard Laplace approximation.
The conditional density was then computed based on the for-
mula for the conditional normal density. Instead, in this work
we propose a novel Laplace approximation that is directly
applied to the conditional density of the nuisance parameters.
This approach requires additional numerical approximation
methods, namely, the MAP and related Hessian for this
conditional density; however, we also expect to obtain a
more robust importance sampling density fromour approach.
Moreover, we demonstrate that the cost to obtain importance
sampling densities does not affect the asymptotic cost of the
overall estimator.

The work (Overstall et al. 2017) considers normal-based
Laplace approximations also for utility functions different
from the EIG, called therein the expected Shannon informa-
tion gain or expected self-information loss. Moreover, model
uncertainty is also discussed in Overstall et al. (2017), which
can be interpreted as an application of nuisance parameters.
However, the setting discussed in Overstall et al. (2017) is
of a finite and countable number of possible models. Inte-
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gral approximations, as required in the current manuscript
for nuisance parameters modeled by a continuous random
variable, are not discussed in their setting.

For asymptotic error bounds on the Laplace approxi-
mation, see Schillings et al. (2020); Wacker (2017). Pre-
asymptotic error bounds and the effect of the nonlinearity
of the experiment model on the data likelihood were investi-
gated inHelin andKretschmann (2022). For additional errors
from estimating the mean and covariance in the Laplace
approximation, see Spokoiny (2022).

The rest of this work is structured as follows. In Sect. 2,
we introduce the Bayesian formulation and the standard
double-loop MC (DLMC) estimator with nuisance uncer-
tainty, which serves as a reference method for the novel
estimators. Next, in Sect. 3, we provide an error analysis,
computational work analysis, and a method to obtain the
required number of outer and inner samples to achieve a
certain error tolerance for the DLMC estimator with nui-
sance uncertainty. As the main contribution of this work,
we derive the Laplace approximations necessary for the
MC double-Laplace (MC2LA) estimator in Sect. 4. Subse-
quently, in Sect. 5, we develop the MC2LA estimator and
a probabilistic error bound. Next, we develop the DLMC
double importance sampling (DLMC2IS) estimator. Finally,
in Sect. 6, we demonstrate the effectiveness of the proposed
estimators on four numerical examples. The first example
provides insight into the effect of nuisance parameters on
the optimal design of an experiment. An example from phar-
macokinetics indicates the possibility for optimization in a
larger design space of 15 dimensions. The third and fourth
examples reveal the applicability of the estimators to elec-
trical impedance tomography (EIT) experiments involving a
finite element approximation of the underlying partial differ-
ential equation (PDE).

2 Bayesian formulation

Beforewediscuss theBayesian setting,wemust first describe
the experiment in mathematical terms. For this purpose, we
consider an additive data model:

yi (ξ) = g(ξ , θ t ,φt ) + εi , (1)

where

• yi ∈ R
dy is the observed data vector, i = 1, · · · , Ne;

• Y = ( y1, · · · , yNe
) ∈ R

dy×Ne is the data for each exper-
iment;

• Ne is the number of observations for a specific experiment
setup;

• θ t ∈ R
dθ is the true vector of the parameters of interest;

• φt ∈ R
dφ is the true vector of the nuisance parameters;

• ξ ∈ R
dξ is the vector of the design parameters;

• g : Rdξ × R
dθ × R

dφ → R
dy is the deterministic model

of the experiment;
• εi ∈ R

dy is the error vector assumed to be Gaussian

εi
iid∼ N (0,�ε), i = 1, · · · , Ne,

where iid refers to independent and identically distributed.
The knowledge about the parameters of interest θ before the
experiment is encompassed by the prior pdf π(θ), whereas
the knowledge after the experiment is given by the poste-
rior pdf π(θ |Y). We make no general assumptions on the
independence of θ and φ; therefore, we also consider the
joint distribution π(θ,φ). To complete the Bayesian setup,
we consider the likelihood p(Y |θ) and evidence p(Y). The
latter two pdfs are denoted by p rather than π to distinguish
between pdfs for model parameters and data. Moreover, the
posterior, likelihood, and the evidence are conditioned on the
design ξ , but we omit this dependence for concision. In this
context, the Bayes formula for the posterior reads

π(θ |Y) = π(θ)p(Y |θ)

p(Y)
,

= π(θ)
∫
� p(Y |θ ,φ)π(φ|θ) dφ

∫
�

∫
� p(Y |θ,φ)π(θ,φ) dφ dθ

, (2)

where the likelihood terms are obtained throughmarginaliza-
tion. The likelihood conditioned on φ results from the data
assumption (1), as

p(Y |θ,φ):= det(2π�ε)
− Ne

2

exp

(

−1

2

Ne∑

i=1

r( yi , θ ,φ) · �−1
ε r( yi , θ ,φ)

)

, (3)

where

r( yi , θ ,φ):= yi − g(θ ,φ) = g(θ t ,φt ) + εi − g(θ ,φ) (4)

is the data residual. The amount of information gained about
the parameters of interest θ from the experiment is expressed
as the Kullback–Leibler divergence (Kullback 1959; Shan-
non 1948) given by

DKL =
∫

�

[log(π(θ |Y)) − log(π(θ))]π(θ |Y) dθ . (5)

The goal of OED is to determine a design ξ for which the
experiment provides informative data; therefore, we consider
the expectation of (5) over the data Y , yielding the EIG

I =
∫

Y

∫

�

[log(π(θ |Y)) − log(π(θ))]π(θ |Y) dθ p(Y) dY .

(6)

This quantity only depends on the design ξ , as all other depen-
dencies have been marginalized. We rewrite this expression
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in terms of the known likelihood function (3) conditioned on
φ using the Bayes formula (2)

I =
∫

�

∫

Y
[log(p(Y |θ)) − log(p(Y))]p(Y |θ) dYπ(θ) dθ ,

=
∫

�

∫

�

∫

Y

[

log

(∫

�

p(Y |θ,ϕ)π(ϕ|θ) dϕ

)

− log

(∫

�

∫

�

p(Y |ϑ,ϕ)π(ϑ,ϕ) dϕ dϑ

)]

p(Y |θ,φ) dYπ(θ,φ) dφ dθ , (7)

whereϑ andϕ are dummy variables to distinguish them from
θ and φ from the outer integrals. As a reference to approxi-
mate expression (7), we introduce the DLMC estimator with
two inner loops:

IDL = 1

N

N∑

n=1

[

log

(
1

M1

M1∑

m=1

p(Y (n)|θ (n),ϕ(n,m))

)

− log

(
1

M2

M2∑

k=1

p(Y (n)|ϑ (n,k),ϕ(n,k))

)]

. (8)

The samples are drawn as follows. First, we sample (θ (n),

φ(n))
iid∼ π(θ ,φ). This allows us to sample Y (n) iid∼

p(Y |θ (n),φ(n)), 1 ≤ n ≤ N . Next, we sample ϕ(n,m) iid∼
π(φ|θ (n)), 1 ≤ m ≤ M1, and (ϑ (n,k),ϕ(n,k))

iid∼ π(θ ,φ),
1 ≤ k ≤ M2.

3 Bias, statistical error, and optimal number
of samples

To obtain the optimal number of samples for the outer and
inner loops, we aim to minimize the total work to achieve
a certain prescribed tolerance in the EIG estimator. Thus,
we first stipulate that the total work W of computing the
estimator IDL in expression (8) is given by

W (IDL) ∝ N (M1 + M2). (9)

Moreover, we split the error of the estimator into the bias and
statistical errors:

|IDL − I | ≤ |E[IDL] − I |
︸ ︷︷ ︸

bias error

+ |IDL − E[IDL]|
︸ ︷︷ ︸

statistical error

. (10)

Emulating the reckoning by Feng and Marzouk (2019), with
a second-order Taylor approximation, the bias component
reads as

|E[IDL] − I | ≈
∣
∣
∣
∣
C2

M2
− C1

M1

∣
∣
∣
∣ . (11)

In (11), we have the difference between two positive terms;
thus, these terms could cancel each other. In this scenario, the
error estimation depends on the ignored higher-order terms.
Thus, we lose all knowledge of the error estimates. To avoid
this, we use the triangular inequality to arrive at a slightly
more conservative error estimate:

|E[IDL] − I | ≈
∣
∣
∣
∣
C2

M2
− C1

M1

∣
∣
∣
∣ ,

≤ C2

M2
+ C1

M1
. (12)

For the statistical error, we also recall (Feng and Mar-
zouk 2019) and express the variance of the EIG estimator as
follows:

V[IDL] ≈ D3

N
+ D1

NM1
+ D2

NM2
, (13)

where the constantsCi > 0 and Di > 0 depend on the design
parameter ξ . Although we base this part of the work on Feng
and Marzouk (2019), the error estimates differ because we
use (12) instead of (11). Furthermore, Feng and Marzouk
(2019) consider that M1 = M2 for simplicity, whereas we
derive an allocation of inner samples that is proportional to
the constants C1 and C2, following (Bartuska et al. 2022
Appendix A).

