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A B S T R A C T

Measuring fibre dispersion in white matter with diffusion magnetic resonance imaging (MRI) is limited by an inherent degeneracy between fibre dispersion and
microscopic diffusion anisotropy (i.e., the diffusion anisotropy expected for a single fibre orientation). This means that estimates of fibre dispersion rely on strong
assumptions, such as constant microscopic anisotropy throughout the white matter or specific biophysical models. Here we present a simple approach for resolving this
degeneracy using measurements that combine linear (conventional) and spherical tensor diffusion encoding.

To test the accuracy of the fibre dispersion when our microstructural model is only an approximation of the true tissue structure, we simulate multi-compartment
data and fit this with a single-compartment model. For such overly simplistic tissue assumptions, we show that the bias in fibre dispersion is greatly reduced (~5x) for
single-shell linear and spherical tensor encoding data compared with single-shell or multi-shell conventional data. In in-vivo data we find a consistent estimate of fibre
dispersion as we reduce the b-value from 3 to 1.5 ms=μm2; increase the repetition time, increase the echo time, or increase the diffusion time. We conclude that the
addition of spherical tensor encoded data to conventional linear tensor encoding data greatly reduces the sensitivity of the estimated fibre dispersion to the model
assumptions of the tissue microstructure.
1. Introduction

Diffusion MRI is commonly used to reconstruct in-vivo white matter
tracts and estimate connectivity between brain regions. This requires an
estimation of one or more fibre orientations in every white matter voxel.
A wide variety of methods have been proposed to deconvolve the
diffusionMRI signal to extract these main fibre orientations (Basser et al.,
2000; Tuch, 2004; Anderson, 2005; Behrens et al., 2007; Tournier et al.,
2007; Descoteaux et al., 2007; Dell’Acqua et al., 2007, 2010). While
these approaches can disagree on the number of crossing fibre pop-
ulations, the fibre orientations tend to be in good agreement with each
other as well as with fibre orientations estimated from histology (Sotir-
opoulos et al., 2013; Seehaus et al., 2015; Schilling et al., 2016; Salo
et al., 2018).

A full characterization of the fibre orientation distribution function
(fODF) does not only require an estimate of the mean orientation of each
fibre, but also the dispersion of fibre orientations around the mean
orientation. Several approaches to measure fibre dispersion have been
proposed (Kaden et al., 2007; Savadjiev et al., 2008; Sotiropoulos et al.,
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2012; Tariq et al., 2016; Zhang et al., 2012). Most are based on spherical
deconvolution (Dell’Acqua and Tournier, 2018), where the diffusion
signal S is modelled as the convolution between the fODF and a
single-fibre response function R:

S ¼ R*fODFþ Sother; (1)

where Sother represents the signal contribution from other compartments
not described by the fODF (e.g., partial volume due to free water or ce-
rebrospinal fluid). Measuring fibre dispersion (i.e., the width of the
fODF) using this approach requires to overcome the inherent degeneracy
between the width of the response function R and the width of the fODF.
A more isotropic signal could be explained by either an increase in fibre
dispersion or a decrease in anisotropy of the response function. Multiple
approaches have been proposed to break this degeneracy, such as
assuming a constant response function throughout the brain as in con-
strained spherical deconvolution (Tournier et al., 2007, 2004), assuming
that the response function can be described by a diffusion tensor giving a
constant anisotropy across b-values (Kaden et al., 2007, 2016b;
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Fig. 1. The gradient waveforms (upper left) adopted in this work to achieve an
isotropic sensitivity to diffusion. The resulting path through q-space is shown in
the lower left and the build-up of sensitivity to the diffusion tensor (i.e., the B-
tensor) is shown on the right (on- and off-diagonal elements are plotted sepa-
rately using the colour coding shown in the tensor in the upper right). The
gradient waveforms have been designed to obtain a B-tensor that is a multiple of
the unit tensor (right) and are corrected for the bias that concomitant gradients
might cause in such asymmetric gradient waveforms (Szczepankiewicz
et al., 2019b).
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Sotiropoulos et al., 2012), or assuming specific biophysical models for
the width of the response function and the signal from other compart-
ments as in NODDI (Zhang et al., 2012). The latter two strategies break
the degeneracy by acquiring diffusion data at multiple b-values and
making assumptions on how the width of the response function varies
with b-value. While this does break the degeneracy, the accuracy of the
resulting fibre dispersion will depend on the accuracy of the assumptions.

One approach would be to improve the accuracy of the biophysical
models by increasing the b-value of the diffusion MRI data. While at low
b-values multiple compartments contribute to the signal, at sufficiently
high b-values (� 4;000) the diffusion signal has been shown to be well
described by a single stick-like compartment (Dhital et al., 2019; Veraart
et al., 2019), which can be exploited to estimate the fODF from high
b-value imaging using techniques such as fibre-ball imaging (Jensen
et al., 2016; Moss et al., 2019).

We propose to use b-tensor encoding (Westin et al., 2016) to resolve
the degeneracy between the width of the response function and that of
the fODF. Here we show that combining b-tensor encoding with regular
diffusion MRI data reduces the sensitivity of the fibre dispersion esti-
mates to a priori assumptions.

