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Abstract

The problem of dynamic portfolio choice with transaction costs is often ad-

dressed by constructing a Markov Chain approximation of the continuous

time price processes. Using this approximation, we present an efficient nu-
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merical method to determine optimal portfolio strategies under time- and

state-dependent drift and proportional transaction costs. This scenario arises

when investors have behavioral biases or the actual drift is unknown and

needs to be estimated. Our numerical method solves dynamic optimal port-

folio problems with an exponential utility function for time-horizons of up to

40 years. It is applied to measure the value of information and the loss from

transaction costs using the indifference principle.

Keywords: Dynamic programming, numerical methods, state-dependent

drift, transaction costs, Markov Chain approximation

JEL: C61, C63, G11

1. Introduction

Numerical methods for dynamic portfolio optimization under propor-

tional transaction costs typically assume that the drift of the risky asset

is constant. However, a state-dependent drift enters the optimization prob-

lem in many scenarios. For instance, if the drift is unobservable, it can be

estimated with the Kalman-Bucy filter. This leads to an optimization prob-

lem where the drift depends on the currently observed stock price (e.g. Björk

et al. 2010). The drift is also state-dependent when contrarian investors op-

timize portfolios under the assumption that prices are mean-reverting; for

instance when an investor is a victim of the Gambler’s fallacy, see, e.g., She-

frin (2008). Similarly, investors who aim at following market trends will

include a state-dependent drift in optimization.

In these cases an investor’s optimal trading strategy strongly depends

on the forecasting function used to predict asset prices. This poses a nu-
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merically demanding problem. Our paper proposes an efficient numerical

method to solve finite-horizon portfolio optimization problems with trans-

action costs and state-dependent drift. The method has time-complexity of

O(N2.5), where N is the number of time steps in the discrete approximation

of the investment interval. In contrast, a discrete-time dynamic program-

ming algorithm (see (8) in Section 3) that directly solves the problem has

time-complexity O(N5). Our method allows us, for instance, to study 40-

year investment horizons with time steps of 4-day length on a basic laptop

computer.

There are several numerical methods for solving the optimization problem

with a constant drift under transaction costs. Davis et al. (1993) proposes

a backward recursive method which has seen a number of improvements in

the past 20 years. For instance, Monoyios (2004) provides an approxima-

tion to the optimal decision in the final period which allows searching over

a smaller range of stock holdings. Zakamouline (2005) proposes bounds on

stock holdings. Another method is to solve the Hamilton-Jacobi-Bellman

(HJB) equations of optimization problems by finite differences (e.g. Herzog

et al. 2013) or to use a genetic programming algorithm to derive approx-

imations of trading strategies (Lensberg and Schenk-Hoppé 2013). These

algorithms work well for short time-horizons, typically less than one year,

and when the number of periods is small. By proposing a method that works

for non-constant drift and long time-horizons, our paper fills this gap in the

literature.

The main challenges arising from a state-dependent drift are that the

search for the optimal strategy has to be carried out for all nodes of a binomial
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tree, and that the state-dependent strategy results in a larger range of stock

holdings. This increases the likelihood of over- and underflow arising for the

exponential utility function as pointed out by Clewlow and Hodges (1997).

For a constant drift, in contrast, the optimal strategy is independent of stock

prices at time t. One only needs to search for the optimal strategy at a node

at time t, see Monoyios (2004, p. 902).

To overcome the challenges, we develop a fast numerical method to ap-

proximate the optimal solution well. The approach combines four aspects:

(a) reducing dimensionality, (b) scaling the objective function, (c) carrying

out local searches for optimal trading decisions, and (d) non-equidistant dis-

cretization of the state space.

We apply the numerical method to a study of the true costs of market

frictions using the indifference principle. The analysis reaps the full benefit

of the approach because measuring these costs requires taking averages over

many realizations of the drift. For each realization, one has to calculate

trading strategies and carry out Monte Carlo simulations. In general, a

state-dependent drift is observed to make the strategy more variable than a

constant drift. This, in turn, entails more aggressive trading.

The indifference principle yields the following results.

First, the value of information is measured by comparing realized utilities

of different types of investors. We find that information is most valuable to

the least risk-averse investor. It also turns out that cautious trend-followers

do almost as well as investors who estimate the drift from observations.

Second, the utility loss due to transaction costs is measured as the maxi-

mum amount of money an investor is willing to pay up front to avoid trans-

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

action costs. The loss is observed to be about twice as large as the direct

expense incurred. Transaction costs are most detrimental to naive investors

(who do not revise their initial estimates of the drift) when investing over

a medium or long time horizon. It implies that in the long run naive in-

vestors are the most active traders and usually hold wrong beliefs. At short

time-horizons, transaction costs strongly affect the learning investor as his

estimate of the drift varies drastically in the short run.

Third, we examine the impact of the investment time horizon. The main

finding is that, although uncertainty about the true drift cannot be removed

completely, learning about the drift reduces the loss in utility due to the

uncertain drift by 33% in one year and by 80% in ten years compared to a

naive investor. Learning also reduces the loss in utility caused by transaction

costs by 50% over a 10-year time-horizon.

Section 2 presents the model. The numerical method is explained in

Section 3 and applied in Section 4 to quantify the economic costs under

various assumptions on the state-dependent drift. Section 5 concludes.

2. Model

We consider an investor who maximizes utility from wealth by trading

in a risk-free bond with a constant interest rate r, and a risky stock. The

randomness of the stock price is modelled on a probability space (Ω,F ,P)

which supports a one-dimensional Brownian motion (W (t)) and an indepen-

dent random variable m whose role will be explained later. The investor

assumes that the dynamics of the stock price S(t) is given by

dS(t) = µ
(
t, S(t)

)
S(t)dt+ σS(t)dW (t), S(0) = S0 (1)

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

with a constant volatility σ > 0. The function µ(t, S) is a time- and state-

dependent drift of the stock price.