The constants appearing in (12) and (13) are given as fol-
lows (see Appendix A):

C1 = 1

2
E

[
V[p(Y |θ ,ϕ)|Y , θ ]

p2(Y |θ)

]

, (14)

C2 = 1

2
E

[
V[p(Y |ϑ,ϕ)|Y ]

p2(Y)

]

, (15)

D1 = E

[
V[p(Y |θ ,ϕ)|Y , θ ]

p2(Y |θ)

]

, (16)

D2 = E

[
V[p(Y |ϑ,ϕ)|Y ]

p2(Y)

]

, (17)

and

D3 = V

[

log

(
p(Y |θ)

p(Y)

)]

. (18)

For a given error tolerance T OL > 0, we can introduce a
splitting parameter κ ∈ (0, 1) to distribute the error between
the bias and statistical error. Thus, aided by the central limit
theorem, we arrive at the following constraints:

|E[IDL] − I | ≤ (1 − κ)T OL, (19)

V[IDL] ≤
(

κT OL

Cα

)2

, (20)

where Cα = �−1(1− α/2) is the constant depending on the
chosen confidence level α, and�−1 is the inverse cumulative
distribution function of a standard normal random variable.
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To determine the optimal number of samples, we formu-
late the following subproblem. We find N , M1, M2, and κ

arising from the minimization of the total work (9) subject
to the bias and statistical error constraints (19) and (20):

N∗, M∗
1 , M∗

2 , κ∗:= argmin
N ,M1,M2,κ

N (M1 + M2)

s.t.
C1

M1
+ C2

M2
≤ (1 − κ)T OL,

1

N

(

D3 + D1

M1
+ D2

M2

)

≤
(

κT OL

Cα

)2

,

N , M1, M2 > 0,

1 > κ > 0.

(21)

In Appendix B, we solve this problem analytically. We
present the optimal sample choices as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗ =
8T OL + 3D3 −

√
16T OLD3 + 9D2

3

8T OL
,

N∗ = C2
α (D3 + 2(1 − κ∗)T OL)

(κ∗)2T OL2 ,

M∗
1 = C1 + √

C1C2

(1 − κ∗)T OL
,

M∗
2 = C2 + √

C1C2

(1 − κ∗)T OL
,

(22)

whereas the total optimal work reads as

W ∗ ∝
(
C2

α (D3 + 2(1 − κ∗)T OL)

(κ∗)2T OL2

)(
(
√
C1 + √

C2)
2

(1 − κ∗)T OL

)

∝ T OL−3. (23)

As T OL approaches infinity, κ approaches 1. Thus, for
large tolerances, only the statistical error is relevant. As T OL
approaches 0, κ approaches 2/3, which can be observed from
the fact that the statistical error (13) can be rewritten to
include the bias error using (14)–(17) as follows:

V[IDL] ≈ 1

N
(D3 + 2|E[IDL] − I |) . (24)

Thus, the statistical error always takes priority over the bias
error.

When the bias error due to the numerical discretization
of the forward problem is also considered, we obtain the
following term for the average computational work:

W (I hDL) ∝ N (M1 + M2)h
−γ , (25)

where h−γ is proportional to the average work of evaluating
the forward model g with discretization parameter h. The
subproblem (21) becomes

N∗, M∗
1 , M∗

2 , h∗, κ∗:= argmin
N ,M1,M2,h,κ

N (M1 + M2)h
−γ

s.t. C3h
η + C1

M1
+ C2

M2
≤ (1 − κ)T OL,

1

N

(

D3 + D1

M1
+ D2

M2

)

≤
(

κT OL

Cα

)2

,

N , M1, M2, h > 0,

1 > κ > 0,

(26)

where η is the weak convergence rate of the discretization
method. We obtain the solution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗ = η
8T OLη + 3D3η + D3γ + 4T OLγ −

√
D3
(
9D3η2 + 6D3ηγ + D3γ 2 + 16η2T OL + 8T OLηγ

)

2T OL
(
4η2 + 4ηγ + γ 2

) ,

N∗ = C2
α

κ2T OL

(
D3

T OL
+ 2

(

1 − κ

(

1 + γ

2η

)))

,

M∗
1 =

C1

(
1 +

√
C2
C1

)

(
1 − κ

(
1 + γ

2η

))
T OL

,

M∗
2 =

C2

(
1 +

√
C1
C2

)

(
1 − κ

(
1 + γ

2η

))
T OL

,

h∗ =
(

γ κT OL

2ηC3

) 1
η

.

(27)
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For the derivation of this result, see Appendix C and Bar-
tuska et al. (2022); Beck et al. (2018).

4 Laplace approximation

4.1 Laplace’s method

The DLMC estimator is expensive and often suffers from
numerical underflow (Beck et al. 2018). Some inexpensive
and accurate estimators have been proposed for the EIG
using importance sampling (Beck et al. 2018) or multi-
level techniques combined with importance sampling (Beck
et al. 2020) to reduce the computational cost. In addi-
tion, the inner integral may be estimated directly using the
Laplace approximation. In this work, we enhance the compu-
tational performance of the DLMC estimator with nuisance
uncertainty by deriving suitable Laplace approximations to
marginalize the likelihoods arising in the Bayes update and
integrate the inner loop. The Laplace approximation for the
Bayes update in this setting is novel. Through what follows,
we demonstrate that the Laplace approximation for the inner
loop differs from that in Long et al. (2013); Beck et al. (2018).

Next, using (4), the posterior (2) may be expressed as
follows:

π(θ |Y) = π(θ)

p(Y) det(2π�ε)
Ne
2

×
∫

�

exp

(

−1

2

Ne∑

i=1

r( yi , θ ,φ) · �−1
ε r( yi , θ ,φ)

)

π(φ|θ)dφ,

= π(θ)

p(Y) det(2π�ε)
Ne
2

∫

�

exp

(

−1

2

Ne∑

i=1

r( yi , θ ,φ) · �−1
ε r( yi , θ ,φ) + log(π(φ|θ))

)

︸ ︷︷ ︸
:=− f (θ ,φ)

dφ,

= π(θ)

p(Y) det(2π�ε)
Ne
2

∫

�

e− f (θ ,φ)dφ. (28)

We approximate the integral in (28) using Laplace’s method.
Assuming that f (θ,φ) has a unique minimum in φ, and
that its Hessian in φ is negative definite for almost all θ ,
we write the second-order Taylor approximation of f (θ ,φ)

in φ around its minimum in φ, denoted as φ̂(θ) and given by

φ̂(θ) = argmin
φ

f (θ, φ)

= argmin
φ

⎛

⎝1

2

Ne∑

i=1

r( yi , θ , φ) · �−1
ε r( yi , θ , φ)

− log(π(φ|θ))) ,

= argmin
φ

(
1

2
Ne(g(θ t ,φt ) − g(θ ,φ)) · �−1

ε (g(θ t , φt )

− g(θ, φ)),

+
Ne∑

i=1

εi · �−1
ε (g(θ t ,φt ) − g(θ ,φ)) − log(π(φ|θ))

)

.

(29)

The Taylor expansion in φ reads as

f̃ (θ ,φ) = f (θ , φ̂(θ))
︸ ︷︷ ︸
const. in φ

+∇φ f (θ , φ̂(θ))
︸ ︷︷ ︸

=0

·(φ − φ̂(θ))

+1

2
(φ − φ̂(θ)) · ∇φ∇φ f (θ , φ̂(θ))(φ − φ̂(θ)), (30)

with the following terms:

f (θ , φ̂(θ)) = 1

2

Ne∑

i=1

r( yi , θ , φ̂(θ)) · �−1
ε r( yi , θ , φ̂(θ))

− log(π(φ̂(θ)|θ)), (31)

∇φ f (θ , φ̂(θ)) = −
Ne∑

i=1

∇φ g(θ , φ̂(θ))��−1
ε r( yi , θ , φ̂(θ))

−∇φ log(π(φ̂(θ)|θ)), (32)

and

∇φ∇φ f (θ, φ̂(θ)) = −
Ne∑

i=1

∇φ∇φ g(θ , φ̂(θ))�

�−1
ε r( yi , θ , φ̂(θ))
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+ Ne∇φ g(θ , φ̂(θ))��−1
ε ∇φ g(θ , φ̂(θ))

− ∇φ∇φ log(π(φ̂(θ)|θ)), (33)

where ∇φ g(θ, φ̂(θ)) ∈ R
dy×dφ is the Jacobian of g with

respect toφ, evaluated at φ̂(θ). In addition,∇φ∇φ g(θ , φ̂(θ)))

∈ R
dy×dφ×dφ is the Hessian of g with respect to φ, eval-

uated at φ̂(θ). Because φ̂(θ) is the minimizer of f (θ ,φ),
∇φ f (θ , φ̂(θ)) = 0.

In index notation, using Einstein’s convention for summa-
tion with Greek letters, we obtain

f = 1

2

Ne∑

i=1

rα(�−1
ε )αβ rβ − log(π(φ̂(θ)|θ)), (34)

(∇φ f )γ = −
Ne∑

i=1

(∂γ gα)(�−1
ε )αβ rβ

−∂γ (log(π(φ̂(θ)|θ))), (35)

and

(∇φ∇φ f )γ ζ = −
Ne∑

i=1

(∂ζ ∂γ gα)(�−1
ε )αβ rβ

+Ne(∂γ gα)(�−1
ε )αβ(∂ζ gβ) − ∂ζ ∂γ (log(π(φ̂(θ)|θ))).