Our method combines data from the standard Stejskal-Tanner
sequence (Stejskal and Tanner, 1965), which is sensitive to diffusion
along one direction (i.e., linear tensor encoding) with data sensitive to
diffusion in all directions (i.e., spherical tensor encoding) at the same
b-value, echo time, and repetition time. Previous studies have shown that
combining data acquired with at least two shapes of the b-tensor allows
for the measurement of microscopic anisotropy, which characterises the
microscopic anisotropy unaffected by orientation dispersion or crossing
fibres (Jespersen et al., 2013; Lasi�c et al., 2014; Shemesh et al., 2015;
Szczepankiewicz et al., 2015). This adds an additional constraint to
resolve a degeneracy in biophysical models of white matter microstruc-
ture (Lampinen et al., 2017, 2019; Coelho et al., 2019; Reisert et al.,
2019). Here we investigate whether spherical tensor diffusion encoding
provides sufficient information to improve deconvolution of the diffusion
MRI signal and retrieve fibre dispersion. By comparing the observed
macroscopic diffusion anisotropy (e.g., FA) with that expected from the
microscopic anisotropy, an “order parameter”, which is sensitive to the
alignment of fibre orientations within a voxel, can be measured (Lasi�c
et al., 2014; Szczepankiewicz et al., 2015). How accurately this param-
eter describes fibre dispersion in a voxel has not been investigated yet.

First, we present the theory for how the combination of linear and
spherical tensor encoding provides an fODF-independent measure of
microscopic anisotropy in a voxel. We then present a single-compartment
model of fibre dispersion in a voxel that can be fitted to data acquired
with just linear or linear and spherical encoding. Although this model is
highly simplified, we show it still gives an accurate measure of fibre
dispersion for a single shell of linear tensor and spherical tensor encoded
data in a simulated voxel containing multiple compartments. Because
ground-truth fibre dispersion is unknown in vivo, we cannot directly test
the accuracy our fibre dispersion estimate. Instead, we evaluate our
model on in-vivo data by investigating the consistency of the fibre dis-
persions across b-values and echo times.

2. Theory

2.1. Microscopic anisotropy from the spherical mean

In the Stejskal-Tanner sequence (Stejskal and Tanner, 1965),
diffusion encoding is obtained by separating two equivalent gradient
pulses by a 180-degree refocussing pulse, which sensitizes the signal to
diffusion along the gradient direction bg . For a single compartment
with Gaussian diffusion characterised by a diffusion tensor D sym-
metric around the compartment orientation bv with eigenvalues λ1 ¼
dk, λ2 ¼ λ3 ¼ d? this leads to a signal attenuation given by Basser et al.
(1994):
2

Slinear ¼ S0e�b bgT �D �bg ¼ S0e�b d?e�bðdk�d?Þðbg �bvÞ2 ; (2)
When averaged across sufficient gradient orientations (Li et al., 2018;
Szczepankiewicz et al., 2016b) sampled uniformly across the unit sphere
this leads to a spherical mean signal of (Lindblom et al., 1977; Callaghan
et al., 1979; Jespersen et al., 2013; Lasi�c et al., 2014):

Slinear ¼ S0e�b d?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
4bðdk � d?Þ

r
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðdk � d?Þ

q �
: (3)

For an accurate estimate of fibre dispersion we combine the signal
sensitive to diffusion along a single direction described above with a
signal that is equally sensitive to diffusion along all directions (Mori and
Zijl, 1995; Wong et al., 1995). This is attained by altering the gradient
waveforms to follow a q-space trajectory (Eriksson et al., 2013; Westin
et al., 2014, 2016; Sj€olund et al., 2015), which under the assumption that
the diffusion can be described as a mixture of Gaussians leads to an
isotropic sensitivity to diffusion (Fig. 1). We refer to the resulting signal
as spherical tensor encoded data and signal sensitive to diffusion in a
single direction as linear tensor encoded data (Westin et al., 2016).

For spherical tensor encoding, the equal sensitivity to diffusion along
all directions ensures that the signal attenuation in each compartment
can be described by the isotropic diffusion in that compartment (diso ¼
1
3 ðdk þ 2d?Þ):

Sspherical ¼ Sspherical ¼ S0e�bdiso ; (4)

where the b-value is given by the trace of the B-tensor (Fig. 1).
By dividing eq. (3) by eq. (4) we find that the ratio of the spherical

mean of the linear tensor encoded signal over the spherical tensor
encoded signal is determined only by the anisotropy of the axisymmetric
diffusion tensor as measured by bðdk � d?Þ:

Slinear
Sspherical

¼ e
1
3 bðdk�d?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4bðdk � d?Þ
r

erf
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðdk � d?Þ
q �

: (5)

This equation can be used to estimate the microscopic anisotropy,
which we will define in this work as ðdk � d?Þ. This is closely related to
the microscopic anisotropy defined by eq. (1) in Shemesh et al. (2015),
which for an axisymmetric tensor becomes μA ¼ 2

3ðdk � d?Þ2.
This signal ratio is equal to one for a compartment with isotropic

diffusion (diso ¼ dk ¼ d?) and increases as the diffusion anisotropy in-



Fig. 2. Dependence of the ratio of the spherical mean of the linear tensor
encoded signal (eq. (5)) over the spherical tensor encoded signal on the
microscopic anisotropy multiplied by the b-value (blue). As the microscopic
anisotropy (or b-value) increases the ratio increases from a ratio of one for an
isotropic medium. The second-order Taylor expansion (eq. (8)) has been over-
laid in orange.

M. Cottaar et al. NeuroImage 215 (2020) 116832
creases (Fig. 2). Importantly, this ratio only relies on the spherical mean
of the diffusion signal and hence provides an independent measure of the
diffusion anisotropy from the signal anisotropy usually measured as the
fractional anisotropy (FA) (Kaden et al., 2016a; Szczepankiewicz et al.,
2016a).

