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Abstract

The recent fast development of machine learning provides new tools to

solve challenges in many areas. In finance, average options are popular fi-

nancial products among corporations, institutional investors, and individual

investors for risk management and investment because average options have

the advantages of cheap prices and their payoffs are not very sensitive to

the changes of the underlying asset prices at the maturity date, avoiding the

manipulation of asset prices and option prices. The challenge is that pric-

ing arithmetic average options requires traditional numerical methods with

the drawbacks of expensive repetitive computations and non-realistic model

assumptions. This paper proposes a machine-learning method to price arith-
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metic and geometric average options accurately and in particular quickly.

The method is model-free and it is verified by empirical applications as well

as numerical experiments.

Keywords: Machine learning; Finance applications; Asian options;

Model-free asset pricing; Financial technology.

1. Introduction

The accelerating development of computer technology and machine learn-

ing attracts increasing research interests in the innovative solution to tradi-

tional challenges in social sciences. In the areas of finance and risk man-

agement, pricing arithmetic average options effectively is a challenge in the

industry. In this study, we show that the powerful deep machine learning

provides a new effective method to solve this challenge in theory and appli-

cations.

Options are one category of financial instruments that are largely traded

in industry. They are also referred to as one type of financial derivatives

since options are based on other underlying financial securities like corporate

stocks. The holders of an option pay a premium, i.e., the option price, to

obtain the right rather than the liability to trade the corresponding under-

lying assets at an agreed price called the strike price at or within a specific

maturity date. The difference between the strike price and a quantity that

depends on the market prices of the underlying asset forms the payoff of the

option. Simple European options have the payoffs that depend on the current

market price of the underlying asset at the maturity date. On the contrary,

average options, which are also called Asian options, have the payoffs that
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depend on the average price of the underlying asset within the maturity date.

Among diverse options, average options are widely used by companies,

institutional investors, and individual investors to hedge against risks and

to construct investment portfolios due to two advantages of average options,

see, e.g., Fusai and Roncoroni (2007) and Kolb and Overdahl (2010). First,

average options avoid manipulating the underlying asset prices to affect op-

tion payoffs. The payoff of an average option depends on the average price

of the underlying asset over a given period, where the average price is a ge-

ometric or arithmetic average of the prices of the underlying asset. Thus, in

contrast to European options, the average options’ payoffs are not sensitive

to the change of the underlying asset prices within the maturity date, and

it is therefore not so profitable to manipulate the price of the underlying as-

set. Second, the prices of average options are relatively cheap compared with

other options whose payoffs depend on the market price of the underlying

asset at the maturity date. The reason is that the risk of the average asset

price is relatively lower than the risk of the asset price at the maturity date.

In addition to the two above documented advantages of Asian options,

another reason for their popularity is that there is a large demand for Asian

options in the industry. For instance, indexed annuity contracts that are

issued by insurance companies often carry liabilities that are equivalent to

the issuance of Asian options. Therefore, insurance companies trade Asian

options largely to hedge the embedded option risk. To meet the increasing

market demand, the Chicago Board Options Exchange (CBOE), one of the

world’s largest exchange holding companies, introduced the new product,

Asian FLEX Index Options, in April 2016. Only in the first week, open
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interest for such Asian options soared to more than 680 contracts with a

notional value of more than $6 million.1

There are two types of Asian options: one is geometric and the other

is arithmetic due to the different interpretations of the word “average”. It

is straightforward to price geometric average options following a simple ex-

plicit expression. However, there is still no closed-form solution available

for pricing arithmetic average options because the distribution of the pay-

off of an arithmetic Asian options is unknown, even though they have been

studied for a long time. Usually, arithmetic Asian options are priced by solv-

ing a Partial Differential Equation (PDE) numerically (Vecer, 2001) or by

Monte Carlo simulation. For more details, please refer to Yan (2018), Yang

et al. (2011) among others. The challenge of pricing arithmetic average op-

tions with the traditional numerical methods comes from the drawbacks of

expensive repetitive computations and simplified models with non-realistic

assumptions.

Pricing arithmetic Asian options effectively is a long-standing problem in

finance practice given the fact that arithmetic Asian options are much more

popular than geometric Asian options. Most actual Asian options in both

the exchange markets and over-the-counter (OTC) markets are arithmetic

Asian options, as pointed out by Fusai and Roncoroni (2007) and Kolb and

Overdahl (2010). For example, the popular Asian FLEX Index Options are

arithmetic Asian options in the exchange market. Another type of popular

arithmetic Asian options traded in the market are WTI Average Price Op-

1See the post on CBOE Blogs at https://www.cboe.com/blogs/options-hub/2016/

04/27/first-trades-new-cboe-flex-index-options-asian-style-settlement.
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tions based on oil futures and CMEgroup.com reports that their open interest

is up to 413,681 contracts on 17th January 2020. These options are favored

in thinly traded asset markets like oil markets, where the trading volume

is relatively low but individual transactions are particularly large, because

in these markets the manipulation of asset prices is possible. In OTC mar-

kets, Average Rate Options are wildly traded to hedge against the adverse

movements of foreign exchange rates and many of these options are settled

on the arithmetic average prices (Levy, 1992). Unfortunately, in sharp con-

trast to geometric Asian options, there are no effective closed-form solutions

for pricing arithmetic Asian options and this is a long-standing unresolved

problem.