(36)

Laplace’s method reads as

∫

�

e− f (θ ,φ) dφ ≈ (2π)
dφ
2

det(∇φ∇φ f (θ , φ̂(θ)))
1
2

e− f (θ ,φ̂(θ)), (37)

yielding the following approximation of the posterior:

π
φ̂
(θ |Y):= π(θ)π(φ̂(θ)|θ)(2π)

dφ
2

p(Y) det(2π�ε)
Ne
2 det(∇φ∇φ f (θ , φ̂(θ)))

1
2

exp

(

−1

2

Ne∑

i=1

r( yi , θ , φ̂(θ)) · �−1
ε r( yi , θ , φ̂(θ))

)

. (38)

Moreover, (38) is not Gaussian unless the prior is Gaussian,
and the model g is linear on θ .

4.2 Laplace approximation

Assuming that (38) has a unique minimum and negative def-
inite Hessian as a function of θ , we follow the approach in
Long et al. (2013) to obtain a Gaussian approximation of the
posterior distribution, taking the negative logarithm of (38)
and evolving it around the maximum a posteriori estimate θ̂

up to second order:

F(θ):= − log(π
φ̂
(θ |Y)),

= 1

2

Ne∑

i=1

r( yi , θ , φ̂(θ)) · �−1
ε r( yi , θ , φ̂(θ))

− h(θ) + k(θ) − �(θ) + C, (39)

where

h(θ):= log(π(θ)),

k(θ):=1

2
log(det(∇φ∇φ f (θ , φ̂(θ)))),

and

�(θ):= log(π(φ̂(θ)|θ)).

The last two terms are new compared to their approach, and
C is a constant.

The maximum a posteriori estimate θ̂ of (38) is given by

θ̂ = argmax
θ

π
φ̂
(θ |Y),

= argmin
θ

F(θ),

= argmin
θ

[
1

2

Ne∑

i=1

r( yi , θ , φ̂(θ)) · �−1
ε r( yi , θ , φ̂(θ))

−h(θ) + k(θ) − �(θ)] . (40)

The Taylor expansion is given by

F̃(θ) = F(θ̂)
︸︷︷︸

const. in θ

+∇θ F(θ̂)
︸ ︷︷ ︸

=0

·(θ − θ̂)

+1

2
(θ − θ̂) · ∇θ∇θ F(θ̂)(θ − θ̂). (41)

From (39), we obtain

∇θ F(θ̂) = −
Ne∑

i=1

(
∇z g(z(θ̂))∇θ z(θ̂)

)�
�−1

ε r( yi , z(θ̂))

−∇θh(θ̂) + ∇θk(θ̂) − ∇θ�(θ̂), (42)

by the chain rule, where we write

z(θ̂):=(θ̂ , φ̂(θ̂)) ∈ R
dθ+dφ , (43)

and

∇θ∇θ F(θ̂) = −
Ne∑

i=1

(
∇θ z(θ̂)�∇z∇z g(z(θ̂))∇θ z(θ̂)
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+∇z g(z(θ̂))∇θ∇θ z(θ̂)
)�

�−1
ε r( yi , z(θ̂))

+ Ne

(
∇z g(z(θ̂))∇θ z(θ̂)

)�

�−1
ε

(
∇z g(z(θ̂))∇θ z(θ̂)

)

− ∇θ∇θh(θ̂) + ∇θ∇θk(θ̂) − ∇θ∇θ�(θ̂).

(44)

Given (39), (40), (41), and (44) we find the Gaussian approx-
imation of the posterior at θ̂ :

π̃(θ |Y):= 1

det(2π�)
1
2

exp

(

− (θ − θ̂) · �−1(θ − θ̂)

2

)

,

(45)

where �−1 = ∇θ∇θ F(θ̂). The first term in (44) is
OP(

√
Ne),1 and the second term is OP(Ne) (see Long et al.

2013 andAppendixD).The last two terms are of orderOP(1).

Remark 1 (Differences and additional expenses in account-
ing for nuisance uncertainty in the Laplace approximation of
the posterior) In this setting, we obtain terms relating to z(θ̂),
k, and �, requiring additional Jacobian and Hessian evalua-
tions to adequately account for nuisance uncertainty.

Remark 2 (Uniqueness of theminimum)TheLaplace approx-
imation and Laplace’s method can be applied to functions
without a unique minimum, see Bornkamp (2011) and Long
(2022). However, the examples considered in Sect. 6 dis-
played behavior consistent with the assumptions stated at
the beginning of Sect. 4.1 and Sect. 4.2.

5 Expected information gain estimators

5.1 Double Laplace approximation: Monte Carlo
double Laplace

Thefirst estimator to compute theEIGuses Laplace’smethod
and a Laplace approximation. We begin by rewriting the log
ratio between posterior and prior:

log

(
π(θ |Y)

π(θ)

)

= log

(
π(θ |Y)

π̃(θ |Y)

)

︸ ︷︷ ︸
:=εLa

+ log

(
π̃(θ |Y)

π(θ)

)

. (46)

1 The notation XM = OP(aM ) for a sequence of random variables XM
and constants aM is as follows. For any ε > 0, there exists a finite
K (ε) > 0 and finite M0 > 0 such that P(|XM | > K (ε)|aM |) < ε

holds for all M ≥ M0.

Using the second Laplace approximation given in (45), we
obtain

log

(
π(θ |Y)

π(θ)

)

= εLa − 1

2
log(det(2π�))

−
(

(θ − θ̂) · �−1(θ − θ̂)

2

)

− log(π(θ)). (47)

This formulation is identical to that Long et al. (2013), and the
only difference in the formulation without nuisance uncer-
tainty is encoded in the covariance matrix �.

Next, we write the Kullback–Leibler divergence (5) as
follows:

DKL =
∫

�

log

(
π(θ |Y)

π(θ)

)

π̃(θ |Y) dθ

+
∫

�

log

(
π(θ |Y)

π(θ)

)

(π(θ |Y) − π̃(θ |Y)) dθ
︸ ︷︷ ︸

:=εint

,

=
∫

�

εLaπ̃(θ |Y) dθ +
∫

�

[

−1

2
log(det(2π�))

−
(

(θ − θ̂) · �−1(θ − θ̂)

2

)

− log(π(θ))
]
π̃(θ |Y) dθ + εint ,

= − 1

2
log(det(2π�)) − dθ

2
− log(π(θ̂))

− tr(�∇θ∇θ log(π(θ̂)))

2
+ OP

(
1

N 2
e

)

, (48)

where εLa, εint = OP

(
1
N2
e

)
(see Long et al. 2013 Appen-

dices A, B, and C) and log(π(θ)) = log(π(θ̂))

+ tr(�∇θ∇θ log(π(θ̂)))
2 + OP

(
1
N2
e

)
(see Long et al. 2013

Appendix A).
Taking the expected value over all Y and using the law of

total probability results in the following EIG:

I =
∫

�

∫

�

∫

Y

[

−1

2
log(det(2π�)) − dθ

2

− log(π(θ̂)) − tr(�∇θ∇θ log(π(θ̂)))

2

]

×p(Y |θ,φ) dYπ(θ,φ) dφ dθ + OP

(
1

N 2
e

)

, (49)

whereas its sample-based version reads as

Î = 1

N

N∑

n=1

[

− 1

2
log(det(2π�(θ̂(Y (n))))) − dθ

2

− log(π(θ̂(Y (n)))) − tr(�(θ̂(Y (n)))∇θ∇θ log(π(θ̂(Y (n)))))

2

]

, (50)
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where � is the inverse Hessian (44) evaluated at θ̂ . Both �

and θ̂ dependonY (n) iid∼ p(Y |θ (n),φ(n)),where (θ (n),φ(n))
iid∼

π(θ ,φ), 1 ≤ n ≤ N , are sampled from the prior. The optimal
setting for this estimator was derived in Beck et al. (2018).