The above formulation assumes a description in terms of a single
diffusion tensor, but the complexities of brain tissue may be better
modelled using multiple compartments to represent axons and dendrites
with various orientations, extra-axonal space, cell bodies (including
neurons and glia), and cerebrospinal fluid (CSF). Keeping the assumption
that each of these compartments can be described by an axisymmetric
diffusion tensor, the signal ratio is given by:

Slinear
Sspherical

¼
X
i

fie
1
3 bðdk�d?Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4bðdk � d?Þi

r
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðdk � d?Þi

q �
; (6)

where fi is a term describing the b-value weighted signal fraction of each
compartment i, which depends on the sequence’s b-value, echo time and
repetition time:

fi ¼ S0;ie�bdiso; iP
jS0;je

�bdiso;j
(7)

Hence, the microscopic anisotropy (i.e., dk � d?) estimated by
inverting eq. (5) would be expected to give an unbiased estimate of the
true microscopic anisotropy if all compartments have the same micro-
scopic anisotropy, but only differed in their orientation (e.g., dispersing
fibres with no extra-axonal contribution). For multiple compartments
with different microscopic anisotropy, inverting eq. (5) would give a
mean microscopic anisotropy in these compartments weighted by their
relative signal fractions.

The signal ratio in eq. (5) can be closely approximated by its second-
order Taylor expansion (Jespersen et al., 2013):

Slinear

Sspherical
� 1þ 2

45
b2ðdk � d?Þ2 (8)

This approximation holds up to bðdk �d?Þ � 6 (Fig. 2). Adopting this
approximation across multiple compartments (eq. (6)), it can be shown a
ground truth value for the microscopic anisotropy estimated from eq. (5)
can be estimated using (Ianuş et al., 2018):

ðdk � d?Þ2fit �
X
i

fiðdk � d?Þi2 (9)

Importantly, this estimate of the microscopic anisotropy is obtained
by combining linear and spherical tensor encoding at a single b-value and
hence does not rely on the assumption that this micro-anisotropy does
not change as a function of b-value (Kaden et al., 2016b). In the
3

remainder of this work we show that this weighted mean gives a good
approximation of the width of the response function needed to decon-
volve the diffusion signal to obtain a measure of fibre dispersion.
2.2. Deconvolving the diffusion signal

To investigate the reliability of the fibre dispersion derived by
combining linear tensor and spherical tensor encoded diffusion data, we
utilize a single-compartment model of dispersing zeppelins (i.e., prolate
axisymmetric diffusion tensors). For such a set of compartments with
identical diffusivities, but a range of orientations (bv) described by the
fODF, the linear tensor encoded signal is given by:

Slinear ¼ S0e�bd?
Z

fODF
�
v̂
�
e�b ðdk�d?Þ ðbv �bgÞ2dbv (10)

We will assume that the fODF can be described by a Bingham dis-
tribution characterised by the Bingham matrix Z:

fODF
�bv� ¼ 1

1F1

�
1
2;

3
2;Z

�ebνT �Z �bv ; (11)

with Z ¼ R �
2
4 0 0 0
0 �k1 0
0 0 �k2

3
5 �RT ; (12)

where F1 is a hypergeometric function with a matrix argument and R is a
rotation matrix (Sotiropoulos et al., 2012). The maximum of this fODF is
along the x-axis rotated byR, with the dispersion along the rotated y- and
z-axis described by k1 and k2 respectively. A higher k1 or k2 corresponds
to a smaller dispersion along that axis through a non-linear relationship
(Sotiropoulos et al., 2012; Tariq et al., 2016). Although k1 and k2 are
convenient in fitting, for ease of interpretation we will instead report the
angle containing 50% of fibres along the major and minor axes of
dispersion in this work. For our purposes in this work, modelling the
fODF as a Bingham distribution rather than using the commonly adopted
spherical harmonics has the advantage that the Bingham distribution
explicitly includes two parameters representing the dispersion (i.e., k1
and k2).

Substituting eq. (11) in eq. (10) and solving the integral gives the
dispersing zeppelin model for linear tensor encoding (we also substitute
d? in the exponent with diso � ðdk � d?Þ=3):

Slinear ¼ S0e�b diso ebðdk�d?Þ=3
1F1

�
1
2;

3
2;Z� bðdk � d?Þbg � bgT

�

1F1

�
1
2;

3
2;Z

� : (13)

We approximate the hypergeometric function numerically using the
approach described in Kume and Wood (2005). The spherical tensor
encoded signal is independent of the fODF and given by eq. (4). Similarly,
the ratio Slinear=Sspherical is independent of the fODF and given by eq. (5).
The free parameters in this model are the signal amplitude at b ¼ 0 (S0),
the isotropic diffusivity (diso), the microscopic anisotropy (dk � d?), the
orientation of the Bingham matrix (R) and the dispersion parameters k1
and k2, as encoded in the Bingham matrix (eq. (12)). When fitting to
single-shell data, two of the parameters were merged into a single
parameter: the isotropic diffusion-weighted signal amplitude (Sdw ¼
S0e�b diso ).

Our main focus here will be on the fibre dispersion estimates k1 and
k2, for which we shall show that a single shell of diffusion data is suffi-
cient as long as it contains both linear and spherical tensor encoding. This
is plausible as the spherical tensor encoding provides a direct estimate of
Sdw and the ratio of the signal from the spherical mean of the linear tensor
encoding and the spherical tensor encoding provides an estimate of the



Table 1
Shells for which both linear tensor and spherical tensor encoded data were ac-
quired for a single subject. The gradient duration is defined as the time from the
start to the end of the gradient waveforms (Fig. 1). For a given protocol, TE and
TR are matched across b-shells and for linear and spherical encoding.

ID b-value
(ms=μm2)

Repetition time (s) Echo time (ms) Gradient duration (ms)

A 1.5 & 3.0 3.8 100 72
B 1.5 & 3.0 5.2 100 72
C 1.5 & 3.0 5.2 150 72
D 1.5 & 3.0 5.2 150 120
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microscopic anisotropy (dk � d?, eq. (5), Fig. 2). Hence, the angular
contrast in the linear tensor encoded data only has to constrain the
Bingham matrix (i.e., the fibre orientation and dispersion).