We consider a situation in which the true dynamics of the stock price is

unknown: The actual drift is a random variable m which is determined at

the initial time and fixed over the horizon (recall that it is independent of

the Brownian motion (W (t))). Hence the true price dynamics is

dS(t) = mS(t)dt+ σS(t)dW (t). (2)

The drift m is not observed by investors with an exception of an informed

investor (a benchmark) who additionally knows the drift m. If the structure

of the price dynamics is known, one can use observed stock prices to estimate

m. Assume throughout the paper that m is normally distributed with mean

µ0 and variance γ0 > 0:

m ∼ N (µ0, γ0).

Then the Kalman-Bucy filter gives that the best estimate of m given an

observation of the stock price trajectory up to time t is

µL(t, S(t)) =
γ0σ

2

σ2 + γ0t

(
µ0

γ0

+
t

2
+

1

σ2
log(S(t)/S0)

)
. (3)

This estimate takes the form µ(t, S(t)), and hence entails a dynamics as

defined in (1).

Investors who are not aware of the characteristics of the random variable

m and/or the dynamics (2) make suboptimal decisions. We consider two

types of such investors. The first one is a naive investor who assumes that

the dynamics is given by (2) with m = µ0, i.e., µ(t, S(t)) = µ0 in (1). The
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second type of investor suffers from a behavioral bias and estimates the drift

as:

µa(t, S(t)) = µ0 + a arctan
(
(µ0 − σ2/2) t− log(S(t)/S0)

)
. (4)

The second item of (4) characterizes the investor’s adjustment to his

initial estimate µ0. The arctangent function is a symmetric about the origin

and increasing function taking values within (−π/2, π/2) on the domain

(−∞, +∞), see, e.g. Luderer et al. (2010, p. 55). The adjustment vanishes

when the logarithmic return R(t) := log(S(t)/S0) equals (µ0− σ2/2) t which

was the expected value E[R(t)] if the drift of the stock price was a known

constant µ0. In this case, it is known that, see, e.g. Øksendal (2003, p. 64)

R(t) := log(S(t)/S0) = (µ0 − σ2/2) t+ σW (t).

We refer to the parameter ‘a’ as the investor’s sentiment. It measures the

investor’s confidence in his initial estimate µ0. If the parameter a is positive

then the investor believes that the price will revert to the predicted mean:

A higher than predicted return is forecast to lead to a drift smaller than µ0.

The investor’s decision is contrarian. It can be interpreted as the result of

overconfidence about the ability to predict the stock price dynamics. If the

parameter a is negative, the investor will revise the initial estimate upwards

if the returns are higher than predicted (resp. downwards if returns are lower

than µ0). The investor is a trend follower; he places more trust in the market’s

view about stock price dynamics than in his own view.

Definition 2.1. Informed investors observe the realization of the random

drift m at the initial time.
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Learning investors use (3) to estimate the realization of the random drift

m.

Naive investors assume that the drift is constant m = µ0.

Biased investors use (4) as their estimate of the drift.

Trading in the stock incurs proportional transaction costs with the rate

λ ∈ [0, 1). Purchasing y shares costs y(1 + λ)S(t) at time t while selling

y shares brings in y(1 − λ)S(t). It is customary (e.g. Davis et al. 1993)

to describe an investor’s trading strategy with two non-decreasing right-

continuous processes L(t) and M(t) representing, respectively, the cumula-

tive number of shares bought and sold over [0, t]. The dynamics of portfolio

positions (x(t), y(t)), where x(t) is the value of bonds held and y(t) is the

number of shares, is

dx(t) = rx(t)dt− (1 + λ)S(t)dL(t) + (1− λ)S(t)dM(t),

dy(t) = dL(t)− dM(t).

Given an initial position (x0, y0), the investor maximizes the expected

utility of the terminal wealth by following a trading strategy (L(t),M(t)):

max
(L,M)

E
{
U
(
x(T ) + y(T )S(T )

)}
.

We impose two standard assumptions: there are no liquidation costs of the

portfolio at the terminal time T and the investor has a utility function with

a constant absolute risk aversion (CARA) coefficient α:

U(w) = − exp(−αw). (5)

In the cases of an informed investor or a naive investor, this utility

maximization problem is classical. For learning investors one can show
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that it is optimal to estimate the true drift using (3) and to solve the

optimization problem under the stock price dynamics given by (1) with

µ(t, S(t)) = µL(t, S(t)).1 Biased investors’ optimization problem mimics be-

havioral decision making.

Stochastic differential equations with drift of the form (3) or (4) do not

satisfy the standard conditions for existence and uniqueness of solution. We

therefore provide a result that establishes existence of a unique solution.

Lemma 2.2. Assume that µ : [0, T ]× (0,∞)→ R is a continuous function

that satisfies a logarithmic growth condition

|µ(u, S)| ≤M
(
1 + | log(S)|

)
, S > 0, u ∈ [0, T ],

and a logarithmic Lipschitz condition

|µ(u, S1)− µ(u, S2)| ≤M | log(S1)− log(S2)|, S1, S2 > 0, u ∈ [0, T ]

for some constant M > 0. Then there is a unique strong solution to the

stochastic differential equation (1) for every initial condition S > 0.