5.2 Double Laplace-based importance sampling:
double loopMonte Carlo double importance
sampling

Rather than directly approximating the inner integrals, we
can also use the Laplace approximation as a change of mea-
sure in the EIG (7). This method is known as importance
sampling and reduces the variances (14), (15), (16), and (17)
in the inner MC loops, reducing the total work (9). We aim
to estimate the following:

I =
∫

�

∫

�

∫

Y

[

log

(∫

�
p(Y |θ , ϕ)

π(ϕ|θ)

π̃(ϕ|Y , θ)
π̃(ϕ|Y , θ) dϕ

)

− log

(∫

�

∫

�
p(Y |ϑ, ϕ)

π(ϑ,ϕ)

π̃(ϑ, ϕ|Y)
π̃(ϑ,ϕ|Y) dϕ dϑ

)]

p(Y |θ , φ) dYπ(θ , φ) dφ dθ, (51)

where π̃(ϕ|Y , θ) is the Laplace approximation of π(ϕ|Y , θ)

and π̃(ϑ,ϕ|Y) is the Laplace approximation of π(ϑ,ϕ|Y).
These Laplace approximations are different from the one
developed in theprevious section.ThedataY = ( y1, . . . , yNe

)

in (51) can be decomposed into yi = g(θ ,φ) + εi , 1 ≤ i ≤
Ne; therefore, we write the distribution of ϕ as follows:

π(ϕ|Y , θ) ∝ π(ϕ|θ)p(Y |θ,ϕ), (52)

where

p(Y |θ,ϕ) ∝ exp

(

−1

2

Ne∑

i=1

r( yi , θ ,ϕ) · �−1
ε r( yi , θ ,ϕ)

)

,

(53)

and

r( yi , θ ,ϕ) = yi − g(θ ,ϕ),

= g(θ ,φ) + εi − g(θ,ϕ), 1 ≤ i ≤ Ne. (54)

Following the steps in Long et al. (2013), we arrive at

π̃(ϕ|Y , θ) := 1

det(2π�φ)
1
2

exp

×
(

− (ϕ − ϕ̂) · �−1
φ (ϕ − ϕ̂)

2

)

, (55)

where

ϕ̂ = argmin
ϕ

[
1

2

Ne∑

i=1

r( yi , θ ,ϕ) · �−1
ε r( yi , θ ,ϕ)

− log(π(ϕ|θ))
]
, (56)

and

�−1
φ = −

Ne∑

i=1

∇ϕ∇ϕ g(θ, ϕ̂)��−1
ε r( yi , θ , ϕ̂)

+Ne∇ϕ g(θ, ϕ̂)��−1
ε ∇ϕ g(θ, ϕ̂) − ∇φ∇φ log(π(ϕ̂|θ)).

(57)

We drop the first term in (57), as it is OP

(√
Ne
)
. As for the

joint density π(ϑ,ϕ|Y), we write z:=(ϑ,ϕ) ∈ R
dθ+dφ to

obtain the Laplace approximation:

π̃(z|Y):= 1

det(2π� z)
1
2

exp

(

− (z − ẑ) · �−1
z (z − ẑ)

2

)

,

(58)

with

ẑ = argmin
z

[
1

2

Ne∑

i=1

r( yi , z) · �−1
ε r( yi , z) − log(π(z))

]

,

(59)

and

�−1
z = −

Ne∑

i=1

∇z∇z g( ẑ)��−1
ε r( yi , ẑ)

+Ne∇z g( ẑ)��−1
ε ∇z g( ẑ) − ∇z∇z log(π( ẑ)). (60)

This last Laplace approximation (58) has the same shape as
that derived in Long et al. (2013). We again drop the first
term in (60), as it is OP

(√
Ne
)
. This method provides the

DLMC2IS estimator, as follows:

Î = 1

N

N∑

n=1

[

log

(
1

M1

M1∑

m=1

p(Y (n)|θ (n),ϕ(n,m))

π(ϕ(n,m))

π̃(ϕ(n,m)|Y (n), θ (n))

)

− log

(
1

M2

M2∑

k=1

p(Y (n)|ϑ (n,k),ϕ(n,k))

π(ϑ (n,k),ϕ(n,k))

π̃(ϑ (n,k),ϕ(n,k)|Y (n))

)]

. (61)
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First, we sample (θ (n),φ(n))
iid∼ π(θ ,φ), then we sam-

ple Y (n) iid∼ p(Y |θ (n),φ(n)), ϕ(n,m) iid∼ π̃(ϕ|Y (n), θ (n)) and

(ϑ (n,k),ϕ(n,k))
iid∼ π̃(ϑ,ϕ|Y (n)). The derivation of the opti-

mal setting for the DLMC2IS estimator follows the same
basic structure as for the DLMC estimator. Laplace-based
importance sampling helps reduce the variance of the inner
MC approximation, and thus affects the constants appearing
in the bias and variance bounds presented in Sect. 3. More-
over, the total work for the DLMC2IS estimator includes the
cost of numerically estimating theMAP andHessian for each
outer sample (Beck et al. 2018). The asymptotic computa-
tional work of the DLMC estimator is

WDLMC = O (N × (M1 + M2) × h−γ
)
, (62)

where N , M1, M2, and h are expressed as functions of the
error tolerance T OL . Preasymptotically, this work may be
expressed as

WDLMC = c1N × (c2M1 + c3M2 + 1) × c4h
−γ , (63)

for appropriately chosen constants c1, c2, c3, c4 independent
of T OL . The factor 1 enters as the cost of evaluating the
experiment model once per outer sample to generate the data
Y , which can be ignored asymptotically. For the DLMC2IS
estimator, it holds that

WDLI S = c1N × (c̃2M1 + c̃3M2 + J ) × c4h
−γ , (64)

where typically c̃2  c2, c̃3  c3 due to importance sam-
pling, and J ≥ 2 represents the cost to numerically estimate
MAP and Hessian for each outer sample. This factor J , as
well as c̃1 and c̃2, are independent of T OL , thus, it follows
that

c1N × (c̃2M1 + c̃3M2 + J ) × c4h
−γ

= c1N × (c̃2M1 + c̃3M2)

× c4h
−γ + c1N × J × c4h

−γ ,

≥ (1 + ε) × c1N × (c̃2M1 + c̃3M2) × c4h
−γ , (65)

for any ε > 0 as T OL → 0, where the last term in the first
line is of higher order in T OL . The asymptotic work of the
estimator is therefore influenced by a reduction in a multi-
plicative error term proportional to the combined importance
sampling effects. The cost for finding MAPs and Hessians
only enters as an arbitrary ε > 0. Numerical results in Fig. 3
(Panel (A)) show that our estimator is conservative, implying
the number of samples used was larger than necessary for a
given tolerance.

Remark 3 (Importance sampling for a prior distribution with
compact support) If the support of the prior distribution is

compact, using a Gaussian distribution for importance sam-
pling can result in samples outside this domain (see Bisetti
et al. 2016).However, this problem is rarely observed in cases
where the covariance of the importance sampling distribution
is highly concentrated.

Remark 4 (Numerical estimation ofMAPs andHessians) All
MAPs and Hessians in the following section were estimated
numerically. Specific experiment models allow for closed-
form expressions or the use of automatic differentiation;
however, this was beyond the scope of this work.

6 Numerical results

6.1 Linear Gaussian example

This example is based on a similar formulation used by Feng
and Marzouk (2019) to demonstrate the effects of nuisance
parameters on the optimal design ξ . We assume a linear
model,

y(ξ) = g(ξ, θ, φ) + ε, (66)

where

g(ξ, θ, φ) =
(

ξ 0
0 (1 − ξ)

)(
θ

φ

)

,

=
(

ξθ

(1 − ξ)φ

)

, (67)

and the parameters are sampled from the following distribu-
tions:

θ ∼ N (0, 1), φ ∼ N (0, 10−2), ε ∼ N (0,�ε),

�ε =
(
10−2 0
0 10−2

)

. (68)

The vector (0, 0)� is denoted by 0. The design ξ is chosen
from the interval (0, 1), and we only consider one experi-
ment; thus, Ne = 1. First, we run a pilot to estimate the
constants (14) to (18) required for the optimal setting of the
DLMC and the DLMC2IS estimators using N = 1000 outer
samples and M1 = M2 = 200 inner samples. The optimal
number of samples and the splitting parameter for a certain
tolerance T OL > 0 are given by (22). For the optimal set-
ting of the MC2LA estimator, we run another pilot using
N = 1000 outer samples to estimate the variance. The results
are displayed inFig. 1 as a function of the tolerance T OL . For
the DLMC estimator, the number of required inner samples
M∗

1 is smaller than M∗
2 because the constant C1 only encom-

passes the variance from the nuisance parameter φ, whereas
the constant C2 encompasses the variance from θ and φ.

123



Statistics and Computing            (2025) 35:12 Page 11 of 22    12 

Fig. 1 Example 1: Optimal number of outer (N∗) and inner (M∗
1 , M

∗
2 )

samples vs. tolerance T OL for the DLMC, DLMC2IS, and MC2LA
estimators

Importance sampling reduces the number of required inner
samples to one, even for small tolerances for the DLMC2IS
estimator.

We run the estimators for various designs ξ between 0
and 1. The results are presented in Fig. 2. The DLMC2IS and
MC2LA estimators indicate that ξ = 1 is optimal. Themodel
(67) is linear; thus, the EIG can be computed analytically.
For comparison, we also present the optimal design with
no nuisance uncertainty (i.e., both θ and φ are considered
parameters of interest). For this scenario,we estimate theEIG
using theDLMCIS andMCLA estimators developed in Beck
et al. (2018), which only use one Laplace approximation. The
optimal design is found at ξ = 1/2.Although a higher overall
information gain occurs in this scenario, the information we
gain solely about θ is less at ξ = 1/2 than at ξ > 1/2.

Figure 3 presents 100 runs of the DLMC2IS and MC2LA
estimator for various tolerances and design ξ = 1/2. For
every tolerance, the probabilistic error bounds specified by
the central limit theoremwith confidence constantCα = 1.96
(α = 0.05) predict five runs resulting in an error greater
than that tolerance. The probabilistic error bound for the
DLMC2IS estimator was overly conservative, whereas the
probabilistic error bound for the MC2LA estimator was
overly optimistic for small tolerances. The reason for the
unexpectedly small error of the DLMC2IS estimator is likely
due to the fact that even using just one inner sample results in
an inner variance that is much smaller than required, thanks
to Laplace-based importance sampling.