3. Methods

3.1. Simulating data

We simulate diffusion data that do not match the assumptions made
in our model in order to test the robustness of the fibre dispersion that
can be estimated by combining the linear tensor and spherical tensor
encoded data in a single b-shell. In particular, we fit a model with a
single, “average” compartment, however in reality tissue has been shown
to contain multiple compartments with very different diffusion
properties.

To test if the presence of multiple compartments would bias the fibre
dispersion estimate we model data for tissue with two compartments: an
“intra-axonal” compartment with dk ¼ 1:7 μm2=ms, d? ¼ 0 μm2= ms (FA
¼ 1) and an “extra-axonal” compartment with either the same diso ðdk ¼
1:1 μm2=ms, d? ¼ 0:3 μm2=ms, FA ¼ 0.68) or a higher diso(dk ¼
1:7 μm2=ms, d? ¼ 0:9 μm2=ms, FA ¼ 0.38). In both cases the “extra-
axonal” compartment has the same microscopic anisotropy (dk � d? ¼
0:8 μm2=ms). While these diffusivities are similar to commonly assumed
values (Zhang et al., 2012), recent work has shown the intra-axonal
diffusivity might be much higher (Dhital et al., 2019). However, the
exact value chosen here does not affect our main conclusions. We assume
both compartments have the same ODF, so they have the same average
orientation and the same dispersion of 40� along the major axis and 20�

along the minor axis. The extra-axonal ODF refers to the distribution of
the directions of preferred diffusivity. While this assumption of identical
dispersion is likely an oversimplification, it allows us to investigate
whether the reconstructed dispersion matches a single “true” dispersion
value.

To simulate different types of tissue we vary the “intra-axonal” signal
fraction from 0 to 1 with the remaining signal fraction being taken up by
the “extra-axonal” compartment (either with the same or different diso).
At a signal fraction of 0 or 1 we only have a single compartment and
hence the dispersing zeppelin model should be accurate. At intermediate
signal fractions we expect our model to break down as we have two
compartments with different microscopic anisotropy contributing to the
signal. For each signal fraction and “extra-axonal” diso we simulate data
for 62 vol acquired using three different acquisition schemes.

1. single-shell linear tensor encoding at b ¼ 1:5 ms=μm2 for 62 gradient
orientations

2. two-shell linear tensor encoding including shells with a b-values of
1.5, and 3 ms=μm2 for 31 gradient orientations each

3. single-shell linear tensor and spherical tensor encoding at b ¼
1:5 ms=μm2. Linear tensor encoding was simulated for 50 gradient
orientations and the same spherical tensor encoding was acquired 12
times.

To test both the accuracy and precision of the best-fit parameters in
each scenario we simulate 500 noise realizations by adding Rician noise
with a standard deviation of 0:033 S0 to each volume (corresponding to
an SNR of 30 for the b ¼ 0 images). The number of acquisitions and the
noise level have been set to resemble the in-vivo data, where the SNR has
been estimated from the B0 data with the short echo and repetition time.
The SNR is in line with that found by Szczepankiewicz et al. (2019a).

In practice, the higher b-values in the second scheme or the spherical
tensor encoding in the third scheme will require longer diffusion
encoding and hence echo time, which would lead to a lower SNR for
these acquisitions. While this will bias the estimates of the precision
expected for these different acquisition schemes, the accuracy of the fibre
dispersion should be less affected.
4

3.2. In-vivo data

For two subjects we acquired linear and spherical tensor encoded data
at an isotropic resolution of 2 mm on a 3T Siemens Prisma scanner (192
mm FOV; 6/8 partial Fourier; GRAPPA acceleration of 2; SENSE (R ¼ 1)
reconstruction). We gathered 25 axial slices including the full corpus
callosum and much of the cortex (covering about half of the subject’s
brain). To investigate the dependence of the extracted fibre dispersion on
the acquisition parameters, we independently vary the b-value (by
varying the gradient strength), the repetition time, the echo time, and the
gradient duration (see Table 1). Protocols B and D (Table 1) were skipped
for one of the subjects due to time constraints. For the spherical tensor
encoding 12 vol were collected per b-value; for the linear tensor encoding
40 vol with b ¼ 1.5 and 60 vol with b ¼ 3 were collected. These were
interspersed with b ¼ 0 volumes. The total scan time took 45 min for all
four protocols.

Spherical tensor encoding was acquired using a prototype spin-echo
sequence that enables b-tensor encoding (Szczepankiewicz et al.,
2019a). The adopted gradient waveform (Fig. 1) was numerically opti-
mised using the NOW toolbox in Matlab8 (Sj€olund et al., 2015) and
compensated for concomitant gradients (Szczepankiewicz et al., 2019b).
During this optimisation, the maximum gradient amplitude and slew rate
were set to of the Prisma scanner (i.e, respectively 80 mT/m and 200
mT/m/ms). In practice this maximum gradient amplitude and slew rate
were not reached (Fig. S1).

The linear tensor encoding data was acquired using a gradient
waveform optimised for linear tensor encoding using the NOW toolbox.
This gradient waveform is sensitive to longer diffusion times than the
ones in the spherical tensor encoding (Fig. S1), which might bias the
estimate of the microscopic anisotropy if the signal has a strong diffusion
time dependence (de Swiet and Mitra, 1996; Jespersen et al., 2019).
While for the relatively long diffusion times probed here such a
time-dependence of the signal has been found to be small (Clark et al.,
2001), using a linear waveform with a matched diffusion time to the
spherical tensor encoding would be more accurate (Lundell et al., 2017;
Szczepankiewicz et al., 2019a).