Proof. Øksendal (2003, Theorem 5.2.1) implies that under the assumptions

of the lemma there is a unique strong solution to the stochastic differential

equation

dZ(u) =
(
µ(u, eZ(u))− σ2

2

)
du+ σdW (u), Z(t) = 0. (6)

1The justification is based on the separation principle (Fleming and Rishel 1975, Theo-

rem 11.2) and a Kalman-Bucy filter (Øksendal 2003, Chapter 6). The original optimization

problem is equivalent to the one with the drift replaced by its filtering estimate (3).
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By Itô’s formula the process S(u) = S(t)eZ(u)−Z(t), u ≥ t, satisfies (1), i.e., it

is a strong solution to this equation. To prove uniqueness, assume that there

is another strong solution to (1), denoted by S̄(u), u ≥ t, with S̄(t) = S(t)

and S̄(u) 6= S(u) for u > t. Define Z̄(u) = log(S̄(u)/S̄(t)). Again, by Itô’s

formula Z̄(u) satisfies (6) and is different from Z(u). This contradicts the

uniqueness of the solution to (6). �
Let us verify that the drifts of the forms (3) and (4) satisfy assumptions

of the above lemma. We have

|µL(u, S1)− µL(u, S2)| ≤ γ0

σ2
| log(S1)− log(S2)|,

and

|µL(u, S)| ≤ sup
t≥0
|µL(t, S)|

≤ sup
t≥0

{
γ0σ

2

σ2 + γ0t

(
µ0

γ0

+
t

2
+

1

σ2
| log(S0)|

)}
+ sup

t≥0

{
γ0σ

2

σ2 + γ0t

1

σ2
log(S)

}

≤ γ0

σ2
| log(S0)|+ σ2

2
+ µ0 +

γ0

σ2
| log(S)|.

For a biased investor, we obtain

|µa(u, S)| ≤ µ0 + |a|π
2
,

and

|µa(u, S1)− µa(u, S2)| ≤ |a| sup
x∈(−∞,∞)

| arctan′(x)|| log(S1)− log(S2)|

≤ |a|| log(S1)− log(S2)|.

Denote by V (t, s, x, y) the value function corresponding to the utility

optimization problem. This is the highest expected utility achievable by an

10
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investor whose portfolio at time t consisting of x value of bond and y shares

of the stock priced at S(t) = s:

V (t, s, x, y) = sup
(L(u),M(u))u≥t

E
{
U
(
x(T )+y(T )S(T )

)
| (S(t), x(t), y(t)) = (s, x, y)

}
.

In the simplest case when the drift function µ(t, s) ≡ µ̄ (a constant), the value

function is characterized as a unique viscosity solution of an HJB equation

(Davis et al. 1993):2

max
{
Vt + rxVx + µ̄sVs +

σ2

2
s2Vss;

Vy − (1 + λ)sVx; −Vy + (1− λ)sVx

}
= 0

(7)

with the terminal condition V (T, s, x, y) = U(x + ys) (subscripts in (7) de-

note partial derivatives). Solving this equation is usually carried out using

numerical approximation. For general drift functions, an HJB representation

is not known. We therefore take a different route to study optimal invest-

ment when the drift function is time- and state-dependent. In this paper,

approximations are designed for the stochastic control problem itself.

3. Numerical Approach

We apply Bellman’s dynamic programming principle to solve the control

problem with state-dependent drift. The stock price model is discretized in

time and space, and the programming works recursively backwards in time.

Let time be discretized in steps of length ∆t with ∆t = T/N where N

is the number of time steps. At each time-point the investor has to choose

2This result requires a restriction of the set of available trading strategies (L(t),M(t)):

the liquidation value at any time must be greater than or equal to a fixed constant.
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whether to trade and, if yes, how many units of stock to trade. The bond

holdings are determined by the self-financing condition. The expected utility

derived from each possible trading choice is determined by the value function.

To select the trading decision that maximizes expected utility, the investor

solves the maximization problem:

V (t, s, x, y) = max
{
E
(
V (t+ ∆t, S(t+ ∆t), er∆tx, y)|S(t) = s

)
︸ ︷︷ ︸

benefit from not trading, ∆y = 0

,

max
∆y>0

E
(
V (t+ ∆t, S(t+ ∆t), er∆t(x−∆y × s(1 + λ)), y + ∆y)|S(t) = s

)
︸ ︷︷ ︸

benefit from buying ∆y > 0 shares

, (8)

max
∆y>0

E
(
V (t+ ∆t, S(t+ ∆t), er∆t(x+ ∆y × s(1− λ)), y −∆y)|S(t) = s

)
︸ ︷︷ ︸

benefit from selling ∆y > 0 shares

}

where the maximization is over the type of trade and the corresponding

volume to be traded.

One might conjecture that the spatial discretization of the stock price

process is complicated when its drift is state-dependent. However, one can

use a standard binomial tree approximation of Cox et al. (1979) and define

adjusted probabilities for the up- and down-movement of the discretized stock

price. This Markov Chain approximation is provided in, e.g., Kushner and

Dupuis (1992) and Zakamouline (2005). The benefit of this representation is

that the stock-price model retains the property of being a recombining tree.

Specifically, we use the following binomial model. Define the coefficients

u = 1/d = eσ
√

∆t, and set the process

S(t+∆t) =





uS(t) with probability p(t, S(t)) = [eµ(t,S(t))∆t − d]/[u− d],

dS(t) with probability 1− p(t, S(t)).

A natural discretization of the state space of money and stock holdings

12
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is given by the set Mx ×My with Mx = {xj : xj = x + jδx ≤ x̄, j ∈ N} and

My = {yk : yk = y + kδy ≤ ȳ, k ∈ N} with given x, x̄, y, and ȳ, where δx

(resp. δy) is the grid spacing in the dimension of money (resp. stock holdings).

A direct algorithm for determining the value function and the optimal

trading strategy proceeds as follows.