6.2 Pharmacokinetics example

The aim of pharmacokinetics is to learn patient-specific
parameters in a medical setting. The following example is
based on the setting introduced in Ryan et al. (2014) and

Fig. 2 Example 1: EIG vs. design parameter ξ . Analytical solution
(dashedblack),DLMC2ISestimator (solid blue), andMC2LAestimator
(solid red) for the casewith nuisanceuncertainty andDLMCISestimator
(solid magenta) and MCLA estimator (solid tan) for the case without
nuisance uncertainty

modified in Goda et al. (2020). After a drug is administered
to a patient at time t0 = 0, a total of 15 blood samples are
taken over the next 24h to determine how fast the drug is
absorbed and subsequently eliminated.We follow the simpli-
fied approach inGoda et al. (2020), where only additive noise
is present. The design space is (0, 24]dξ , where dξ = 15. The
data model is as follows:

g j (θ , φ, ξ):=D

φ

θ1

θ1 − θ2

(
e−θ2ξ j − e−θ1ξ j

)
, 1 ≤ j ≤ 15,

(69)

where D = 400 indicates the administered dose, log(θ1) ∼
N (0, 0.05) indicates the first-order absorption constant,
log(θ2) ∼ N (log(0.1), 0.05) indicates the first-order elim-
ination constant, and log(φ) ∼ N (log(20), 0.05) indicates
the volume of distribution. This last parameter is consid-
ered a nuisance parameter in the present work, deviating
from the original setting in Goda et al. (2020). The design
ξ = (ξ1, . . . , ξ15):=(t1, . . . , t15) of the experiment signifies
the sample times. Moreover, ε ∼ N (0,�ε), where

�ε =

⎛

⎜
⎜
⎜
⎜
⎝

10−2 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 10−2

⎞

⎟
⎟
⎟
⎟
⎠

(70)
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Fig. 3 Example 1: Error vs. tolerance consistency plot for various tolerances T OL with a predefined confidence parameter Cα = 1.96 (α = 0.05).
Panel A DLMC2IS estimator. Panel B MC2LA estimator

Fig. 4 Example 2: Optimal number of outer (N∗) and inner (M∗
1 , M

∗
2 )

samples vs. tolerance T OL for the DLMC, DLMC2IS, and MC2LA
estimators for geometrically spaced sampling times

signifies the observation noise. The work (Goda et al. 2020)
found that a geometrically spaced design ξ j = 0.94 ×
1.25 j−1, where 1 ≤ j ≤ 15, performed best for their
experiments, which did not consider nuisance uncertainty.
We adopt this choice as a starting point for our optimization
and present the optimal number of samples for the DLMC,
DLMC2IS, and MC2LA estimators in Fig. 4. For the pilot
of the DLMC estimator, we used N = 300 outer samples
and M1 = M2 = 13000 inner samples. For the pilot of the
DLMC2IS estimator, we used N = 2000 outer samples and
M1 = M2 = 200 inner samples. Finally, for the pilot of the
MC2LA estimator, we used N = 2000 outer samples and
the DLMC2IS estimator to ascertain the bias resulting from
the Laplace approximation.

To improve upon this design, we used a greedy minibatch
stochastic gradient descent algorithm, where N = 300 outer
samples of the MC2LA estimator are used to optimize the

Fig. 5 Example 2: Geometrically spaced design (Goda et al. 2020)
yielding expected information gain (EIG) of 6.12 vs. optimized design
yieldingEIGof 6.25. Clustering ofmeasurement times appeared to have
a positive impact on the EIG of the experiment. Later measurement
times had little effect on the EIG and were mostly unaffected by the
optimization

EIGwith respect to ξ1 with (ξ2, . . . , ξ15) fixed. Next, the EIG
is optimized with respect to ξ2 with (ξ1, ξ3, . . . , ξ15) fixed,
and so on and so forth. That is, we employ a combination of
stochastic gradient descent and coordinate descent methods
to find a localminimumof theEIG. The geometrically spaced
design is used as a starting point. A comparison between both
design choices is presented in Fig. 5. Optimization of mea-
surement times indicates that a certain clustering is beneficial
for the EIG, whereas measurements towards the end of the
24h appeared to have little effect on the EIG. A clustering
effect of sampling times was also observed in Ryan et al.
(2014).
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Fig. 6 Example 2: Optimal number of outer (N∗) and inner (M∗
1 , M

∗
2 )

samples vs. tolerance T OL for the DLMC, DLMC2IS, and MC2LA
estimators for optimized sampling times

The optimal number of inner and outer samples for the
optimized design is displayed in Fig. 6. The design had min-
imal effect on the optimal number of samples; however, the
EIGwas improved for the optimizeddesign, as theDLMC2IS
estimator with a tolerance of T OL = 10−2 yielded an E IG
of 6.25 for the optimized design and an EIG of 6.12 for the
geometrically spaced design.

6.3 Electrical impedance tomography example I

For this example, we consider a more challenging model
based on the solution operator of a PDE. Solving the PDE
for EIT is generally not possible in closed form; therefore,
we employ a finite element method (FEM) approximation
instead. This example demonstrates the practical applicabil-
ity of the derived estimators and their ability to incorporate
approximate models gh , where h is the mesh-discretization
parameter. We examine a two-dimensional model of a com-
posite laminate material with a fiber structure. The material
consists of twoplies, both conducting an electric currentmore
easily along the direction of their fibers than transversal to
them. The experimental setup involves attaching five elec-
trodes to the top and five to the bottom boundaries, injecting,
and measuring electric current. The experimenter can learn
about the fiber angles in each ply; hence, these angles are
considered parameters of interest. The electrode positions
can be chosen freely in principle but affect the meaning-
fulness of the measurements. Hence, this is the design the
experimenter aims to optimize. We further assume that the
exact conductivities of the plies are known only up to a
concentrated normal distribution. Therefore, they are consid-
ered nuisance parameters. We consider a rectangular domain
D = D1 ∪ D2 = [0, 20] × [0, 1] ∪ [0, 20] × [1, 2], consist-
ing of two subdomains. For the quasi-static potential field u,

current flux j , and conductivity field σ̄ , we solve the PDE

∇ · j(x, ω) = 0 in D and (71)

j(x, ω) = σ̄ (ω) · ∇u(x, ω), (72)

where x ∈ D,

σ̄ (ω) = Q(θi (ω))� · σ (φi (ω)) · Q(θi (ω)), i = 1, 2,(73)

Q(θi ) =
⎛

⎝
cos(θi ) 0 − sin(θi )

0 1 0
sin(θi ) 0 cos(θi )

⎞

⎠ , i = 1, 2, (74)

and

σ (φi ) =
⎛

⎝
σ1(φi ) 0 0

0 σ2(φi ) 0
0 0 σ3(φi )

⎞

⎠ , i = 1, 2. (75)

For the fiber angle in D1, we assume the following prior
distribution:

θ1 ∼ π(θ1) = U
(
−π

4
− 0.05,−π

4
+ 0.05

)
(76)

and for the fiber angle inD2,we assume the prior distribution:

θ2 ∼ π(θ2) = U
(π

4
− 0.05,

π

4
+ 0.05

)
. (77)

For the conductivities, we consider the prior distribution:

σ j (φi ) = exp(μ j + φi ), j = 1, 2, 3, i = 1, 2, (78)

where

φi = σφzi , zi
iid∼ N (0, 1), i = 1, 2. (79)

Moreover, μ1 = log(0.1) and μ2 = μ3 = log(0.02) and
σ 2

φ is the covariance of φi for all i = 1, 2. The design
ξ = (ξ1, ξ2) = [0, 2] × [0, 2] signifies a shift between top
and bottom electrodes and the distance between electrodes,
respectively. For a detailed description of the problem setting,
including boundary conditions, and a finite element formula-
tion, see Bartuska et al. (2022); Beck et al. (2018); Somersalo
et al. (1992).

As in the previous example, we start by running a pilot
with N = 50 outer samples for the MC2LA estimator and
N = 50 outer samples, with M1 = M2 = 10 inner samples
for the DLMC2IS and DLMC estimators. The bias resulting
from the Laplace approximations in the MC2LA estimator
is measured by comparison with the DLMC2IS estimator
results. In addition, we estimate the FEM constants η, Cdisc,
and γ . The optimal number of samples for these estimators
is depicted in Fig. 7 as a function of the error tolerance T OL .
Next, we compare the computational work required for the
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Fig. 7 Example 3: Optimal number of outer (N∗) and inner (M∗
1 , M

∗
2 )

samples vs. tolerance T OL for the DLMC, DLMC2IS, and MC2LA
estimators

Fig. 8 Example 3: Computational work vs. nuisance covariance σ 2
φ for

theMCLAwith small-noise approximation, DLMCIS with small-noise
approximation, DLMC2IS, and MC2LA estimators

MC2LA and DLMC2IS estimators and for the MCLA and
DLMCIS estimators with small-noise approximation devel-
oped in Bartuska et al. (2022) as a function of the covariance
of the nuisance parameters in Fig. 8. The computational work
for theMC2LA and theMCLAwith small-noise approxima-
tion estimators is given by N×h−γ . The computational work
for theDLMC2IS estimator is givenby N×(M1+M2)×h−γ .
Finally, the computational work for the DLMCIS estimator
with small-noise approximation is given by N × M × h−γ .
The small-noise approximation is only applicable up to a
small nuisance covariance σ 2

φ ≈ 9.03 × 10−7. However, the
cost for the MC2LA and the DLMC2IS estimators increase
sharply for a larger nuisance covariance.