The diffusion data were corrected for motion and distortions using
FSL’s topup (Andersson et al., 2003) and eddy (Andersson and Sotir-
opoulos, 2016) tools. When correcting for the distortions in eddy, data
from both the b¼ 1.5 and 3ms=μm2 shells were combined, however eddy
was run separately for each repetition time, echo time, diffusion time, as
well as separately for the linear tensor and spherical tensor encoded data
(for a total of 8 runs). The resulting distortion-corrected, partial-brain
data was then registered using a rigid-body transformation to a full-brain
b ¼ 0 scan acquired at the same time (distortion-corrected using FSL’s
topup) and finally to a T1-weighted structural scan of the same subject
using boundary-based registration (Greve and Fischl, 2009; Jenkinson
et al., 2002; Jenkinson and Smith, 2001).

3.3. Model fitting

We fit a single-compartment model of dispersing fibres (eq. (13)) to
both the multi-compartment simulated data and the in-vivo data. The
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optimisation was run using the quasi-Newton method L-BFGS-B (Byrd
et al., 1995; Zhu et al., 1997). We adopt a Rician noise model to fit the
simulations and the in-vivo data.

For the in-vivo data the diffusion data in all shells is fitted simulta-
neously. During this fit, we only optimise a single set of parameters
describing the orientation of the Bingham matrix, which enforces the
same mean fibre orientation across all shells. However, the microscopic
anisotropy (dk � d?), isotropic diffusion-weighted signal amplitude
(Sdw ¼ S0e�b diso Þ, and fibre dispersion (k1 and k2) are allowed to be
different in every shell. This corresponds to 3þ 4N parameters, where N
is the number of shells. This ensures that when we compare the fibre
dispersion across different acquisitions, we compare the dispersion
around the same mean fibre orientation.

The simulated data is either fitted with 7 parameters (for the single-
shell data) or 8 parameters (for the multi-shell data for which the
isotropic diffusion-weighted signal amplitude is split into estimates of the
S0 and diso). The microscopic anisotropy is not allowed to vary across
shells in the simulations of multi-shell linear tensor encoded data,
because this would lead to a degeneracy between the microscopic
anisotropy and fibre dispersion as illustrated for the single-shell linear
tensor encoded data below.

To increase the speed of convergence we iterate between fitting only
Fig. 3. Best-fit parameter estimates for 500 noise realizations using three different a
shell linear tensor encoding, and single-shell linear and spherical tensor encodin
compartment (top), equal signal fraction for an “intra-axonal” and “extra-axonal” c
microscopic anisotropies for the two compartments are different, but the dispersion
axonal”). Either adding multiple shells (middle column) or adding spherical tensor en
the single-shell linear tensor encoding (left column), however only for the additio
compartments are not modelled correctly.

5

the three orientation parameters on the full dataset and fitting the other
parameters on a per-shell basis. Robustness is increased by initializing
microscopic anisotropy and fibre dispersion of each shell using their
median value across all shells when fitting them to the shell’s diffusion
data.

For comparison we also fit NODDI (Zhang et al., 2012) and the
ball-and-racket model (Sotiropoulos et al., 2012) to our in-vivo data. In
both models we assume the fODF is described by a single Bingham dis-
tribution (Tariq et al., 2016) in line with our dispersing zeppelin model.
Both models were fitted on GPU using cuDIMOT (Hernandez-Fernandez
et al., 2018).

4. Results

4.1. Simulations

We investigate the bias incurred in the fibre dispersion estimate when
fitting a single-compartment model (i.e. eqs. (4) and (13)) to data
simulated from a two-compartment tissue with varying “intra-axonal”
signal fractions.

Irrespective of how the data was generated, the model is degenerate
between fibre dispersion and microscopic anisotropy for a single shell
cquisition schemes (from left to right: single-shell linear tensor encoding, multi-
g) for three different underlying anatomies, namely only an “intra-axonal”
ompartment with equal diso (middle) or different diso (bottom). In all cases the
is the same (marked by cyan star for “intra-axonal” and black star for “extra-

coded data (right column) breaks the degeneracy seen between the parameters in
n of spherical tensor encoded data does this not lead to a bias if the multiple
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data acquired with linear tensor encoding (left column in Fig. 3). The
same single-shell diffusion data can be explained by a high microscopic
anisotropy and dispersion or a small microscopic anisotropy and
dispersion.

Multiple shells obtained with linear tensor encoding (i.e., conven-
tional multi-shell) breaks this degeneracy (middle column in Fig. 3).
However, the single-compartment model assumes that microscopic
anisotropy remains constant across b-values, which is invalid for this data
generated from two compartments (except for signal fractions of 0 or 1).
This leads to biases in the estimated microscopic anisotropy and hence
the mean dispersion. This bias is only a few degrees if both compartments
have the same diso as this ensures that the relative contribution of both
compartments to the microscopic anisotropy remains the same across b-
values (eqs. (6) and (7)). However, if the compartments have very
different diso the microscopic anisotropy at low b-values will be domi-
nated by a different compartment than at high b-values, which leads to a
strong dependence of the averaged microscopic anisotropy on b-value.
This breaks our assumption of a constant microscopic anisotropy, which
leads to a large bias in the fibre dispersion (Fig. 3H).

The addition of spherical tensor encoding gives an accurate estimate
of a weighted average of the microscopic anisotropy, which equals that of
the “intra-axonal” compartment if that is the only compartment present
(Fig. 3C) or the average of the “intra-axonal” and “extra-axonal” micro-
scopic anisotropies if both are present (Fig. 3F,I). Because this estimate of
the microscopic anisotropy is obtained from a single shell of diffusion
Fig. 4. For simulations where the “intra-axonal” and “extra-axonal” compartments ha
median (left) and interquartile range (right) estimated from 500 noise iterations usin
top). Black lines mark the ground truth. In the lower panels the black dashed lines illu
(eq. (9)). Error bars indicate 95% confidence intervals of the median and inter-qu
different acquisitions schemes would in practice have different echo times, for simpli
acquisitions.
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data, it is unaffected by our model assumption of the dependence of the
microscopic anisotropy on b-value. That this weighted average of the
microscopic anisotropy provides an accurate estimate of the width of the
response function is illustrated by the reduced bias in the estimate of
fibre dispersion (Fig. 3I compared with H). See Figure S2–S4 for the
correlations between all parameter estimates.

