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The chemical industry supply materials for 94 % of products pro-
duced today (Kähler et al., 2021). However, 88 % of the industry’s 
carbon-based feedstocks are from fossil resources, posing a significant 
challenge in the context of climate change and the industry’s net-zero 
targets (Kähler et al., 2021). To address this, it is essential to replace 
fossil-based resources with bio-based and/or recycled carbon feedstocks, 
thereby moving towards a circular economy.

Biotechnologies such as fermentation, anaerobic digestion, and 
bioelectrochemical systems show great promise in converting organic 
spent resources (waste) into platform chemicals and/or high-value 
products (e.g. proteins, pharmaceuticals) and bioenergy, removing our 
reliance on fossil-based resources. Despite their potential, development 
of these processes has lagged behind other circular economy technology 
(e.g. chemical recycling) (Schagen et al., 2023; Trump et al., 2023), due 
to the challenges of heterogeneous feedstocks, the need for flexible 
systems, supply chains, and regulations.

Machine learning (ML) is a transformative technology reshaping 
various fields of science and engineering, enabling advanced data 
analysis, automation, optimisation, prediction, and decision-making 
capabilities. ML refers to the ability of machines to learn from data, 
identify patterns, and make decisions with minimal human intervention. 
By analysing large datasets, ML algorithms can uncover new intricate 
patterns and relationships within biological systems that were previ-
ously difficult to detect. This capability is valuable for identifying the 
factors that are most conducive to accelerating the progression of bio-
technologies up technology readiness levels (TRL), such as optimal mi-
crobial strains, feedstock characteristics, reactor conditions, and process 
efficiencies. By gaining these unprecedented insights, researchers and 
industry professionals can optimise conditions for biotechnologies, ul-
timately enhancing their economic feasibility for large-scale application. 
However, the pace of adoption of ML to model biotechnologies has been 
slower than other fields (Holzinger et al., 2023). Therefore, it is crucial 
to understand the modelling barriers (Table 1) that must be overcome.

1. Complexity and dynamic nature of biotechnologies and waste 
feedstocks

The complexity of microbial interactions and process dynamics 
presents challenges that can limit the accuracy, robustness, and gen-
eralisability of models. This complexity is particularly pronounced by 
biotechnologies utilising heterogeneous waste feedstocks, which often 
have complex and unknown chemical compositions. Reflecting the 
complexity of waste feedstocks requires understanding the chemical and 
composition makeup and which feedstock (and biotechnology / envi-
ronmental) factors most influence process performance, yet this task is 
hindered by the temporal and spatial variability inherent in both feed-
stock/s and biotechnologies. The interplay of these factors underscores 
the need for innovative approaches to modelling and analysis to capture 
this complexity and variability.

2. Multi-omics data integration

Advancements in omics (e.g. metabolomics, metagenomics, tran-
scriptomics) and bioinformatics have significantly enhanced our un-
derstanding of microbial systems and their functions, providing valuable 
insights for biotechnology development, and the influence of variable 
feedstocks and external environmental conditions on biotechnology 
performance. These tools and approaches when applied to bio-
technologies for pollutant remediation, bioenergy production, platform 
or high value chemical production offer a detailed view of the metabolic 
activities within microbial systems. Despite the substantial information 
and hidden patterns present in high-dimensional data generated from 
these processes, fully leveraging these insights remains challenging. 
Effective utilisation of such high-dimensional datasets necessitates 
domain expertise to select appropriate ML algorithms and fine-tune 
model hyperparameters, ensuring accurate and meaningful analysis.
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3. Data quantity, quality, and availability