Define the value function at the terminal time as the realized utility. Set

V (T, s, xj, yk) := U(xj +yks) for all values s of the discretized stock prices

in period T and all portfolio holdings (xj, yk) ∈Mx ×My.

For t = T −∆t, ..., 0

For all values of the discretized stock price s = S(t) at time t

For all values (xj, yk) ∈Mx ×My

Given the functions V (t+ ∆t, ...), find the highest value in (8)

obtained over all values ∆y such that yk + ∆y ∈ My
3. Denote

the maximum value V (t, s, xj, yk).

End For

End For

End For

The computational complexity of the direct method is of the orderO(N2×
Mx × My × My) or O(N5).4 The factor N2 arises because the algorithm

loops through all points on the stock price lattice, the factor Mx×My is due

to the loop through the grid of portfolio holdings, and the final factor My

3V (t+∆t, ...) is approximated via a linear interpolation because exp(r∆t)[xj∓∆ys(1±
λ)] is typically not an element of Mx.

4We let Mx and My linearly depend on time steps N to ensure that the grid sizes δx

and δy approach 0 when ∆t is close to 0 with increasing N , see, e.g. Zakamouline (2005).
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comes from the ∆y-search. This is slow; doubling the number of steps in all

dimensions increases computation time by a factor of 32.

The range of Mx×My is usually large in order to include optimal solutions

for all possible states (t, S(t)) on the lattice. The above direct numerical

method uses a standard equidistant grid and searches for optimal solutions

in the whole set.

As a benchmark, suppose the direct algorithm is implemented in a high-

level language such as Matlab on a typical laptop computer. Pricing an

option on a binomial lattice with T = 1 year and time steps of 1 day takes

5 - 10 milliseconds, while on the lattice doing optimization over a grid of

Mx×My = 100×100, i.e. O(Mx×M2
y ) = O(106), takes about 2 hours. This

is not a computationally feasible approach since reasonable outputs require

high-resolution grids and thousands of simulations of a random drift.

Five measures are employed to reduce running time of simulations:

Reducing dimension. When measuring utility by the negative expo-

nential function (5), the value function V can be written in the form

V (t, s, x, y) = H(t, s, y) exp (−αx exp(r(T − t))) , (9)

where H(t, s, y) is defined by H(t, s, y) := V (t, s, 0, y), see, e.g., Davis et al.

(1993) or Monoyios (2004). This representation allows reducing the dimen-

sion of the optimization problem by one. However, this measure carries a

potential cost. Suppose an investor’s money and stock holdings are large

(in absolute terms) but offsetting in terms of value. Then the exponent of

the exponential utility function implied by H(t, s, y) will include the product

of a very large stock holding and a large stock price. This can cause nu-

14
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merical over- or underflow errors in the computer program, which are dealt

with by our following function H(t, s, y) scale, along with local search and

non-equidistant discretization that speeds up the program.

Scaling the function H(t, s, y). To mitigate over- and underflow issues,

the value function H(t, s, y) is scaled:

G(t, s, y) := V (t, s,−ys, y) = H(t, s, y) exp (αys exp(r(T − t))) .

Function G satisfies a discrete time dynamic programming equation similar

to (8) with the terminal condition G(T, s, y) = −1.

Local ∆y-search. The solution toH(t, s, y) is known to have a particular

structure. The space of stock holdings is split into three regions: buy, no-

trade and sell. If the stock position is either in the buy or sell region, a

trade is initiated that leads to a stock position on the closest boundary of

the no-trade region. If the stock position is inside or on the boundary of the

no-trade region, the investor does not change his stock position.

In the case of a constant drift (Monoyios 2004, p. 902) the upper boundary

(above which one sells) and the lower boundary (below which one buys) of

the no-trade region at a given time t can be both defined by market values

of stock positions. It is therefore sufficient to determine the optimal trade in

all time-t nodes with a node (t, S) to find the two boundaries.

With a state-dependent drift, this observation no longer holds true: If

the forecast of the drift is revised depending on the current stock price, then

the no-trade region will depend on this information. One therefore has to

determine a no-trade region in each node (t, S). This is computationally

costly. A numerically efficient approach, which we implement, is to deter-
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mine the boundaries of the no-trade region through searching over a local

range of y. One can also use a binary search algorithm as in Zakamouline

(2005) to improve computational speed further. The local range denoted by

[ϕb(t, S), ϕs(t, S)] is determined by an appropriate extension of the bound-

aries at the successive nodes5.

Non-equidistant y-discretization. The structure of optimal trading

strategies suggests that it is not efficient to have an equidistant discretization

of the y-space. The set of discretization points should be denser close to

the boundaries of the no-trade region. We therefore use a symmetric, non-

equidistant discretization.

The set is centered at Merton’s closed-form solution for the case of a

constant drift and no transaction costs, which is denoted by ϕM(t, S). The

value of drift µ is given by investors (possibly an actual value or an estimate).

The non-equidistant grid has larger step-sizes away from the center ϕM(t, S).

For a given (t, S)-node and the local range [ϕb(t, S), ϕs(t, S)], we first define

the radius

Φ(t, S) := max {ϕM(t, S)− ϕb(t, S), ϕs(t, S)− ϕM(t, S)} , (10)

5Denoting the buy (resp. sell) boundary by yb (resp. ys) we identify the endpoints by

ϕb(t, S) = min{yb(t+ ∆t, d S(t)), yb(t+ ∆t, u S(t))} − C1,

ϕs(t, S) = max{ys(t+ ∆t, d S(t)), ys(t+ ∆t, u S(t))}+ C2,

where C1 and C2 are two positive constants selected to ensure the local range is large

enough. We check whether the no-trade boundaries obtained numerically hit the endpoints

of the local range. If they do, larger values of C1 and C2 are chosen and the corresponding

computation is repeated.
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where

ϕM(t, S) =
µ− r

er(T−t) ασ2 S

is the Merton solution. Then we define the set of discretization points as:

y(t, S, k) = ϕM(t, S) +
Φ(t, S)(
My

2

)$
(
k − My

2

) ∣∣∣∣k −
My

2

∣∣∣∣
$−1

. (11)

The coefficient $ > 1 controls the level of dispersion.6 Numerical experi-

ments (see Wang (2010, Sect. 3.6.4) for details) show that an appropriate

choice of the coefficient $ is 1.6.