In this paper, we propose a machine learning method based on deep

learning to price arithmetic and geometric average options. This method is

a model-free approach for asset pricing. We highlight the effectiveness of

the new method by carrying out a comprehensive numerical experiment with

computer-generated data. In addition, we verify the new method through

an empirical test with real data and the results highlight the effectiveness

of the method. Most of the absolute pricing errors are between ±0.0015.

The median of prediction bias is about 0.8% and the 95% bias mean is less

than 2%. The mean square error (MSE) is near zero at 10−6. The value

of R2 and the correlation between the real data and the predicted data are

almost 1. Furthermore, the trained deep learning model is able to compute

10,000 Asian option prices in less than 1 second, which is much faster than

the exact formula method taking 22 seconds for Geometric average options

and the time-consuming simulation method taking 100,000 seconds. In brief,
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both effectiveness and efficiency of the deep learning method are beneficial

to practitioners in the industry who usually have to carry out a large number

of computations and make prompt decisions.

Our study is related to the recent literature about the applications of ma-

chine learning technologies to price financial options. For instance, Halperin

(2017) employs a reinforcement Q-Learning method to learn dynamically the

optimization of risk-adjusted returns of a portfolio that replicates European

options. Ferguson and Green (2018) show that deep learning is capable of

pricing a basket option on a basket of stocks accurately and it is a million

times faster than traditional models. Cao et al. (2018) utilize neural net-

works to examine the volatility surface of the S&P 500 index option, which

responses distinctively in high and low volatility environments. In sharp con-

trast to the literature that considers the pricing of options, for which there

are closed-form solutions in early studies, the novelty of our study is that

we implement a model-free and data-driven deep learning method to price

the popular arithmetic Asian options, for which there has been no closed-

form solution all the time. Our method is verified by numerical experiments

and empirical applications. To the best of our knowledge, there is no pa-

per pricing arithmetic Asian options with model-free pricing method in the

framework of deep learning.

For a complete overview of related literature on the application of ma-

chine learning to option pricing, we summarize the following recent studies

that consider more complicated processes of jumps and stochastic volatili-

ties. Karatas et al. (2019) price vanilla and exotic options by using deep neu-

ral networks under diffusion and jump processes that incorporate stochastic
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volatilities. They test a variety of loss functions and optimization methods

to show that deep neural networks exponentially accelerate option pricing.

Fu and Hirsa (2019) use a machine learning technique to reduce the error of

the quadratic approximation method for pricing American options under the

variance gamma model and show that their method is efficient and accurate

compared to the classic methods of finite difference and simulation. Jacquier

et al. (2019) apply machine learning methods to learn the control variates

in the simulation method of pricing European and Asian options in local

stochastic volatility models.

Although these recent studies demonstrate the capability of machine

learning in solving complicated option pricing models, we focus on the stan-

dard model with a process of geometric Brownian motion without jumps and

stochastic volatilities for three reasons. First, the standard model for the ge-

ometric Asian options has an analytical solution that is a reliable benchmark

to verify the accuracy and speed of our method. Second, our method is

essentially a model-free and data-driven method that can potentially learn

option prices generated by models with a broad range of processes. Third, the

stochastic processes characterizing the underlying stock prices do not affect

our method since our method is independent of the option pricing models.

The model in our study serves the purpose of data generation for verifying

the effectiveness of our model-free method.

Our work also connects to one of the developments of financial technol-

ogy in applying machine learning technologies to financial prediction and

asset pricing. Heaton et al. (2016) apply some deep learning algorithms of

prediction and classification to discover the function relationship between a
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dependent variable and a group of independent variables that cannot be re-

vealed by existing financial economic theory. McGhee (2018) applies neural

networks to a general stochastic volatility process and achieves a high degree

of accuracy and 10,000 times faster than the finite difference method. Liu

et al. (2019) introduce an efficient method of neural networks for calibrating

the parameters of high-dimensional stochastic volatility models by avoiding

the issues caused by local minima. Horvath et al. (2019) employ a neural net-

work to calibrate several volatility models and show that it only takes a few

milliseconds to calibrate the full implied volatility surface. Weigand (2019)

provides a literature review on the application of machine learning to em-

pirical asset pricing with a highlight of the pitfalls in the application. More

generally, Fan et al. (2019) present a survey on common neural network mod-

els and point out the practical and theoretical benefits of deep learning. Our

work complements this strand of literature by comprehensively investigating

the effectiveness of pricing Asian options with deep learning.

Our paper is most closely related to Culkin and Das (2017), who train a

deep learning neural network to calculate standard European option prices,

which can be directly obtained from the Black and Scholes formula. Our

study is different from theirs in several aspects. First, we use deep learning

to estimate the prices of both geometric and arithmetic Asian options, where

the latter does not have an explicit formula. We successfully provide a new

method with deep learning to solve the challenging problem. Second, we use

the Adam optimization algorithm to update the model parameters in our

neural network, which reaches more accurate results than other updating

methods. Third, we perform a series of comprehensive random experiments
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to investigate the effects of the sample size on the accuracy. For each sample,

we randomly carry out 100 times of deep learning using 10 different training

sets and testing sets and 10 different initial states. These random experiments

support the robustness of our results. Using these random experiments,

we compare our method with the simulation method, the explicit formula,

and the real data, which all verify its effectiveness. Last, we also examine

computational efficiency and we reveal that the new method is not only

more accurate but also much faster than the traditional methods including

the analytic formula method for the geometric Asian options.