Fig. 4 illustrates the accuracy and variability of the estimates for the
full range of simulations. For single-shell linear encoding (in blue) the
degeneracy between the microscopic anisotropy and dispersion leads to a
large variability between the noise realizations. While both multi-shell
diffusion data (in orange) or the inclusion of spherical tensor encoding
(in green) break the degeneracy, the values from the multi-shell data are
only accurate if the model assumption of no dependence of the micro-
scopic anisotropy on b-value is accurate (i.e., if there is only a single
compartment or if the multiple compartments have the same diso). Irre-
spective of the diso the microscopic anisotropy smoothly increases from
the “extra-axonal” to the “intra-axonal” microscopic anisotropy as the
signal fraction of the “intra-axonal” compartment increases for data
including spherical tensor encoding (green in Fig. 4) in line with the
trend expected from computing the micro-anisotropy as a weighted
average (eq. (9); black dashed line in Fig. 4). This more realistic trajec-
tory of estimated microscopic anisotropy reduces the bias in the fibre
dispersion in the case of multiple compartments with different diso,
although it is not fully eliminated.

In our in-vivo scans we cannot manipulate the intra-axonal volume
ve the same isotropic diffusivity (left) or different isotropic diffusivity (right), the
g three different acquisition schemes (color-coded according to the legend at the
strate the expected micro-anisotropy when approximated as a weighted average
artile range estimated by bootstrapping the 500 simulations. Even though the
city we assumed the same number of volumes (i.e., 62) and SNR (i.e., 30) for all



Fig. 5. Similar trend lines as Fig. 4, but as a function of the b-value rather than the volume fraction, which is kept fixed at 0.5. The multi-shell data includes two shells
with the reference b-value and twice the reference b-value.
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fraction; however, we can change the relative contribution of the tissue
compartments by altering the acquisition parameters. In our simulations,
we test this by varying the reference b-value from the value of 1.5 ms=
μm2 used in Fig. 4. When the compartments have the same diso, altering
the b-value does not change the relative contribution of the compart-
ments, which leads to a constant microscopic anisotropy and fibre
dispersion measured across b-values (left in Fig. 5). With a lower diso for
intra-axonal space, increasing the b-value increases the relative contri-
bution of this compartment, leading to an increase in the microscopic
anisotropy, although the fibre dispersion still remains nearly constant as
long as spherical tensor encoding was included in the acquisition (right in
Fig. 5).

4.2. In-vivo fibre dispersion

The simulated data above suggests that a single shell of linear tensor
and spherical tensor encoded data provides a nearly unbiased measure of
fibre dispersion. We cannot confirm this in-vivo due to a lack of a ground
truth. However, we can test whether this measure of fibre dispersion
remains consistent as the acquisition parameters change. Here we test the
sequence for two healthy subjects in-vivo. The result for subject A is
shown in Fig. 6; for subject B in Fig. S5. When available values for both
subjects are reported using the following notation <value for subject
A>|<value for subject B>.

As a reference, we will adopt the best-fit estimates for a shell with b-
value of 3 ms=μm2, TR ¼ 3.8s, TE ¼ 100 ms, and a total duration of the
7

gradient waveform of 72ms (A in Table 1). The microscopic anisotropy is
highest in the white matter (median of 1:7|1:7 μm2=ms) with no strong
decrease in crossing-fibre regions as seen for a fractional anisotropy map
(Fig. 6). While the microscopic anisotropy in the grey matter is lower
than in the white matter (median of 1:1|1:1 μm2=ms), this is still a much
smaller difference than the near isotropic diffusion typically seen in
cortical grey matter in fractional anisotropy maps.

Because our model does not explicitly allow for crossing fibres, the
major axis of dispersion tends to be oriented along the plane of the
crossing fibres with high dispersion values and is close to the maximum
of 60� for those regions with crossing fibres. The dispersion along the
minor axis reflects the dispersion along an axis perpendicular to the
crossing fibres and hence is more likely to closely reflect the actual
dispersion which ranges from 20 to 30� in the corpus callosum to ~50� in
the centrum semiovale.

At half the reference b-value, the best-fit microscopic anisotropy is
increased by 4|3% in white matter and 3|3% grey matter (top row of
scatter plots in Fig. 6), which corresponds to a decrease of about 48% in
the width of the response function (i.e., b-value multiplied with the
microscopic anisotropy). However, the signal anisotropy between
gradient orientations also greatly decreases as the b-value is decreased,
which leads to a net shift in the fibre dispersion estimates of on average
1�|1.2� (which is in line with the minimal changes seen in the simula-
tions; green in Fig. 5).

We explored a range of other acquisition parameters to investigate
whether they introduced a bias in the fibre dispersion estimates.



Fig. 6. Consistency of from left to right the best-fit microscopic anisotropy, fibre dispersion (along both minor and major axis), the isotropic diffusivity, and the
microscopic anisotropy normalised by the isotropic diffusivity compared between different acquisitions of the same subject. The top row shows an axial slice for data
acquired with b ¼ 3 ms=μm2, TR ¼ 3.8 s, TE ¼ 100 ms and a short gradient duration. The subsequent rows compare these fits (on the x-axis) for all white matter (blue)
and grey matter (grey) voxels with those acquired for a decreased b-value (1.5 ms=μm2), an increased TR (to 5.2 s), increased TR and TE (to 150 ms) and an increased
TR, TE, and gradient duration (which effectively increases the diffusion time). Lighter colors indicate a higher density of points.