Low-level language. Implementation in a low-level language, e.g.,

C++, reduces computation time by a factor of approximately 10.

Numerical illustration. We use the following values of parameters as

a base case for our numerical results: the actual drift drawn from the normal

distribution with mean µ0 = 0.15 and variance γ0 = 0.04, volatility σ = 0.25,

proportional transaction cost rate λ = 0.01, initial stock price S0 = 15, risk

aversion α = 0.1, interest rate r = 0.03, time-horizon T = 1 year, and

discretization parameters ∆t = 0.01, My = 3,500 and $ = 1.6.

Figure 1 demonstrates the joint effect of transaction costs and state-

dependent drift. It shows one realization of the optimal trading strategy

over a 40-year time-horizon. The effect is substantial as evidenced by the

high variability of the boundaries of the no-trade region. The volatility of

6If $ = 1, the grid degenerates to the equidistant discretization. But when $ is large,

the points are too concentrated around the center.
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Figure 1: Dynamics of the no-trade region with state-dependent drift µL(t, S(t))

within T = 40 years horizon. The squares indicate transaction times. N trans is

the total number of transactions.

these boundaries reflects changes in the learning investor’s estimate of the

drift. For instance, both boundaries move downwards around year 25-30 in

response to a pronounced fall in the stock price. They move upwards again

around year 32 when the stock price recovers. With a known, constant drift,

these boundaries (when measured in terms of the amount of wealth invested

in stocks) are hyperbola-like curves that are independent of the stock price.

Comparison with Monoyios (2004)’s results. Verification of our method is

carried out by comparing numerical results with those reported in Monoyios

(2004). The comparison is for the simple case of a known, constant drift
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which is considered in the latter paper. Table 1 reports the two boundaries

of the no-trade region at the initial time for different transaction costs. We

calculate results with our method under both equidistant and non-equidistant

discretization. In all three scenarios and for different transaction costs the

calculated boundaries coincide up to 3-4 significant digits.

The non-equidistant discretization requires fewer points on the y-grid

than the equidistant discretization, which substantially shortens the run-

time of the program. Our approach works efficiently because we take state-

dependent non-equidistant discretization on a small local range of y-values.

In fact, the discretization equation (11) produces a great number of dense

points with the precision up to 0.0001 around the area centered at the Merton

solution where the no-trade region is most probably located. The discretiza-

tion points are gradually becoming sparser towards the two end-points of the

local range of y-values.7 As a result, it suffices to set My = 3,500 to achieve

results similar to those obtained by the standard equidistant discretization

that requires 0.27–2.38 million grid points, depending on the full range of

y-values, see the last row in Table 1.

We also compare the performance of non-equidistant and equidistant dis-

cretizations in the case of the state-dependent drift µL(t, S(t)). Figure 2

shows that the most stable results are obtained under the non-equidistant

discretization. The precision of the approximation increases gradually as the

number of time steps increases. Equidistant discretizations exhibit a more

volatile behavior.

7See Wang (2010, Figures 3.5 and 3.6) for an example of the frequency histogram and

the diagram of varying precision of y-values.
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λ = 0.005 λ = 0.01 λ = 0.02 λ = 0.03

Monoyios [0.3866, 0.5780] [0.3499, 0.6197] [0.2702, 0.7196] [0.1813, 0.8243]

Equidistant [0.3870, 0.5772] [0.3510, 0.6193] [0.2708, 0.7137] [0.1851, 0.8161]

Non-equidistant [0.3864, 0.5763] [0.3527, 0.6209] [0.2720, 0.7177] [0.1826, 0.8113]

Range of y [-10.748, 16.213] [-24.622, 30.443] [-56.800, 64.677] [-109.43, 128.71]

Table 1: Boundaries of no-trade region at t = 0. The first row is taken from

Monoyios (2004, Table 1) using a binomial lattice: r = 0.1, ∆t = 0.02, µ = 0.15,

σ = 0.25, S0 = 15, α = 0.1, T = 1 year. The second row uses the equidistant

discretization with ∆y = 0.0001, while the third row uses the non-equidistant

discretization (11) with My = 3,500 and $ = 1.6. The last row presents the

ranges of y grid determined by equations (A.2) and (A.5) in Monoyios (2004).

We finally consider the relationship between computation time and nu-

merical accuracy. Figure 3 shows the log-log scale plot8 for the absolute

error |Vi − V̂ | of the value function V (t = 0, s = 15, x = 0, y = 0) and

computation time for the non-equidistant discretization with local search in

the case of the state-dependent drift µL(t, S(t)). Specifically, the quantities

Vi are the results using non-equidistant discretization and N = 20 + i× 20,

i = 0, 1, . . . , 9, in Figure 2. The benchmark V̂ = −0.9018 is obtained by

using non-equidistant discretization and N = 420 in Figure 2. We assume

V̂ is a reliable approximation of the true value of V (0, 15, 0, 0). Then the

difference |Vi − V̂ | between Vi and the “true” value V̂ is the error of nu-

merical algorithm. An increase in N reduces the error at the cost of longer

computation time, as shown in Figure 3.