Our paper and Fang and George (2017) share some common interests in

the application of machine learning to the pricing of Asian options, but our

work differs from theirs in the aspects of methods and effectiveness. First,

they integrate the classic Levy (1992) approximation formula for arithmetic

Asian options with a single-layer neural network that acts as a filter to map

real volatilities from data to implied volatilities for the Levy approximation.

Their method is not a model-free method and it relies on the assumptions

of Levy (1992) model. By contrast, our method is independent of any op-

tion pricing models and it directly applies a multi-layer deep learning neural

network to discover a way of estimating option prices. Second, using WTI

option data, the accuracy achieved by their method is not as ideal as their

simulation experiments while our method achieves high accuracy in WTI

data. Specifically, the order of magnitude of their MSE ranges from 10−3 to

10−1 while ours is from 10−6 to 10−7. Their R2-value is about 0.72 to 0.9942

while ours is about 0.99987. Due to model dependence, the performance of

their method deteriorates in real data where there are large differences be-
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tween real volatilities and implied volatilities. On the contrary, our method

is not limited by any model assumptions and therefore it can learn real data

effectively through deep learning.

The structure of the paper is as follows. Section 2 introduces the pric-

ing problem of Asian options and three methods of option pricing are dis-

cussed: the analytical solution, the simulation method, and the deep learning

method. Section 3 provides numerical experiments and empirical analysis to

verify the new method based on deep learning. Section 4 summarizes the

main findings.

2. The model

The pricing of financial derivatives and the construction of hedging strate-

gies play an important role in financial economics. Among all derivatives,

Asian options are popular and their claims depend on the average prices of

underlying assets for a given period. It is difficult for speculators to change

the payoff of Asian options by manipulating its underlying asset price near

the maturity date and thus Asian options avoid some shortcomings of Eu-

ropean options. There are two types of Asian options: arithmetic Asian

options and geometric ones. This section firstly introduces the two types

of options and presents their pricing methods. After that, a deep machine

learning method is provided to price the Asian options.

2.1. Basic model settings

There are two types of assets listed in the financial market. One is the

risk-free asset called a bond, whose price B(t) at time t satisfies the following
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ordinary differential equation:

B(t) = rB(t)dt, B(0) = 1, 0 ≤ t ≤ T,

where the constant r denotes the risk-free interest rate and the constant

T > 0 is the maturity date. The other asset is a risky one called stock and

its price S(t) satisfies the stochastic differential equation below:

dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = S0, 0 ≤ t ≤ T,

where W (t) is a one-dimensional standard Brownian motion that captures

the randomness and risk in the market. The constant µ is the expected

return rate of the stock and σ is its volatility that characterizes the standard

deviation of the stock return.

2.2. The geometric Asian option

At the maturity date T , the payoff V (T ) of the geometric Asian option

is determined by the geometric average of stock prices in the time interval

[0, T ]. The payoff is

V (T ) =

[
exp

{
1

T

∫ T

0

lnS(u)du

}
−K

]+
,

where K > 0 is the strike price of the option that is stated on the option

contract. It is well known that the fair price V (t) of the option is determined

by the risk-neutral expectation of the terminal payoff V (T ) discounted by

the risk-free interest rate r. That is

V (t) = e−r(T−t)EQ(V (T )|Ft), V (0) = V0, 0 ≤ t ≤ T,

where EQ represents the expectation under the risk-neutral probability Q.
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According to Yan (2018) among others, the price V (t) of the geometric

Asian option can be solved and represented by the following explicit expres-

sions:

V (t) = e−r(T−t)[exp(Γ)Φ(M)−KΦ(N)], 0 ≤ t ≤ T,

where Φ(·) represents the standard normal distribution function and

Γ ≡[

∫ t

0

lnS(u)du+ (T − t) lnS(t)]/T + (T − t)2(2r − σ2)/(4T )

+ (T − t)3σ2/(6T )2,

Θ ≡ [4

∫ t

0

lnS(u)du+ 4(T − t) lnS(t)− 4T lnK + (T − t)2(2r − σ2)]/(4σ),

M ≡ Θ + σ(T − t)3/(3T )

(T − t) 3
2/
√

3
, N ≡ Θ

(T − t) 3
2/
√

3
.

In particular, the price of the geometric Asian option at the initial time t = 0

is

V0 = S0Φ(z + σ
√
T/
√

3) exp{−(6rT + σ2T )/12} −KΦ(z) exp{−rT},

where

z = [−4
√

3 lnK + 4
√

3 lnS0 +
√

3T (2r − σ2T )]/(4
√
Tσ).

The above expression shows that the value process of the geometric Asian

option is independent of the expected return rate µ of the underlying asset

(stock).