6.4 Electrical impedance tomography example II

Next, we consider a slightly different setup from the previous
example. The electric conductivity is now fixed at σ1 = 0.1,
σ2 = σ3 = 0.02, and no longer a nuisance parameter. Fur-
thermore, we assume that a small ellipsoid exclusion exists
between the two plies. The vertical axis of this ellipsoid is
the new nuisance parameter, with the following distribution:

φ ∼ U(0.2, 0.4). (80)

The horizontal axis is considered fixed at 1 and the center is
fixed at (12,1). The parameters of interest are still the angles
of the fibers in each ply. The FEM formulation remains the
same as in the previous example, except for the different
mesh that now incorporates the ellipsoid hole (Fig. 9). Fig-
ure10 demonstrates that although the design ξ = (2.0, 1.5)
is optimal regardless of whether θ and φ or only θ are con-
sidered parameters of interest, the overall response surface
changes depending on the parameters that are considered to
be of interest. In particular, ξ2, the distance between elec-
trodes, is almost irrelevant when recovering the fiber angles,
whereas it has a much more prominent effect when recover-
ing the height of the exclusion as well. The design choices
ξ = (2.0, 1.0) and ξ = (2.0, 0.5) yield EIG that is within the
tolerance T OL = 0.2 of the optimal choice when consider-
ing nuisance parameters. The MCLA estimator with optimal
sampling was used to estimate the EIG without nuisance
uncertainty. The pilot run for this estimator was performed
using N = 150 samples. The DLMC2IS estimator was used
with optimal sampling to estimate the EIG with nuisance
uncertainty. For the pilot run, we used N = M1 = M2 = 200
samples. The bias introduced by the Laplace approxima-
tion (45) rendered the MC2LA estimator ineffective for this
example for a tolerance of T OL = 0.2; thus the DLMC2IS
estimator was used instead.

7 Conclusion

We propose two estimators for the expected information gain
under nuisance uncertainty: theMonte Carlo double-Laplace
estimator based on Laplace’smethod for the nuisance param-
eters and the Laplace approximation for the parameters of
interest, and the double-loopMonteCarlo double importance
sampling estimator based on two Laplace approximations.
We demonstrate the applicability of these estimators in four
numerical examples, showcasing their computational effi-
ciency provided by Laplace-based integral approximations.
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Fig. 9 Example 4: Inlet: red
electrodes. Outlet: blue
electrodes. The current flow is
affected by the electrode
positions

Fig. 10 Example 4: Expected information gain (EIG) as a function of the design ξ . The response surface changes when considering θ and φ as
parameters of interest (Panel a), or θ only (Panel b). The EIG regarding the fiber angles is virtually unaffected by the distance between the electrodes
(ξ2) in this case

Appendix A. Error estimates for the
double-loopMonte Carlo
estimator with two inner loops

Derivation of the bias error approximation

Following (Beck et al. 2018), we derive an estimate for the
bias, given as follows:

|E[IDL] − I |. (81)

We recall that IDL is given as follows:

IDL = 1

N

N∑

n=1

log

(
1

M1

M1∑

m=1

p(Y (n)|θ (n),ϕ(n,m))

)

− log

(
1

M2

M2∑

k=1

p(Y (n)|ϑ (n,k),ϕ(n,k))

)

,

:= 1

N

N∑

n=1

log( p̂M1(Y
(n)|θ (n))) − log( p̂M2(Y

(n))). (82)

Replacing (82) in (81) yields

|E[IDL] − I | =
∣
∣
∣
∣
∣
E

[
1

N

N∑

n=1

log

(
p̂M1(Y

(n)|θ (n))

p̂M2(Y
(n))

)]

−E

[

log

(
p(Y |θ)

p(Y)

)]∣∣
∣
∣ ,

= |E[log( p̂M1(Y |θ))]
︸ ︷︷ ︸

I

−E[log(p(Y |θ))]
︸ ︷︷ ︸

I I

− E[log( p̂M2(Y))]
︸ ︷︷ ︸

I I I

+E[log(p(Y))]
︸ ︷︷ ︸

I V

|. (83)

The estimation centers on the following Taylor expansion
of log(X) around E[X ]:

log(X) = log(E[X ]) + 1

E[X ] (X − E[X ])
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−1

2

1

E[X ]2 (X − E[X ])2

+
∫ 1

0

1 − s

(E[X ] + s (X − E[X ]))3 ds(X − E[X ])3. (84)

As p̂M2(Y) is an unbiased estimator, we have

E[ p̂M2(Y)|Y ] = p(Y).

By the Taylor expansion and taking the expected value, we
obtain

E[log( p̂M2(Y))|Y ] = E[log(p(Y))|Y ]
− 1

2
E

[
1

p2(Y)
( p̂M2(Y) − p(Y))2|Y

]

+ E

[∫ 1

0

1 − s
(
p(Y) + s

(
p̂M2(Y) − p(Y)

))3 ds( p̂M2(Y)

−p(Y))3
∣
∣
∣
∣Y
]

, (85)

where the linear term vanishes because of the expected value.
The quadratic term can be rewritten as follows:

E

[
1

p2(Y)
( p̂M2 (Y) − p(Y))2|Y

]

= V[ p̂M2 (Y)|Y ]
p2(Y)

, (86)

=
V

[
1
M2

∑M2
k=1 p(Y |ϑ(k), ϕ(k))|Y

]

p2(Y)
,

= 1

M2

V

[
p(Y |ϑ, ϕ)

∣
∣
∣Y
]

p2(Y)
. (87)

The third-order term has the following bound:

E

[∫ 1

0

1 − s
(
p(Y) + s

(
p̂M2(Y) − p(Y)

))3 ds( p̂M2(Y)

−p(Y))3
∣
∣
∣
∣Y
]

≤ E

[(∫ 1

0

1 − s
(
p(Y) + s

(
p̂M2(Y) − p(Y)

))3 ds

)p ∣
∣
∣
∣Y

] 1
p

E

[

( p̂M2(Y) − p(Y))3q
∣
∣
∣
∣Y
] 1

q

(88)

by Hölder’s inequality for some 1 ≤ p, q ≤ ∞, where
1/p+1/q = 1. For the last term in (88), we have by the dis-
crete Burkholder–Davis–Gundy inequality (Burkholder et al.
1972; Giles and Goda 2019) that:

E

[

( p̂M2(Y) − p(Y))3q
∣
∣
∣
∣Y
] 1

q

= E

⎡

⎣

(
1

M2

M2∑

k=1

p(Y |ϑ (k),ϕ(k)) − p(Y)

)3q ∣
∣
∣
∣Y

⎤

⎦

1
q

,

≤ CBDG

M
3
2
2

E

[

(p(Y |ϑ,ϕ) − p(Y))3q
∣
∣
∣
∣Y
] 1

q

(89)

for some constant CBDG for almost all Y . From (85), we
obtain that

E[log( p̂M2(Y))]
︸ ︷︷ ︸

I I I

= E[log(p(Y))]
︸ ︷︷ ︸

I V

−1

2

1

M2
E

⎡

⎣
V

[
p(Y |ϑ,ϕ)

∣
∣
∣Y
]

p2(Y)

⎤

⎦

+OP

⎛

⎝ 1

M
3
2
2

⎞

⎠ . (90)

Similarly, we obtain

E[ p̂M1(Y |θ)|Y , θ ] = p(Y |θ), (91)

and

E[log( p̂M1(Y |θ))|Y , θ ] = E[log(p(Y |θ))|Y , θ ]
−1

2
E

[
1

p2(Y |θ)
( p̂M1(Y |θ) − p(Y |θ))2|Y , θ

]

+OP

⎛

⎝ 1

M
3
2
1

⎞

⎠ , (92)

where the quadratic term can be written as follows:

E

[
1

p2(Y |θ)
( p̂M1(Y |θ) − p(Y |θ))2|Y , θ

]

= V[ p̂M1(Y |θ)|Y , θ ]
p2(Y |θ)

,

=
V

[
1
M1

∑M1
m=1 p(Y |θ,ϕ(m))|Y , θ

]

p2(Y |θ)
,

= 1

M1

V

[
p(Y |θ,ϕ)

∣
∣
∣Y , θ

]

p2(Y |θ)
. (93)

This calculation results in

E[log( p̂M1(Y |θ))]
︸ ︷︷ ︸

I

= E[log(p(Y |θ))]
︸ ︷︷ ︸

I I

−1

2

1

M1
E

⎡

⎣
V

[
p(Y |θ,ϕ)

∣
∣
∣Y , θ

]

p2(Y |θ)

⎤

⎦
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+OP

⎛

⎝ 1

M
3
2
1

⎞

⎠ . (94)

After combining everything, we obtain

|E[IDL] − I | ≈
∣
∣
∣
∣

1

2M2
E

[
V[p(Y |ϑ,ϕ)|Y ]

p2(Y)

]

− 1

2M1
E

[
V[p(Y |θ,ϕ)|Y , θ ]

p2(Y |θ)

]∣∣
∣
∣ . (95)

Derivation of the statistical error approximation

For the variance estimation, we obtain

V[IDL] = V

[
1

N

N∑

n=1

log( p̂M1(Y
(n)|θ (n)))

− log( p̂M2(Y
(n)))

]
. (96)

By the law of total variance, we can rewrite this as

V[IDL] = 1

N
V
[
E
[
log( p̂M1(Y |θ)) − log( p̂M2 (Y))|Y , θ

]]
(97)

+ 1

N
E
[
V
[
log( p̂M1(Y |θ)) − log( p̂M2 (Y))|Y , θ

]]
.