8A log-log plot uses logarithmic scales on both the horizontal and vertical axes.
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Figure 2: Value functions at initial time versus the number of time steps N with

the state-dependent drift µL(t, S(t)), where N = 20+i×20, i = 0, 1, . . . , 20. Other

parameters are the same as in the base case.

To estimate the order of time-complexity, we first assume the relationship

|V − V̂ | = a τ−b, where τ is computation time and we call b the convergence

order. We estimate b (and log a) by performing an ordinary least squares

regression of log(|V − V̂ |) on log(τ).

All observations in Figure 3 are close to a straight line with slope −0.4

(taking logarithms of both variables). This means that to halve the numerical

error, computing time is increased by a factor of 2(1/0.4) ≈ 5.7. Note that this

is only marginally slower than for standard option pricing calculations in a

binomial model (where computing needs to be quadrupled for the error to
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Figure 3: Convergence with non-equidistant discretization and the state-

dependent drift µL(t, S(t)). The y-axis reports the absolute error |Vi − V̂ | of

the value function V (t = 0, s = 15, x = 0, y = 0). The benchmark V̂ = −0.9018

has been obtained by using N = 420, and Vi’s are the results with N = 20+ i×20,

i = 0, 1, . . . , 9.

be halved) and much faster than for the direct method (8), where a simple

halving of all step sizes increases computation time by a factor of 32. In

Appendix A, we investigate the convergence order for different random sets

of values of parameters9. This confirms the robustness of the results reported

in Figure 3.

9We are grateful to an anonymous reviewer for suggesting this analysis.
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4. Results

The numerical solution technique is applied to study the effects of trans-

action costs and uncertainty over investment time-horizons of up to 10 years.

We consider the four types of investors introduced in Definition 2.1.

Our numerical results provide three main insights of practical relevance:

• Not knowing the true stock price dynamics leads to large losses in

utility for less risk-averse investors, strongly biased investors, and naive

investors (in decreasing order).

• Learning generally reduces the loss in utility caused by uncertainty

about the true drift.

• Lower trading volumes due to transaction costs explain about half of

the total loss in utility. The other half is caused by transaction cost

payments.

When comparing the choices of different investors that are in the same

situation or of identical investors who are in different situations, one has

to take into account two aspects. First, quantifying an investor’s gain or

loss should be done using monetary units. This allows expressing differences

in utility as the value of contract that, for instance, provides the investor

with information about the drift or frees an investor from having to pay

transaction costs. These values are defined as the amount of wealth that an

investor has to pay (needs to receive) at initial time in order to be indifferent

between two situations. Second, naive investors and investors with biases

make trading decisions that are not optimal. Such an investor will obtain
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a lower average realized utility than expected ex ante. We therefore take

realized rather than perceived utility when measuring losses relative to an

informed investor.

Section 4.1 considers the value of knowing the realization of the drift

and the true stock price dynamics (’value of information’) and Section 4.2

analyzes the true (economic) cost of proportional transaction costs.

4.1. Value of information

For each investor type, the average realized utility is given by

R(x) := EµŪµ(x) (12)

where x is the initial money endowment (the initial share is zero). Eµ de-

notes expectation with respect to µ which has the distribution N (µ0, γ0).

The realized utility Ūµ is determined by the realized stock price path, the

investor’s realized trading strategy (L,M), and the utility function U :

Ūµ = E
{
U
(
x(T ) + y(T )S(T )

)
| (L,M)

}
.

The average realized utility cannot be higher than the expected one, i.e.

R(x) ≤ EµVµ(0, S0, x, 0),

where Vµ(0, S0, x, 0) is the value of expected utility for a given µ. For naive

and biased investors, the inequality will, in general, be strict as these investors

make incorrect assumptions about the stock price dynamics. Therefore they

overestimate their expected utility. However, an informed investor’s average

realized utility satisfies

RF(x) = EµV
F
µ (0, S0, x, 0),
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where V F
µ (0, S0, x, 0) is the expected utility which the investor maximizes

under knowledge of the value of µ. For a learning investor, who always uses

µ0 as prior for the drift estimate at the initial time, the average realized

utility is

RL(x) = V L(0, S0, x, 0).

The monetary value of being informed rather than having to learn the

true drift over time from observations is:

IEL(x) = sup{c ≥ 0
∣∣RL(x) ≤ RF(x− c)}. (13)

This is the maximum amount a learning investor can pay to obtain the true

value of µ without being worse off can be interpreted as an information

equivalent (IE). If the realization of the randomly drawn drift could be

purchased then IEL(x) were the highest price a learning investor is willing

to pay to be certain about the value µ. Since the utility function (5) is

CARA, the measure defined in (13) is actually independent of the monetary

endowment x.

As the value functions of these two investors satisfy (9), one finds

IEL =
1

α
exp(−rT ) log

(
HL/EµH

F
µ

)
,

where H is the reduced form value function. An approximation ĤF of the

expected value EµH
F
µ is calculated as follows:

1. Draw independently Mµ values from the distribution N (µ0, γ0).

2. For each random draw µi, calculate the value function HF
µi

by solving

the portfolio optimization problem (8) with (9).
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3. Calculate

ĤF =
1

Mµ

Mµ∑

i

HF
µi
.

Similar to (13), we can calculate the monetary value of being an informed

investor rather than a naive investor or a biased investor. One first needs to

solve the optimization problem to determine trading strategies. Using these

strategies one can determine realized utility in a Monte Carlo simulation.10

To obtain the average realized utility one has to repeat this procedure for

many draws of µ. In addition, these calculations have to be carried out for

different levels of parameters for comparative analysis. The efficient numer-

ical method in Section 3 allows performing these simulations in a matter of

hours.