2.3. The arithmetic Asian option

The payoff V (T ) of an arithmetic Asian option at the terminal time T is

V (T ) =

[
1

T

∫ T

0

S(t)dt−K
]+

,
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where K > 0 is the strike price of the option. It is very difficult to price

the arithmetic Asian option, in sharp contrast to the geometric Asian op-

tion. It is time-consuming to approximate the option price by the traditional

methods of numerically solving partial differential equations or Monte Carlo

numerical simulation. Yang et al. (2011) provide explicit expressions for pric-

ing the arithmetic Asian option but it still requires a series of time-consuming

computations to obtain a specific price. These prior methods have to perform

expensive and repetitive computations when some parameters are changed,

which are impractical for real-time investment.

To approximate the arithmetic Asian option price by the traditional

Monte Carlo simulation method, one needs to simulate a large number of

paths of the underlying stock asset prices and option prices by a high-

performance computer. Specifically, the simulation method starts from sim-

ulating a number of paths of the stock price and then it computes the arith-

metic average of the asset prices on each path. After that, one computes the

sample payoff of the option for each path. Finally, after discounting all sam-

ple payoffs to the initial time by the risk-free interest rate r and calculating

their mean, we obtain an approximation of the fair price of the option.

2.4. Deep learning framework

For pricing Asian options, we apply a deep learning algorithm of Back

Propagation (BP) neural network that comprises the forward propagation

of a working signal and the back propagation of an error signal. The BP

algorithm is implemented on the TensorFlow framework (Abadi et al., 2016),

which is developed by Google for deep learning. The TensorFlow framework

has the advantages of flexibility, efficiency, scalability, and portability.
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Figure 1. Flowchart of BP neural network deep learning process.

Figure 1 draws the flowchart of the BP neural network deep learning process. It comprises

the process of data transmission and the process of parameter updating. The update pro-

cess applies the Adam stochastic gradient descent optimization algorithm. The flowchart

extends the general flowchart in Abadi et al. (2016) by specifying variables, deep learning,

and the optimization method.

Deep learning refers to machine learning models that comprise multiple

processing layers to analyze data. The first layer is the input layer and the

last layer is the output layer. The layers between the input layer and the

output layer are hidden layers that affect the complexity and effectiveness of

a deep learning algorithm. In our implement of deep learning, we choose four

hidden layers and each of them contains 100 neurons. These neurons receive

inputs from previous neurons and then they process data with activation

functions. The activation functions that we use on our four hidden layers are

as Culkin and Das (2017): Leaky ReLU (Leaky Rectified Linear Unit, Maas

and Ng (2013)), ELU (Exponential Linear Unit, Clevert et al. (2016)), ReLU

(Rectified Linear Unit, Nair and Hinton (2010)), and ELU again, respectively.

Figure 1 portrays the deep learning model of the BP neural network,
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which comprises the process of data transmission and the process of param-

eter update. During the process of parameter updating, the model compares

the predicted values and the output value of the network in order to com-

pute the predicting error between the predicted values and the output value,

which determines the value of a previously given loss function. Meanwhile,

the model calculates the gradient of the loss function and propagates relevant

parameters according to a chain rule. Our model uses the Adam (Adaptive

moment estimation, Kingma and Ba (2014)) stochastic gradient descent op-

timization algorithm to update the model parameters.

Before the learning process starts, we need to set some hyper-parameters

for the BP neural network. Following a typical setting in practice and the

literature, e.g., Culkin and Das (2017), we set a dropout rate of 25% to avoid

over-fitting data and the batch size of data for each training is 64. With

these hyper-parameters, we let the model run training 2,500 times. For the

Adam algorithm, we set the learning rate to 0.1 and keep the default values

of the TensorFlow framework for other Adam parameters. Finally, we let the

deep learning model output the results with the minimal mean square error

(MSE) of prediction.

3. The effectiveness of pricing Asian options with deep learning

In this section, we demonstrate the effectiveness of the new option pricing

method with deep learning through two different kinds of data. The first is

the artificial data produced by the computer to train and to test the deep

learning model. We let the computer generate three sets of option price

data by three traditional methods: the explicit formula method of geometric
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Asian options and the simulation method for both geometric Asian options

and arithmetic Asian options. To obtain three sets of price data with a large

size, we vary the parameter values of these Asian options within some ranges.

After that, we divide the artificial data into two parts and we use one part

of these data to train our BP neural network model and the other to test

the prediction accuracy of the model. To check our method, we collect real

Asian option data from a market. We use real data to further verify the

effectiveness of the deep learning method for option pricing.

3.1. The effectiveness of deep learning by computer-generated data

In this section, we explain the effectiveness of deep learning by a simu-

lation computation and it is further verified by an empirical analysis in the

next section.

3.1.1. Data generation process

To generate a large size of data set, we first need to randomly draw option

parameters from some chosen ranges of values. Table 1 lists the ranges of

parameter values that we choose, which are similar to Culkin and Das (2017),

who consider European options. In addition, we follow the convention of 250

trading days in a year. The annualized maturity is within the range of [0.004,

3] with a time interval being 1/250. It is also assumed that the strike prices

of the Asian options are between 0.7 and 1.3 times the initial price of the

underlying asset, which are taken in practice by most traders in the market.