(98)

Using (90) and (94), we can rewrite (97) as

1

N
V
[
E
[
log( p̂M1(Y |θ))|Y , θ

]

−E
[
log( p̂M2(Y))|Y]]

= 1

N
V

[

log

(
p(Y |θ)

p(Y)

)

+ 1

2M2

V[p(Y |ϑ,ϕ)|Y ]
p2(Y)

− 1

2M1

V[p(Y |θ,ϕ)|Y , θ ]
p2(Y |θ)

]

+OP

(
1

NM2
1

)

+ OP

(
1

NM2
2

)

,

which results in

1

N
V

[

log

(
p(Y |θ)

p(Y)

)]

+ 1

4NM2
2

V

[
V[p(Y |ϑ,ϕ)|Y ]

p2(Y)

]

+ 1

4NM2
1

V

[
V[p(Y |θ , ϕ)|Y , θ ]

p2(Y |θ)

]

+ 1

NM2
Cov

[

log

(
p(Y |θ)

p(Y)

)

,
V[p(Y |ϑ, ϕ)|Y ]

p2(Y)

]

− 1

NM1
Cov

[

log

(
p(Y |θ)

p(Y)

)

,
V[p(Y |θ , ϕ)|Y , θ ]

p2(Y |θ)

]

− 1

4NM1M2
Cov

[
V[p(Y |ϑ, ϕ)|Y ]

p2(Y)
,
V[p(Y |θ , ϕ)|Y , θ ]

p2(Y |θ)

]

+ OP

(
1

NM2
1

)

+ OP

(
1

NM2
2

)

. (99)

This yields

1

N
V

[

log

(
p(Y |θ)

p(Y)

)]

+ OP

(
1

NM1

)

+ OP

(
1

NM2

)

.

(100)

From (98), we obtain

1

N
E
[
V
[
log( p̂M1(Y |θ)) − log( p̂M2(Y))|Y , θ

]]

= 1

N
E[V[log( p̂M1(Y |θ))|Y , θ ]]

+ 1

N
E[V[log( p̂M2(Y))|Y ]]

as the inner samples are independent. For the first term, by
the first-order Taylor expansion (84), we obtain

V[log( p̂M1(Y |θ))|Y , θ ] (101)

= V

[

log(p(Y |θ)) + 1

p(Y |θ)

(
1

M1

M1∑

m=1

p(Y |θ,ϕ(m))

−p(Y |θ))

∣
∣
∣
∣Y , θ

]

+ OP

(
1

M2
1

)

(102)

= 1

M1

V[p(Y |θ,ϕ)|Y , θ ]
p2(Y |θ)

+ OP

(
1

M2
1

)

. (103)

Similarly, for the second term, we obtain

V[log( p̂M2(Y))|Y ] = 1

M2

V[p(Y |ϑ,ϕ)|Y ]
p2(Y)

+ OP

(
1

M2
2

)

,

(104)

resulting in

(98) = 1

NM1
E

[
V[p(Y |θ,ϕ)|Y , θ ]

p2(Y |θ)

]

+ 1

NM2
E

[
V[p(Y |ϑ,ϕ)|Y ]

p2(Y)

]

+ OP

(
1

NM2
1

)

+OP

(
1

NM2
2

)

,

completing the derivation.

Remark 5 (Covariance terms in the statistical error approxi-
mation) Applying the inequality

V[A + B] ≤ 2V[A] + 2V[B] (105)
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demonstrates that the covariance terms in (99) are of a sim-
ilar magnitude as the remaining variance terms. Moreover,
the covariance terms are challenging to estimate numerically
and were thus neglected in the optimization of the number of
samples (see Beck et al. 2018). Figure3 (Panel A) demon-
strates that this simplification did not significantly impact the
consistency of the DLMC2IS estimator.

Appendix B. Optimal setting for the
double-loopMonte Carlo
estimator with two inner loops

We solve the minimization problem stated in (21) by intro-
ducing a Lagrange function, which we can take the derivative
of with respect to N , M1, M2, the error splitting parameter
κ , and the Lagrange multipliers λ and μ and set the resulting
equations to 02

L(N , M1, M2, κ, λ, μ) = N (M1 + M2)

−λ

(
C1

M1
+ C2

M2
− (1 − κ)T OL

)

−μ

(
1

N

(

D3 + D1

M1
+ D2

M2

)

−
(

κT OL

Cα

)2
)

, (106)

with derivatives

∂L
∂N

= M1 + M2 + μ

N 2

(

D3 + D1

M1
+ D2

M2

)
!= 0, (107)

∂L
∂M1

= N + λ
C1

M2
1

+ μ
D1

NM2
1

!= 0, (108)

∂L
∂M2

= N + λ
C2

M2
2

+ μ
D2

NM2
2

!= 0, (109)

∂L
∂κ

= 2μκ
T OL2

C2
α

− λT OL
!= 0, (110)

∂L
∂λ

= (1 − κ)T OL − C1

M1
− C2

M2

!= 0, (111)

and

∂L
∂μ

=
(

κT OL

Cα

)2

− 1

N

(

D3 + D1

M1
+ D2

M2

)
!= 0. (112)

From (14)–(17), we have that D1 = 2C1 and that D2 = 2C2.
Thus, it follows from (108) that

M2
1

C1
= − 1

N

(

λ + 2μ

N

)

, (113)

2 Denoted by
!= 0.

and from (109) that

M2
2

C2
= − 1

N

(

λ + 2μ

N

)

. (114)

Thus, it follows that

M2 = M1

√
C2√
C1

. (115)

Next, from (111), we have that

(1 − κ)T OL = C1

M1
+ C2

M2
,

= C1

M1
+

√
C1

√
C2

M1
, (116)

and thus that

M∗
1 =

√
C1(

√
C1 + √

C2)

(1 − κ)T OL
, (117)

and also that

M∗
2 =

√
C2(

√
C1 + √

C2)

(1 − κ)T OL
. (118)

Moreover, from (110), we have that

λ = 2μκT OL

C2
α

. (119)

Substituting (117) and (118) into (107), we find that

M∗
1 + M∗

2 + 2μ

N 2

(
D3

2
+ C1

M1
+ C2

M2

)

= (
√
C1 + √

C2)
2

(1 − κ)T OL

+ 2μ

N 2

(
D3

2
+ (1 − κ)T OL

)

,

= 0, (120)

yielding

μ = −N 2

2

(
√
C1 + √

C2)
2

(1 − κ)T OL

(
D3

2
+ (1 − κ)T OL

)−1

.

(121)

substituting into (119) leads to

λ = −N 2κ

C2
α

(
√
C1 + √

C2)
2

(1 − κ)

(
D3

2
+ (1 − κ)T OL

)−1

.