Figure 4 depicts information equivalents for different levels of risk aver-

sion and different investor types. The lowest values are obtained for a learn-

ing investor. This confirms that empirical estimation of the drift using the

Kalman-Bucy filter (3) is beneficial. The highest values are associated with

aggressive trend-followers and contrarian investors while less aggressive ones

have information equivalents close to that of the naive investor.

Information equivalents are decreasing in the risk aversion α: more risk-

averse investors receive lower benefits from knowing the true drift. For in-

stance, the investors with α = 0.5 are only willing to pay from about 17% to

10We use Mµ = 1, 001 during a simulation. Our results show that our sample ap-

proximates the normal distribution well (Wang 2010, Sect. 4.8.6). We apply an inverse

transformation method with the Beasley-Springer-Moro algorithm (Glasserman 2004, p.

68).
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Figure 4: Information equivalents for different levels of risk aversion, T = 1 year.

25% as much as the investors with α = 0.1 to remove uncertainty about the

actual drift. At first sight this might be surprising as higher risk-aversion

is generally associated with higher willingness to pay in order to avoid risk.

The opposite is true here as higher risk aversion leads to less investment in

the stock, see also Muthuraman and Kumar (2006). Cvitanić et al. (2006)

also find that the certainty equivalents that they examine achieve the highest

values for the lowest risk aversion in different setups.

The sentiment parameter a in (4) has a marked impact on information

equivalents. Figure 5(a) shows the information equivalent is a U-shaped

function of a varying from −2 (strongly trend-following) to 0.5 (strongly

contrarian). The minimum is obtained for a ≈ −0.4. A mild trend-following
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Figure 5: This figure illustrates information equivalents for: (a) biased investors

with different values of a (see (4)): naive investor (a = 0), trend-follower (a < 0)

and contrarian investor (a > 0); and (b) different investment horizons.

investor therefore mimics the optimal filtering. Hence, the trading strategy of

an investor whose estimate of the drift is derived from cautious interpolation

of an observed short-term trend, is close to that of a learning investor.

The effect of the investment time-horizon T on the (annualized) infor-

mation equivalent is studied in Figure 5(b), which is defined as IE · erT/T
since IE is defined at the initial time. First, the naive investor has more to

gain from knowing the true drift than the learning investor, and the annual-

ized benefit is fairly constant across different T . In contrast, the decreasing

information equivalent of a learning investor reflects the gain in knowledge

from filtering which reduces conditional variance when T increases. It also

provides a hedge against unfavorable realizations of the drift (Brennan 1998).

The information equivalent is positive even at a 10-year investment hori-
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zon. The lesson is that the true drift is difficult to estimate and one cannot

eliminate uncertainty about the drift. Thus, learning via filtering has benefits

even in the long run. A naive investor with a 1-year (10-year) horizon could

reduce the loss by 33% (80%) when adopting a filtering strategy. Previous

studies using filtering without transaction costs also find substantial utility

gains from 2.93% to 215.73%, see Cvitanić et al. (2006).11

4.2. Transaction costs

Trading strategies are sensitive to transaction costs. Figure 6(a) shows

the utility of a learning investor under different scenarios. The top line is the

benchmark case of no transaction costs. The bottom line is the utility with

transaction costs, which is decreasing as the proportional transaction cost

increases. This coincides with previous studies (see, e.g. Gennotte and Jung

1994). In the range 0.5% to 2% the loss in utility is approximately linear.

This loss is caused by two effects of transaction costs: (a) a direct ef-

fect due to the additional expense incurred and (b) an indirect effect due

to less trading. We strip out the first one by reimbursing all transaction

costs (with interest) at the final period. The investor optimizes his strategy

without knowing about this reimbursement. The result is the middle line

in Figure 6(a) which is about halfway (except those for the small λ < 0.01)

between the zero-cost and positive-cost without reimbursement case.

The difference between the reimbursement and the zero-cost case is the

deadweight loss from the transaction costs. It measures the true economic

11A quantitative comparison between the results of Cvitanić et al. (2006) and ours is

inappropriate since the models and values of parameters are substantially different.
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Figure 6: This figure depicts (a) maximum expected utility of a learning investor

under three situations of transaction costs; and (b) transaction-cost equivalents of

naive / learning / informed investors within different investment horizons.

cost of this friction. We find that the total effect of the transaction cost

is about twice (except λ < 0.01) as large as the loss in utility due to less

trading resulting from transaction costs. The implications are that freely

re-balancing portfolio significantly contributes to expected utilities, and less

re-balancing brings about half of the total loss.

To capture the value from investing in a market without transaction costs,

we denote the gain to an investor of type · as

TE·(λ) = sup{c ≥ 0
∣∣EµV ·µ,λ(0, S0, x, 0) ≤ EµV

·
µ,λ=0(0, S0, x− c, 0)}, (14)

where V ·µ,λ(0, S0, x, 0) is the value of expected utility. In contrast to IE in

Section 4.1, we compare here one investor (rather than two) in two situa-

tions with or without costs irrespective of his opinion about the drift. The

transaction-cost equivalent TE·(λ) is the maximum price an investor is will-
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ing to pay to avoid transaction costs. The CARA utility function (5) implies

that the measure is independent of the monetary endowment x. As V satisfies

(9), one has

TE·(λ) =
1

α
exp(−rT ) log

(
EµH

·
µ,λ/EµH

·
µ,λ=0

)
.

We express TE·(λ) in a consistent way with µ as one of the subscripts in H

without specifying an investor. In fact, only for an informed investor, does

the value function depend on µ ∼ N (µ0, γ0). For all other types, one can

drop Eµ and the subscript µ.