After obtaining a random draw of the option parameter values from Ta-

ble 1, we use three traditional pricing methods to generate three sets of

artificial Asian option data, with which we examine the effectiveness of the
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Table 1. Parameters and value ranges

Parameter Range

Stock price (S) $10 - $500

Strike price (K) $7 - $650

Maturity (T) 1 day to 3 years

Risk free rate (r) 1% - 3%

Volatility (σ) 5% - 90%

Call price (C) $0 - $328

Notes. Table 1 lists the ranges of option parameters that we use to generate option data

for numerical comparison and analysis. We take a large number of random draws within

these ranges in order to generate a large size of sample data.

new method based on deep learning. As shown in the flowchart Figure 2,

the three traditional methods are the exact formula method for geometric

Asian options, the geometric average method for geometric Asian options,

and the arithmetic average method for arithmetic Asian options. For the

last two methods, we use Monte Carlo simulation to produce the stock price

path 5,000 times and we calculate the option payoff for each stock path. In

total, we stimulate 5,000 payoffs. After discounting the payoffs to the initial

time and calculating their mean, we generate one option price. In this way,

we repeat the random draw, exactly analytic computation, and stochastic

simulation a number of times to obtain three large sets of sample data.

Before feeding a set of option price data into a deep learning model, we

standardize these data. The option pricing theory implies that the option

price V is linearly correlated with the stock price S and the option strike
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Figure 2. Flowchart of data generation processes.

Figure 2 draws the flowchart of data generation processes. We use three traditional meth-

ods: (1) the exact formula method for geometric Asian options, (2) the geometric average

method for geometric Asian options, and (3) the arithmetic average method for arithmetic

Asian options.

price K, see Hutchinson et al. (1994). Hence, one can standardize the data

by dividing the option prices and the stock prices by the strike price K as

follows:

V (S0, K)/K = V (S0/K, 1).

After that, one can input the standardized data along with the five parameter

values S0, K, T , r, σ into a deep learning model.

For the three sets of computer-generated data, we divided each set of

data into a series of sample groups with six different sizes: 500, 1,000, 5,000,

10,000, 20,000 and 50,000. For each group of data, we randomly allocate data

to a training set and a test set according to the ratio of 4:1. For example, the

group of data with 500 option prices is randomly allocated into 400 training

prices and 100 test prices. Then, we use these sample data to examine

the effectiveness of the pricing method with deep learning. To prevent the
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contingency of the experimental results, we randomly generate the sample

groups and allocate the sample group randomly into a training set and a

test set. The process is repeated 10 times. For each group of data with an

allocation of the training set and the test set, we use the data to train the

deep learning model 10 times with 10 random initial states. In total, each

group of sample is used to train the deep learning model 100 times under

different allocations and initial states.

3.1.2. The accuracy analysis of numerical results

As described before, we have three sets of computer-generated data of

Asian option prices using three traditional methods: the explicit and exact

formula for geometric Asian options, the simulation method for geometric

Asian options, and the simulation method for arithmetic Asian options. For

each set of data, we divide them into six groups with the sizes of 500, 1,000,

5,000, 10,000, 20,000 and 50,000. For each group of data, we carry out 100

times of deep learning using 10 different training sets and testing sets and

10 different initial states. Each deep learning provides the outputs of 31,001

parameter values, of which 30,600 are weights and 401 are bias parameters.

After 100 runs of deep learning, we report five measures for the effective-

ness of deep learning: the bias median, the 95% bias mean, i.e. the mean of

the predicted errors which are less than the 95th percentile, the mean square

error (MSE), the correlation coefficient ρ between the original data and the

predicted data, and the R2 value for the training set and the test set of each

data group, as shown in Table 2 to Table 4. The bias represents the relative

prediction error. That is, the program firstly computes the absolute value of

the difference between a predicted option price and the option price from the
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original data and then it divides the absolute difference by the output price.

Table 2. Effectiveness of deep learning using data generated by the

exact formula of geometric Asian option price.

Sample Size 500 1,000 5,000 10,000 20,000 50,000

Training Set

Bias Median 0.01100 0.01219 0.01245 0.01283 0.01268 0.01290

95% Bias Mean 0.02335 0.02667 0.02603 0.02663 0.02623 0.02665

MSE 6.17E-06 7.49E-06 8.7E-06 8.92E-06 8.72E-06 9.02E-06

ρ 0.99983 0.99870 0.99892 0.99836 0.99887 0.99955

R2 0.99960 0.99952 0.99943 0.99942 0.99943 0.99941

Testing Set

Bias Median 0.01348 0.01361 0.01265 0.01283 0.01283 0.01284

95% Bias Mean 0.02951 0.03205 0.02753 0.02683 0.02684 0.02668

MSE 1.19E-05 1.05E-05 8.96E-06 9.01E-06 8.88E-06 8.99E-06

ρ 0.99980 0.99793 0.99878 0.99840 0.99878 0.99947

R2 0.99922 0.99927 0.99942 0.99942 0.99942 0.99941

Notes. Table 2 reports five measures for the effectiveness of pricing geometric Asian options

by the deep learning method under six groups of sample data that are generated by the

exact formula of geometric Asian option price.

Table 2 reports five measures for the effectiveness of pricing geometric

Asian options by the deep learning method under six groups of sample data

that are generated by the exact formula of geometric Asian option prices.