M. Cottaar et al. NeuroImage 215 (2020) 116832
Increasing the repetition time from 3.8 to 5.2 s has little effect on the
signal attenuation and hence the best-fit parameters (second row of
scatter plots in Fig. 6). When the echo time is also increased from 100 to
150 ms, we find a 4%|3% decrease in the microscopic anisotropy and a
systematic increase in the fibre dispersion estimated in the white matter
(~1.2|0.8�) and grey matter (~1.4|1.7�).

When the gradient duration is increased by 60% (from 72 to 115 ms)
this causes a further decrease in the microscopic anisotropy to a total of
6% in white matter and 7% in grey matter. This does not appear to
significantly affect the fibre dispersion which increases by ~1.1� in white
matter and ~1.3� in grey matter.

Finally, we note that the increase in the microscopic anisotropy for
lower b-value corresponds to a similar increase in the isotropic diffusivity
8

(fourth column in Fig. 6). In other words, the microscopic anisotropy
normalised by the isotropic diffusivity (last column in Fig. 6) does not
depend on b-value, although it does change with the microscopic
anisotropy when the diffusion time changes. The isotropic diffusivity was
estimated from the mean spherical tensor encoded attenuation using eq.
(4).

The fibre dispersion estimated from the dispersing zeppelin model
that includes information from the spherical tensor encoded signal are
systematically lower (on average 0.9|1.3� in white matter, 1.9|7.8� in
grey matter) than those estimated from the ball-and-racket model
(Fig. 7). Compared with NODDI, the fibre dispersions are higher in the
greymatter (2.5|2.6� on average), but lower in the white matter (0.7|0.4�

on average).



Fig. 7. Fibre dispersion estimates (in degrees)
compared between the dispersing zeppelin model
constrained by the spherical tensor encoding data on
the x-axis (for b ¼ 3 ms=μm2) with NODDI (Tariq
et al., 2016; Zhang et al., 2012) and the
ball-and-racket model (Sotiropoulos et al., 2012) (for
both b-values). The left column shows fibre dispersion
along the minor axis; the right column along the
major axis. Like in Fig. 6 in the scatter plots and his-
tograms the white matter voxels have been repre-
sented in blue and the grey matter voxels in grey.
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5. Discussion

Here we argued that microscopic anisotropy obtained by combining
linear and spherical tensor encoding allows us to deconvolve the diffu-
sion signal to obtain an accurate measure of fibre dispersion from single
shell diffusion data. Although both microscopic anisotropy and fibre
response function can be expressed using the difference between axial
and radial diffusivities (dk � d?) (Dell’Acqua et al., 2007), this result is
not trivial since realistic tissue cannot be described by a single diffusion
anisotropy (dk � d?), but is likely to contain many compartments each
with different diffusion properties.

In our simulations of multi-compartment tissue, we find that the
combination of linear and spherical tensor encoding produces more ac-
curate estimates of the fibre dispersion than multi-shell data even while
we fit a single-compartment model to multi-compartment data (Fig. 4)
with systematic biases remaining of up to 2–3�. We speculate that this is
because the ratio of the linear tensor and spherical tensor encoded signals
for multiple compartments (eq. (6)) produces an estimate of the micro-
scopic anisotropy that is approximately the average of the microscopic
anisotropy of the individual components weighted by the component’s
signal fraction (eq. (9)). This additive nature of the microscopic anisot-
ropy in the second-order signal expansion was previously noted by Jes-
persen et al. (2013). This approximation is expected to hold up to up to
bðdk �d?Þ � 6 (Fig. 2). During the averaging of the microscopic anisot-
ropy each compartment is weighted by S0e�b diso (eq. (7)). This b-value
dependent weighted average breaks the degeneracy between the
microscopic anisotropy and fibre dispersion inherent in the linear tensor
encoding at the appropriate fibre dispersion (Fig. 3C,I).

The accuracy of the fibre dispersion estimate suggested by these
simulations can be tested by investigating the consistency of the fibre
9

dispersion in the in-vivo data when varying the acquisition parameters.
As the b-value, echo time, and gradient duration are varied we found
changes in the microscopic anisotropy changes of up to 7% and a sys-
tematic offset in the dispersion of typically 1–2� (Fig. 6). This is in line
with the systematic bias in fibre dispersion remaining in the simulations
for linear and spherical encoded data. Hence, these small variations in
fibre dispersion for different acquisition parameters are consistent with
the single-compartment model giving an accurate measure of a “true”
fibre dispersion up to an accuracy of a few degrees. However, without
direct comparison to a ground-truth fibre dispersion from histology, the
evidence for the increased accuracy remains primarily based on the
simulations. Note that our choice of modelling the ODF with a single
Bingham distribution leads to an increase in dispersion due to crossing
fibres, which cover most of the brain (Jeurissen et al., 2012). This makes
the fibre dispersion along the minor axis, which will be perpendicular to
any plane containing crossing fibres, a more meaningful measure of the
fibre dispersion around these crossing fibres.

We adopted a single-compartment model, because it makes a simple
assumption that the microscopic anisotropy does not depend on b-value.
This will hold as long as there only is a single compartment or all com-
partments have the same isotropic diffusivity and hence the average
microscopic anisotropy does not depend on b-value (eqs. (6) and (7)). In
those situations, the microscopic anisotropy estimates are expected to be
the same from multi-shell linear tensor encoding or single-shell linear
and spherical tensor encoding, and both acquisitions will give the same
fibre dispersion estimates (Fig. 4). However, as the model assumptions
break down (e.g., multiple compartments exist with different isotropic
diffusivity) the bias in the fibre dispersion increases for multi-shell data
(Fig. 4), while the bias remains small for the single-shell linear and
spherical tensor encoding. This is further evidence that the inclusion of
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spherical tensor encoding reduces the degeneracy between the meso-
scopic fibre ODF and the microscopic diffusion properties, as previously
illustrated by the estimation of the microscopic anisotropy, which is
unaffected by the fibre ODF.