Figure 6(b) shows the welfare effect of transaction costs on three investor

types. The annualized transaction-cost equivalents are approximately con-

stant for the naive investor but slowly decreasing for the informed investor

and rapidly decreasing for the learning investor. For time-horizons of up to

5 years, the learning investor is the one most strongly affected because the

estimate of the drift is inaccurate and can vary drastically in the short run

(e.g. Lundtofte 2008).12 This increases the learning investor’s incentive to

trade and leads to higher transaction costs.

At longer time horizons, the naive investor has the most to gain from the

absence of transaction costs as the misspecification of the drift leads to excess

trading compared to the investors who either know or have learned enough

about the actual drift. For a learning investor, trading is slightly contrarian,

which leads to the lowest transaction-cost equivalent. For instance, a sudden

sharp drop (rise) in the stock price leads to a stock purchase (sale) from the

12At short time-horizons, the conditional variance of the filter, which decreases with

time, is relatively large compared to those in the long run.
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informed investor. A learning investor at the same time lowers (increases) the

estimate of the drift and therefore tends to make a smaller trade, incurring

lower transaction costs. As a result, the learning investor reduces the loss in

utility by about 50% over a 10-year time-horizon compared with the naive

investor. The benefit of learning mirrors the substantial utility gains found

by Cvitanić et al. (2006) without considering transaction costs.

5. Conclusion

The efficient algorithm introduced in the paper allows us to solve portfo-

lio optimization problems with state-dependent drift and long time-horizons

in the presence of proportional transaction costs. We apply the method to

explore scenarios in which investors (a) use past stock prices to learn about

the true drift, (b) react to stock price movements as trend-followers or con-

trarians, or (c) are naive and ignore information revealed over time.

The numerical results show that forecasting behavior has a strong impact

on trading. We quantify the value of information and the welfare effect of

transaction costs. Information is most valuable to the least risk-averse in-

vestor, and transaction costs are most detrimental to naive investors. The

total loss in utility from transaction costs is generally about twice as large

as the direct cost incurred. Learning reduces the utility losses due to the un-

certain drift and transaction costs, especially for medium and long horizons.

Appendix A Test of Convergence Order

In Figure 3 with the values of parameters of the base case, we obtained

that the estimate of b in the relationship |V − V̂ | = a τ−b is 0.4. This means
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Panel A: comparative analysis of the convergence order b

λ = 0.0 λ = 0.005 λ = 0.01 λ = 0.015 λ = 0.02

Order 0.4571 0.4260 0.4083 0.5244 0.5920

r = 0.03 r = 0.06 r = 0.09 r = 0.12 r = 0.15

Order 0.3946 0.4042 0.4604 0.5810 0.6020

σ = 0.25 σ = 0.3 σ = 0.35 σ = 0.4 σ = 0.45

Order 0.4010 0.4158 0.4337 0.4833 0.5477

γ0 = 0.04 γ0 = 0.09 γ0 = 0.16 γ0 = 0.25 γ0 = 0.36

Order 0.4034 0.4419 0.4591 0.4622 0.4540

µ0 = 0.15 µ0 = 0.2 µ0 = 0.25 µ0 = 0.3 µ0 = 0.35

Order 0.3993 0.3998 0.4293 0.4564 0.4540

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Order 0.4025 0.4014 0.4012 0.4020 0.4016

Panel B: the convergence order b for random parameter sets

Set 1 Set 2 Set 3 Set 4 Set 5

Order 0.4216 0.5352 0.4546 0.4463 0.5708

Table 2: This table displays the convergence order b with non-equidistant dis-

cretization and the state-dependent drift µL(t, S(t)). Panel A shows the compar-

ative analysis of b to six parameters. Other parameters are the same as the base

case in Section 3. Panel B lists the convergence order for five random sets of values

of parameters in Table 3, assuming each parameter satisfies a continuous uniform

distribution within the region bounded by the 2nd and 6th column of Panel A.
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λ r σ γ0 µ0 α

Set 1: 0.0055 0.1390 0.3711 0.2319 0.1662 0.2746

Set 2: 0.0146 0.0720 0.3369 0.3199 0.2893 0.4320

Set 3: 0.00011 0.0109 0.3477 0.0513 0.1846 0.3493

Set 4: 0.0067 0.0517 0.2635 0.1226 0.2221 0.2350

Set 5: 0.0175 0.0392 0.2873 0.1833 0.3351 0.1615

Table 3: The random sets of values of parameters.

that for the state-dependent drift, the computing time of our algorithm is

increased by a factor of 2(1/0.4) ≈ 5.7 in order to halve the numerical error.

Here we test the convergence order b for different sets of values of parameters.

In general, the test results show that the convergence order b is at least

around 0.4. In fact, it is faster for the most values of parameters tested.

The speed of convergence is mainly affected by volatile no-trade regions of

stock holdings due to our local search along with other improvements. Since

we appropriately enlarge the no-trade regions of the successive nodes as the

range of local search, we can locate the no-trade region faster if these regions

do not change dramatically between adjacent nodes.

In contrast to a global search, here the size of no-trade region does not

impede the search speed. Indeed wider no-trade regions usually indicate that

they are less volatile which in turn decreases running time of our algorithm.

Panel A of Table 2 indeed shows that the convergence order b rises gradually

with a large transaction cost rate λ. Similarly, the convergence order b is

highest for random Set 2 and Set 5 in Panel B where λ is large. Furthermore,

our algorithm also benefits from the no-trade regions with small sizes. For
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instance, a large risk-free r (a less attractive stock) or a large volatility σ

(a riskier stock) implies substantially narrow and low no-trade region, which

reduces computation time. In addition, the order slightly fluctuates around

0.40 to 0.46 for another three parameters since merely varying one of these

values does not significantly change the volatility of the no-trade region.
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