The accuracy and predictive capability of models in biotechnologies 
relies on the quality and quantity of data, including how representative 
is the data to the system being modelled. It is crucial to recognise that 
simply having a large quantity of data does not guarantee quality out-
comes. Many ML studies on biotechnologies often deal with small-sized 
datasets that may not fully capture the variability within a system or 
extend to its boundaries. This can be compounded with biotechnologies 
on sites operating within a small window or range, and thereby deriving 
data that may not define the system and/or true optimal performance. 
Additionally, the variables that best define biotechnology performance 
may not or only occasionally be measured, potentially at great expense 
and time, or may not even be known]. When data is limited to specific 
areas of the design space, ML models cannot be effectively utilised for 
optimisation or control without extrapolation, which introduces un-
certainty. Data sharing is hindered by confidentiality barriers, though 
federated learning presents a potential solution to share key model pa-
rameters while respecting data confidently. Alternatively, incorporating 
prior knowledge, such as physical principles, can enhance model reli-
ability. By adopting different strategies like hybrid modelling and data- 
driven modelling, reliable ML models for biotechnology can be 

Table 1 
Barriers to implementing machine learning (ML) in biotechnologies modelling 
with examples from authors’ work.

Barrier Examples from authors work

Complexity and dynamic nature of 
biotechnologies and waste 
feedstocks

Context: Biofilms are aggregates of 
microorganisms embedded in a three- 
dimensional matrix of extracellular 
polymeric substances. They are increasingly 
valued for their applications in wastewater 
treatment, bioremediation, and the 
production of valuable substances like 
organic acids, alcohols, and proteins 
Challenge: Biofilm properties, including 
microstructure and composition can 
significantly impact process outcomes (e.g. 
pollutant removal rate), yet their inherent 
complexity and heterogeneity make 
modelling of biofilms highly challenging. 
Solution: ML-enhanced sensor fusion system 
to combine data from multiple sensors, to 
provide real-time insights and predictions on 
biofilm properties beyond traditional 
methods.

Multi-omics data integration Context: Multiple omics data layers 
including genomics, transcriptomics, 
proteomics, metabolomics are generated by 
advanced sequencing and high-throughput 
technologies; each omics layer provides 
unique biological perspectives. Challenge: A 
major challenge, however, remains to 
integrate multi-omics data to provide 
system-level multi-layer views and enable 
decision-making on biological pathways. 
Firstly noisy and highly dimensional datasets 
and omics data heterogeneity complicate 
their integration. Secondly, omics data are 
context-dependent and complex with diverse 
metabolic pathways (linear, circular, 
convergent or divergent). Solution: Novel 
retrobiosynthesis method proposed and 
developed to integrate multi-omics.

Data quantity, quality, and 
availability

Context: Mammalian cell culture systems, 
such as those involving Chinese Hamster 
Ovary cells, are vital for the production of 
biopharmaceuticals like monoclonal 
antibodies. Efficient process monitoring and 
optimisation are critical to meet industrial 
demands for quality and yield. Challenge: 
Developing accurate models for mammalian 
cell culture systems is hindered by the 
limited availability of high-quality datasets 
and the lack of detailed mechanistic 
understanding. Traditional models often 
require extensive experimental data or rely 
heavily on assumptions, leading to 
challenges in model reliability and predictive 
capabilities under new conditions. Solution: 
We proposed a hybrid modelling framework 
that integrates domain knowledge with ML. 
This approach enables accurate process 
simulation and uncertainty estimation even 
in small-data scenarios, and allows the model 
to dynamically adapt to new data while 
maintaining high predictive accuracy. The 
methodology also facilitates the 
development of robust digital twins for 
optimising mammalian cell culture 
processes.

Model scalability and transferability Context: There are thousands of anaerobic 
digesters worldwide, producing green gas 
and organic fertiliser, while treating 
agricultural wastes. The AI for Net Zero 
‘AI4AD’ project is bringing together several 
industrial and academic partners to develop 
whole-site digital twins that combine 
different model types and scales built on data 
from across a variety of different sites to  

Table 1 (continued )

Barrier Examples from authors work

enhance whole site systems decision-making. 
Challenge: Many biogas sites have varying 
system layouts, different reactor 
configurations, varying feedstocks, and 
reaction conditions, making model 
transferability across sites challenging. 
Solution: Using combinations of physics- 
based models with artificial intelligence help 
to transfer modelling results to new systems. 
Uncertainty quantification helps to provide 
confidence and inform modelling 
approaches. Working closely between 
different companies and academia allows for 
solutions that leverage knowledge and know- 
how across the sector to build more 
transferable and general solutions.