We find that these measures are robust across the six groups of data for both

the training set and the testing set. Take the training set for example. The
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Table 3. Effectiveness of deep learning using data generated by the

simulation of geometric Asian option price.

Sample Size 500 1,000 5,000 10,000 20,000 50,000

Training Set

Bias Median 0.02536 0.02546 0.02587 0.02581 0.02623 0.02602

95% Bias Mean 0.05383 0.05478 0.05124 0.05113 0.05163 0.05298

MSE 7.62E-05 4.21E-05 3.88E-05 4.56E-05 4.13E-05 3.82E-05

ρ 0.99406 0.99672 0.99723 0.99596 0.99696 0.99811

R2 0.99514 0.99727 0.99748 0.99705 0.99730 0.99751

Testing Set

Bias Median 0.02910 0.02765 0.02645 0.02581 0.02635 0.02612

95% Bias Mean 0.09776 0.05866 0.05361 0.05222 0.05173 0.05372

MSE 3.75E-05 3.23E-05 3.05E-05 3.67E-05 5.15E-05 4.07E-05

ρ 0.99460 0.99656 0.99750 0.99663 0.99653 0.99803

R2 0.99761 0.99797 0.99801 0.99765 0.99662 0.99734

Notes. Table 3 reports five measures for the effectiveness of pricing geometric Asian options

by the deep learning method under six groups of sample data that are generated by the

simulation of geometric Asian option price.

medians of bias indicate that the relative errors of the predicted option prices

in more than half of the training sets are within 1.4%. The 95% bias means

are about 2.66%. The MSEs in the training set are near zero at 10−6. The

correlations ρ between the predicted data and the original data are almost 1,

so are the values of R2. In the testing set, all of these measures are similar

to those in the training set, which explains that there are no over-fitting
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Table 4. Effectiveness of deep learning using data generated by the

simulation of arithmetic Asian option price.

Sample Size 500 1,000 5,000 10,000 20,000 50,000

Training Set

Bias Median 0.02418 0.02546 0.02617 0.02594 0.02639 0.02578

95% Bias Mean 0.04557 0.04776 0.04945 0.04797 0.04971 0.04799

MSE 3.51E-05 4.26E-05 4.63E-05 4.81E-05 5.67E-05 5.06E-05

ρ 0.99758 0.99773 0.99636 0.99584 0.99570 0.99540

R2 0.99828 0.99788 0.99766 0.99754 0.99713 0.99740

Testing Set

Bias Median 0.02798 0.02724 0.02669 0.02610 0.02642 0.02584

95% Bias Mean 0.05648 0.05052 0.05146 0.04858 0.05144 0.04789

MSE 5.26E-05 4.70E-05 6.80E-05 5.87E-05 4.84E-05 5.19E-05

ρ 0.99402 0.99732 0.99559 0.99518 0.99561 0.99570

R2 0.99742 0.99752 0.99645 0.99702 0.99759 0.99732

Notes. Table 4 reports five measures for the effectiveness of pricing arithmetic Asian

options by the deep learning method under six groups of sample data that are generated

by the simulation of arithmetic Asian option price.

problems in our model.

Similarly, Table 3 and Table 4 show the measures for the effectiveness of

pricing geometric and arithmetic Asian options by the deep learning method

under six groups of sample data. In contrast to Table 2, the two sets of data

for Table 3 and Table 4 are generated by the simulation of geometric and

arithmetic Asian option prices respectively. Over the two sets of data, the
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effectiveness of deep learning is robust across the six groups of data for both

the training set and the testing set. The medians of bias indicate that the

relative errors of the predicted option prices in more than half of the data

are not above 3%. Almost all of the 95% bias means are less than 5.5%. The

MSEs are near zero at 10−5. The values of R2 and the correlation ρs between

the original data and the predicted data are almost 1.

Compared with Table 2, the medians of bias and the 95% bias means in

Table 3 and Table 4 are about twice the corresponding values in Table 2.

These differences are expected since the data to be learned for Table 2 are

obtained from the analytical solution while the data that are inputted to the

deep learning method for Table 3 and Table 4 are generated by simulation.

Random numbers for simulation unavoidably introduce more noises to the

simulation-generated data than the data obtained from the analytical solu-

tion. Although the performance implied by Table 3 and Table 4 is not as

high as that indicated by Table 2, it is reasonable and acceptable. Indeed,

the MSEs are kept at the level near zero and both R2-value and ρ-value are

close to 1 in Table 3 and Table 4 as well. In addition, the differences in these

tables show that our method is a data-driven method and the data quality

affects its performance. When we use actual option data to train the deep

learning model in Section 3.2, we achieve lower biases than those based on

the data generated by the analytical formula.

In short, from the results in Table 2 to Table 4 we conclude that our

method is robust in both training sets and testing sets across different sizes

of sample data generated by three kinds of methods. These robust results

demonstrate the effectiveness of the deep learning method for pricing Asian
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Figure 3. Predicted prices vs computer generated prices of Asian op-

tions.

Figure 3 plots the predicted prices using deep learning vs the computer generated prices

using (a) the exact formula of geometric Asian option; (b) the simulation of geometric

Asian option; (c) the simulation of arithmetic Asian option.

options even if the size of the training data is small. We emphasize that the

robust results across different sizes of sample data are particularly useful in

practice since the size of real data for one particular option is usually limited.
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Figure 4. Absolute prediction errors of Asian option prices.