Even if the average microscopic anisotropy is accurately estimated
(either from spherical tensor encoding or an accurate model of how the
microscopic anisotropy depends on b-value), we still find a systematic
bias in the fibre dispersion of about 2–3�. This possibly reflects that a
single diffusion tensor even with an appropriately averaged microscopic
anisotropy cannot fully capture the angular dependence of the linear
tensor encoded data generated from multi-compartment tissue. More
accurate microstructural models applied to linear and spherical tensor
encoding are likely to further reduce this bias.

A limitation in the simulations is that we assumed the extra-axonal
ODF matches the intra-axonal fODF. This assumption is mainly made
for practical concerns, so that we have a single ground truth fibre
dispersion to compare the best-fit fibre dispersion to. In reality, this
assumption would be expected to be valid if the fibre orientation mainly
varies on length scales larger that the diffusion scale, such as might be
expected in bending or fanning fibre configurations where the fibre
orientations change smoothly over the voxel. In this case, the extra-
axonal water will only “see” a single fibre orientation and its preferred
direction of diffusion will align with the local fibre orientation (Nich-
olson et al., 2000; Szafer et al., 1995). Averaged across the voxel the
range of preferred orientations of the extra-axonal water would match
that of the intra-axonal water and hence both have the same ODF.
However, if there are multiple fibre orientations within a single diffusion
length due to crossing fibres (Schilling et al., 2017), undulating fibres
(Nilsson et al., 2012), or otherwise, the extra-axonal diffusivity will be
averaged which leads to a reduced fibre dispersion in the extra-axonal
space (as well as extra-axonal diffusion profiles that are no longer
axisymmetric). In this case there is no longer a single “ground truth” fibre
dispersion that is the same intra- and extra-axonally and the best-fit fibre
dispersion will depend on the relative contribution of both compartments
to the signal. So, in such a case retrieving the actual (i.e., intra-axonal)
fibre dispersion would require minimising the signal of the
extra-axonal water relative to the intra-axonal water, e.g. by increasing
the b-value (Jensen et al., 2016). If the fibre dispersions are very different
in different compartments, one might expect the estimated fibre disper-
sion to change when changing the acquisition parameters, which alters
the relative sensitivity to the different compartments. We find no evi-
dence for that in the in vivo data.

While the fibre dispersion from multiple b-shell models have been
shown to correlate with the fibre dispersion measured using microscopy
in post-mortem tissue, potential systematic offsets between the diffusion
MRI and microscopy estimates remained (Mollink et al., 2017). In the
in-vivo data we found offsets of ~1–3� on average between the fibre
dispersion estimates from our model including spherical tensor encoding
and those from the ball-and-racket model (Sotiropoulos et al., 2012) and
NODDI (Tariq et al., 2016; Zhang et al., 2012). These offsets might reflect
the bias found in the simulations when fitting our single-compartment
model to multi-compartment data. So, in practice we don’t find the
large deviations of several 10s of degrees, which our simulations suggest
are possible between fibre dispersion estimates from the multi-shell
diffusion data or the linear and spherical tensor encoded diffusion
data. In our simulations such large offsets were only found when the
assumptions of the single-compartment microstructural model broke
down by having multiple compartments with a different isotropic diffu-
sivity. So, the small offsets found by the ball-and racket model and
NODDI suggest that the microstructural assumptions made by these
models are at least in the healthy brain accurate enough to get reliable
fibre dispersion estimates. This reliability is expected to go down when
the diffusivities within compartments change (Fig. 4) as expected in some
pathologies, such as white matter lesions (Lampinen et al., 2019).
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The fibre dispersion can also be estimated without spherical tensor
encoding or multi-shell data by assuming a constant response function
throughout the white matter (Tournier et al., 2004). Recent reports have
cast doubt on the validity of this assumption of a constant response
function even in healthy white matter (Schilling et al., 2018; Howard
et al., 2019), which is likely to be worse in disease states. However,
whether the biases found in the response function are large enough to
significantly bias the fibre dispersion estimates, should still be
investigated.

The most common application of estimating the fibre ODF is to use it
in tractography, where the fibre orientation estimates are connected to
reconstruct the major white matter tracts in the brain and estimate the
connectivity between different brain regions (Jeurissen et al., 2017).
While accurately estimating crossing fibres has been shown to be crucial
to reconstructing many white matter bundles (Behrens et al., 2007), the
benefit of an accurate fibre dispersion estimate is less obvious. The same
fibre dispersion can reflect a wide variety of fanning or bending config-
urations inside the voxel. Distinguishing between these scenarios re-
quires taking into account the local neighbourhood (Bastiani et al., 2017)
or using global tractography (Daducci et al., 2015; Kreher et al., 2008;
Pestilli et al., 2014; Reisert et al., 2011; Smith et al., 2015). These trac-
tography algorithms are more likely to benefit from an accurate estimate
of the fibre ODFs, rather than the more common local tractography al-
gorithms that sample directly from the fibre ODF. Before being applied to
tractography the model presented here should be expanded to include a
more realistic fibre ODF, either by describing it in terms of spherical
harmonics (Tournier et al., 2007) or multiple crossing Bingham distri-
butions (Farooq et al., 2016; Sotiropoulos et al., 2012).

We conclude that fibre dispersion estimated from multiple b-values
are more sensitive to the assumptions made about the microstructural
tissue parameters than the fibre dispersions estimated from a single b-
shell with linear tensor and spherical tensor encoded data.
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