Interpretability and trust Context: In the UK, Lindhurst Engineering 
Ltd., in collaboration with the University of 
Nottingham, developed "H2AD," a 
technology combining bioelectrochemical 
systems (BES) and anaerobic digestion to 
treat diverse wastewaters (e.g., agricultural, 
brewing, and biomanufacturing residues). 
This system reduces pollutant loads, 
enhances water reuse quality, and generates 
bioenergy. Challenge: When modelling 
H2AD, the high variability in waste 
composition due to temporal and 
geographical factors undermines trust in 
model outputs. Solution: Novel data 
visualisation techniques developed to help 
assess whether new data points fall within 
the model’s boundaries, boosting confidence 
in its predictions despite variability.

Accessibility and uncertainty Context: Industrial crops serve as essential 
feedstocks for biotechnologies in developing 
countries, with their quality and composition 
often assessed manually through labour- 
intensive and subjective inspection 
processes. Challenge: Access to advanced 
and expensive technologies for 
characterising industrial crop feedstocks 
poses a significant barrier, particularly in 
resource-constrained settings. Solution: In 
partnership with the University of 
Alexandar, a low-cost quality evaluation 
system of Egyptian cotton was developed, 
integrating accessible imaging tools and ML.
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developed, addressing the challenges associated with data quantity, 
quality, and availability.

4. Model scalability and transferability

The ability to scale ML models across various production scales, 
operating conditions, external environments, strains, and feedstock is 
crucial for advancing biotechnologies TRL. However, the diversity in 
process design adds complexity and challenges with translating models, 
with differing plant designs spanning reactor geometries, mixing con-
ditions, and flowsheet configurations. This is compounded with use of 
differing feedstocks and stakeholder expertise e.g. municipal waste-
water treatment to waste food digestion. This diversity complicates the 
transfer of models and knowledge between locations. Moreover, the 
inherent time and spatial variability of waste between sites necessitates 
personalised solutions, further complicating standardisation efforts. To 
address these challenges, combining transfer learning with model 
structure identification techniques could facilitate the rapid transfer of 
existing models across different applications, enhancing scalability and 
adaptability of biotechnologies.

5. Interpretability and trust

The "black box" nature of ML models poses significant challenges in 
interpretability, making it difficult to fully trust and utilise these models. 
This lack of transparency also complicates the integration of ML models 
with existing process knowledge for biotechnology optimisation and 
control under uncertainty. To address these issues, future approaches 
should move to hybrid models incorporating mechanistic-based models 
alongside data-driven ML techniques. Enhancing human-machine in-
teractions, such as allowing process operators to modify models through 
app-based interfaces based on their knowledge, is crucial for improving 
trust in ML models. Additionally, training industry personnel and 
implementing effective data visualisation are vital for making operators 
aware of and capable of interpreting these tools and techniques.

6. Accessibility and uncertainty

The adoption of ML in biotechnologies is hindered by limited digital 
infrastructure, particularly in low- and middle-income regions, despite 
their potential for bio-based innovation. The absence of regulations and 
standardised protocols for data collection and process optimisation 
further complicates the integration and scalability of ML models across 
biotechnological applications. Moreover, high costs of AI tools and lack 
of industry-specific solutions further limit their accessibility, necessi-
tating innovative, cost-effective, and tailored solutions to enable AI- 
driven advancements in biotechnologies.

7. Looking forward

To fully harness ML in advancing industrial biotechnologies a 
collaborative, cross-sectoral approach is essential. This requires efforts 
across supply chains and industries, addressing challenges like waste 
feedstock traceability. However, success relies on multidisciplinary 

expertise beyond biology, incorporating engineering, computer science, 
and business. Moreover, targeted funding is essential to address the lack 
of industrial knowledge and resources in comparison to other industries 
like petrochemicals, pharmaceuticals, and renewables. Without sub-
stantial investment comparable to these sectors, progress in the bio-
industry may lag further behind. Furthermore, there is a need for greater 
transparency, where industries utilising biotechnologies openly share 
their challenges to guide researchers in developing real-world solutions 
that meet industry needs.
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