Figure 4 plots the densities of absolute prediction errors between the predicted prices using

deep learning and the computer generated prices using (a) the exact formula of geometric

Asian option; (b) the simulation of geometric Asian option; (c) the simulation of arithmetic

Asian option.
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Figure 5. Relative prediction errors of Asian option prices.

Figure 5 plots the relative prediction errors between the predicted prices using deep learn-

ing and the computer generated prices using (a) the exact formula of geometric Asian

option; (b) the simulation of geometric Asian option; (c) the simulation of arithmetic

Asian option.

After we show the robust results of deep learning across different sizes of

data, we illustrate the effectiveness of deep learning intuitively in Figure 3 to

Figure 5. Similar to Culkin and Das (2017) who examine standard options,

we plot the prediction prices, which are standardized by the corresponding

strike prices, and prediction errors for Asian options under three different

situations. In each of these figures, we use three traditional methods to

generate three sets of data. The sub-figures with the label “(a)” use the

data sets generated by the exact formula for geometric Asian options, while

the sub-figures “(b)” and “(c)” take the data sets from the simulation of

geometric and arithmetic Asian options respectively. We use the groups of

data with the size of 50,000 across the three sets of data to produce the

figures.

Figure 3 displays the predicted prices using deep learning vs the price

data generated by the computer according to three traditional methods. It
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shows that for both training set and testing set, almost all of the price pairs

are close to a straight line at the 45 degrees with a very narrow width, which

means that the predicted prices are close to the option price data that we

input into the deep learning model.

Figure 4 plots the distributions of the absolute prediction errors to in-

vestigate the errors between the standardized predicted option prices using

deep learning and the price data generated by the three traditional methods.

We find that most of the pricing errors for both training set and testing set

under three sets of data are within ±0.02.

To highlight how the predicted relative errors change with the ratios of the

option prices to the strike price, Figure 5 depicts the standardized relative

pricing errors of the deep learning method using the testing sets of data

generated by the three methods mentioned above. It states that for most of

the cases in the three sub-figures, the relative pricing errors of deep learning

are quite low, except for the case where the ratios of the option prices to the

strike prices near zero. If the ratio is close to zero, we get a large relative

error.

3.1.3. The efficiency analysis of numerical experiments

The above analysis discusses the accuracy of the deep learning method of

pricing Asian options. Finally, we examine the efficiency of the deep learning

method. Table 5 compares the time of computing 1,000 or 10,000 prices of

Asian options by four methods: the deep learning method represented by

D.L., the exact formula method of geometric Asian options, the simulation

method of geometric Asian options, and the simulation method of arithmetic

Asian options.
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Table 5. The comparisons of computation time

No. of Prices
Geometric Geometric Arithmetic

D.L. Formula D.L. Sim. D.L. Sim.

Panel A: Computation Time Using a Laptop

1,000 0.54s 2.43s 0.50s > 104s 0.48s > 104s

10,000 0.76s 22.16s 0.72s > 105s 0.60s > 105s

Panel B: Computation Time Using a Workstation

1,000 0.13s 0.27s 0.13s ≈ 104s 0.15s ≈ 104 s

10,000 0.22s 2.70s 0.22s ≈ 105s 0.22s ≈ 105 s

Notes. Table 5 compares the time of computing 1,000 or 10,000 prices of Asian options by

four methods: the deep learning method represented by D.L., the exact formula method

of geometric Asian options, the simulation method of geometric Asian options, and the

simulation method of arithmetic Asian options. Panel A and B list computational time

using a laptop and a workstation respectively. “> 10n” (“≈ 10n”) represents that the

computation time is greater than (within) the order of magnitude 10n.

Noting that the deep learning method can be applied by individual in-

vestors or institutional investors, we report computational time using an

ordinary laptop in Panel A and a high-performance workstation in Panel B.

Besides, all of the other results in this paper are obtained by employing the

workstation. The laptop hardware specifications include a CPU of IntelR©

CoreTM i5-5200U Processor @ 2.20 GHz, a GPU of NIVIDA GeForce 840M,

a RAM of 4GB, and an HDD of 500GB. The workstation hardware specifi-

cations are two CPUs of IntelR© XeonR© E5-2699 v4 @ 2.20 GHz, a GPU of

NIVIDA Quadro M6000, a RAM of 256G, and four SSDs with 10TB in total.
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Table 5 states that the time spent by the trained deep learning model

in computing 10,000 geometric or arithmetic Asian option prices is almost

the same and is less than 1 second even with an ordinary laptop. The deep

learning method is even much faster than the exact formula method, which

takes 2 to 22 seconds by using a common laptop, let alone the time-consuming

simulation method, which spends 10,000 seconds to 100,000 seconds. We

emphasize that the computation speed is key for practitioners in the industry

to succeed in trading since they usually need to carry out a large number

of computations or tests in a short period and make prompt decisions in a

fast-changing financial market.

3.2. The effectiveness of deep learning by real data

To verify the effectiveness of deep learning further, we consider the real

transaction data of Asian options downloaded from a financial market. The

data about Asian options are limited and it is difficult to obtain a large

number of relevant data since Asian options are usually non-standardized

over-the-counter financial products.