(122)
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From (112), we obtain that

N∗ = 2

(
κT OL

Cα

)−2 (D3

2
+ (1 − κ)T OL

)

. (123)

Finally, substituting (117), (119) and (121) into (113), it fol-
lows that

(√
C1 + √

C2
)2

(1 − κ)2T OL2 = − 1

N∗

(

λ + 2μ

N∗

)

,

= 1

N∗

(
N∗2κ
C2

α

(
√
C1 + √

C2)
2

(1 − κ)

+N∗(
√
C1 + √

C2)
2

(1 − κ)T OL

)

×
(
D3

2
+ (1 − κ)T OL

)−1

,

=
(
N∗κ
C2

α

(
√
C1 + √

C2)
2

(1 − κ)

+ (
√
C1 + √

C2)
2

(1 − κ)T OL

)

×
(
D3

2
+ (1 − κ)T OL

)−1

. (124)

Cancellations lead to the following quadratic equation for
κ∗:

1 =
(
N∗κ(1 − κ)T OL2

C2
α

+ (1 − κ)T OL

)

(
D3

2
+ (1 − κ)T OL

)−1

,

=
(
2(1 − κ)

κ

(
D3

2
+ (1 − κ)T OL

)

+(1 − κ)T OL)

(
D3

2
+ (1 − κ)T OL

)−1

. (125)

Rearranging terms yields

D3

2
+ (1 − κ)T OL = 2(1 − κ)

κ

(
D3

2

+(1 − κ)T OL) + (1 − κ)T OL,

(126)

and ultimately

D3κ = 2D3(1 − κ) + 4(1 − κ)2T OL, (127)

or, in the standard form

(
4T OL

D3

)

κ2 −
(

3 + 8T OL

D3

)

κ + 2+ 4T OL

D3
= 0 (128)

with the solutions

κ1,2 = 1 + 3D3

8T OL
±
√

D3

4T OL
+ 9D2

3

64T OL2 . (129)

From the requirement that 0 < κ < 1, it follows that only
the solution

κ∗ = 1 + 3D3

8T OL
−
√

D3

4T OL
+ 9D2

3

64T OL2 (130)

is permissible. It follows immediately that

3D3

8T OL
<

√
D3

4T OL
+ 9D2

3

64T OL2 (131)

for any D3, T OL > 0, and thus that κ∗ < 1. Moreover, it
follows that

D3

4T OL
+ 9D2

3

64T OL2 <

(

1 + 3D3

8T OL

)2

,

= 1 + 3D3

4T OL
+ 9D2

3

64T OL2 (132)

for any D3, T OL > 0, and thus that 0 < κ∗. Applying
L’Hôpital’s rule, we observe that

lim
T OL→0

κ∗ = lim
T OL→0

1 + 3D3
8T OL

−
√

D3
4T OL

+ 9D2
3

64T OL2

= lim
T OL→0

(

8T OL + 3D3 −
√
16T OLD3 + 9D2

3

)

8T OL
,

= lim
T OL→0

d
dT OL

(

8T OL + 3D3 −
√
16T OLD3 + 9D2

3

)

d
dT OL 8T OL

,

= lim
T OL→0

1 − D3√
16T OLD3 + 9D2

3

= 2

3
, (133)

and that

lim
T OL→∞ κ∗ = 1. (134)

Appendix C. Optimal setting with additional
discretization bias

We solve the minimization problem in (26):

L(N , M1, M2, h, κ, λ, μ) = N (M1 + M2)h
−γ

−λ

(
D3

N
+ D1

NM1
+ D2

NM2
−
(

κT OL

Cα

)2
)

−μ

(

C3h
η + C1

M1
+ C2

M2
− (1 − κ)T OL

)

, (135)
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with the following derivatives, which we set to 0:

∂L
∂N

= (M1 + M2)h
−γ + λD3

N 2 + λD1

N 2M1
+ λD2

N 2M2

!= 0,

(136)
∂L
∂M1

= Nh−γ + λD1

NM2
1

+ μC1

M2
1

!= 0, (137)

∂L
∂M2

= Nh−γ + λD2

NM2
2

+ μC2

M2
2

!= 0, (138)

∂L
∂h

= −γ Nh−γ−1(M1 + M2) − μC3ηh
η−1 != 0, (139)

∂L
∂κ

= 2λκ

(
T OL

Cα

)2

− μT OL
!= 0, (140)

∂L
∂λ

=
(

κT OL

Cα

)2

− D3

N
− D1

NM1
− D2

NM2

!= 0, (141)

and

∂L
∂μ

= (1 − κ)T OL − C3h
η − C1

M1
− C2

M2

!= 0. (142)

The idea is to express every parameter of the Lagrangian
(135) as a function of the splitting parameter κ and solve the
remaining quadratic equation for κ . Subtracting (137) from
(138) results in

M2 =
√
C2

C1
M1, (143)

which we use in (141) to obtain

M1 =
(
D1 +

√
C1
C2

D2

)

N
(

κT OL
Cα

)2 − D3

,

=
2C1

(
1 +

√
C2
C1

)

N
(

κT OL
Cα

)2 − D3

. (144)

The last equation follows from the definitions of C1, C2, D1,
and D2. From (142) we obtain

h =
⎛

⎜
⎝

(1 − κ)T OL − C1
M1

(
1 +

√
C2
C1

)

C3

⎞

⎟
⎠

1
η

,

=

⎛

⎜
⎜
⎝

(1 − κ)T OL − 1
2

(

N
(

κT OL
Cα

)2 − D3

)

C3

⎞

⎟
⎟
⎠

1
η

. (145)

From (139), we obtain

μ = −
γ NM1

(
1 +

√
C2
C1

)

ηC3hγ+η
. (146)

Inserting this into (140) results in

λ = −
γ NM1

(
1 +

√
C2
C1

)
C2

α

ηC3hγ+η2κT OL
. (147)

Inserting (143) to (147) into (136), after some reordering,
yields

N∗ = C2
α

κ2T OL

(
D3

T OL
+ 2

(

1 − κ

(

1 + γ

2η

)))

. (148)

This result is the same optimal number of outer samples N∗
as in the case for only one inner loop. We can insert this into
(144) to obtain

M∗
1 =

C1

(
1 +

√
C2
C1

)

(
1 − κ

(
1 + γ

2η

))
T OL

(149)

and

M∗
2 =

C2

(
1 +

√
C1
C2

)

(
1 − κ

(
1 + γ

2η

))
T OL

. (150)

Equation (145) results in

h∗ =
(

γ κT OL

2ηC3

) 1
η

. (151)

This quantity also remains unchanged compared to the case
with only one inner loop.

Finally, (137) provides the following quadratic equation:

[
1

D3

(

1 + γ

2η

)2

T OL

]

κ∗2 −
[
1

4
+
(
1

2
+ 2

D3
T OL

)

(

1 + γ

2η

)]

κ∗ +
[
1

2
+ 1

D3
T OL

]

, (152)

coinciding with the equation in the case with only one inner
loop.
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Appendix D. Derivation of the order of the
additional terms when
accounting for nuisance
uncertainty

We demonstrate the order of ∇θ z(θ̂), z(θ̂) = (θ̂ , φ̂(θ̂)). We
let

S(θ ,φ) = 1

2
Ne(g(θ t ,φt ) − g(θ ,φ)) · �−1

ε (g(θ t ,φt )

− g(θ,φ))

+
Ne∑

i=1

εi · �−1
ε (g(θ t ,φt ) − g(θ ,φ))

− log(π(φ|θ)), (153)

with the gradient

∇φS(θ ,φ) = −Ne∇φ g(θ ,φ)��−1
ε (g(θ t ,φt ) − g(θ,φ))

−
Ne∑

i=1

εi · �−1
ε ∇φ g(θ ,φ) − ∇φ log(π(φ|θ)). (154)

The first-order approximation of∇φS(θ ,φ) around φt , given
by

∇φS(θ ,φ) ≈ ∇φS(θ ,φt ) + ∇φ∇φS(θ ,φt )(φ − φt ), (155)

yields

∇φ S(θ , φ) ≈
(
−Ne∇φ g(θ , φt )

��−1
ε (g(θ t ,φt ) − g(θ , φt ))

−
Ne∑

i=1

εi · �−1
ε ∇φ g(θ , φt ) − ∇φ log(π(φt |θ))

⎞

⎠

+
(

− Ne∇φ∇φ g(θ , φt )
��−1

ε (g(θ t ,φt ) − g(θ ,φt ))

+ Ne∇φ g(θ ,φt )
��−1

ε ∇φ g(θ , φt )

−
Ne∑

i=1

εi · �−1
ε ∇φ∇φ g(θ , φt )

− ∇φ∇φ log(π(φt |θ))

)

(φ − φt ). (156)

Applying Newton’s method and ∇φS(θ , φ̂(θ)) = 0
implies that ∇φS(θ ,φt ) + ∇φ∇φS(θ ,φt )(φ̂(θ) − φt ) ≈ 0;
therefore

φ̂(θ) ≈ φt − ∇φ∇φS(θ ,φt )
−1∇φS(θ ,φt ), (157)

resulting in

φ̂(θ) ≈ φt

−
(

− Ne∇φ∇φ g(θ, φt )
��−1

ε (g(θ t , φt ) − g(θ , φt ))

+ Ne∇φ g(θ , φt )
��−1

ε ∇φ g(θ , φt )

−
Ne∑

i=1

εi · �−1
ε ∇φ∇φ g(θ , φt ) − ∇φ∇φ log(π(φt |θ))

)−1

×
(
−Ne∇φ g(θ , φt )

��−1
ε (g(θ t ,φt ) − g(θ , φt ))

−
Ne∑

i=1

εi · �−1
ε ∇φ g(θ , φt ) − ∇φ log(π(φt |θ))

⎞

⎠ . (158)

Both terms in the product have leading order Ne; thus, assum-
ing that Newton’s method converges, the Jacobian

∇θ z(θ̂) =
(

Idθ×dθ

∇θ φ̂(θ̂)

)

(159)

has leading order terms that are constant in Ne by the quotient
rule. The term k(θ) is of order OP (log(Ne)) and the term
�(θ) is constant in Ne. Evaluating φ̂(θ) at θ t rather than at θ̂
reduces the leading order of the numerator in (158) to

√
Ne

(see Long et al. 2013). This would suggest approximating
(θ̂, φ̂) by (θ t ,φt ), however, numerical experiments show that
the influence from the nuisance uncertainty would not be
captured accurately by such an approximation.
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