We use the Light Sweet Crude Oil (WTI) Futures and Options data at

Barchart.com. WTI stands for West Texas Intermediate, which is a light

sweet crude oil stream that comprises a mix of several streams of light sweet

crude oil in the U.S. We use the deep learning option pricing method to learn

the data of WTI Average Price Options. The underlying asset is the WTI

futures.

We download the data in early June of 2019 and choose the average

options labeled by CLN19 (expired after one month), CLU19 (expired after

three months), CLF19 (expired after half a year) and CLM20 (expired after
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one year). We select the option strike prices that are 0.7 to 1.3 times of

the underlying asset prices. In addition, we take the corresponding implied

volatilities near these maturities and the LIBOR interest rates corresponding

to these maturities. We are only able to acquire 162 actual option prices but

learning is still powerful as shown below.

Table 6. Effectiveness of deep learning by real data

Data Source Ari. Sim. Geo. Sim. Geo. Formula Real Data

Training Set

Bias Median 0.02207 0.01932 0.00930 0.00509

95% Bias Mean 0.04905 0.03412 0.01932 0.01758

MSE 2.01E-05 1.39E-05 4.67E-06 1.56E-07

ρ 1.00078 0.99901 0.99976 1.00010

R2 0.99896 0.99919 0.99970 0.99997

Testing Set

Bias Median 0.03476 0.02625 0.01308 0.00811

95% Bias Mean 0.04150 0.03723 0.02557 0.02015

MSE 6.40E-05 4.60E-05 1.49E-05 1.97E-06

ρ 1.02258 0.98960 1.00730 0.99526

R2 0.99630 0.99756 0.99924 0.99987

Notes. Table 6 compares the effectiveness of pricing Asian options by the deep learning

method using four different sources of data: arithmetic Asian options with simulation,

geometric Asian options with simulation, geometric Asian options with the exact formula,

and real data of market prices.

In the previous text, we demonstrate that pricing Asian options by the
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Figure 6. Prediction of Asian option prices using real data.

Figure 6 plots (a) the predicted prices using deep learning vs the real prices; (b) the

absolute prediction errors; (c) the relative prediction errors, between the predicted prices

and the real prices of Asian options.
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deep learning method is powerful across the sample sizes of 500, 1,000, 5,000,

10,000, 20,000 and 50,000 respectively. For comparison, we naturally wonder

what the effectiveness of the experiments is if the sample size is 162, i.e. the

size of the sample we obtain from the real market. For this reason, we repeat

here the previous computations but take the sample size as 162 while we

conduct the empirical analysis. With this sample size, we keep the ratio of

the training set to the test set as 4:1. That is, we allocate the sample data

into the training set with a size of 130 and the testing set with a size of 32.

Table 6 shows that all of the five measures for the effectiveness of deep

learning by real data are superior to those of deep learning by the computer-

generated data. The superior performance is robust in both the training set

and the testing set. Specifically, the medians of bias indicate that more than

half of relative errors of the predicted option prices in the real data are less

than 0.8%. The 95% bias means, i.e. the means of the predicted errors which

are less than the 95th percentile, are less than 2%. The MSEs are near zero

at 10−6. The values of R2 and the correlations ρ between the real data and

the predicted data are almost 1.

A 2% bias in our empirical results is acceptable in industry practice and

reasonable in the empirical study of option pricing.2 First, in industry prac-

tice, a 2% bias in the price of an option would not be a substantial issue

to practitioners who take large positions in the option. Take hedge funds

for example, which often hold large positions in options including Asian op-

tions. Using a data of 1,500 hedge funds, Gupta and Liang (2005) analyze

2We are grateful to an anonymous reviewer who points out the practical relevance of a

2% bias.
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the Value-at-Risk (VaR) relative to fund assets, which measures the relative

amount of capital that is required to cover most of the potential losses given

a confidence level, and the capital adequacy (Cap), which is the ratio of

the actual extra capital over the required capital. They report that the me-

dian (mean) relative VaR of the live funds is 9.8% (11.3%) and their median

(mean) Cap ratio is 2.4 (5.3). The two measures imply that if a 2% bias

in option pricing would lead to losses, the losses are acceptably covered by

option holders with large positions. Therefore, a 2% bias would not cause a

substantial issue in industry practice.

Second, in the empirical study of option pricing, a 2% bias is reasonably

small. The option pricing error between the theoretical/estimated price and

the market price has long been examined in the literature. Merton (1976)

investigates the effects of model specification on option pricing and stock

returns and he specifies a criterion of 5%, which is more than double of

our 2% bias. Based on S&P 500-stock index options, Fortune (1996) dis-

covers systematic and sizable errors that are produced by the widely-used

Black-Scholes option pricing model. There are average 10% to 100% (15%

to 40%) pricing bias for call (put) options. Similarly, Yakoob and Durham

(2002) show pricing bias of 0.060% to 70.684% (0.416% to 29.118%) for call

(put) options. More recently, Heo et al. (2017) find pricing biases ranging

from about 2.28% to 4% using six models of European / American options

and Yahoo options data. The potential explanations for these biases are

limitations on arbitrage, short-selling restrictions, and unrealistic model as-

sumptions. Compared with these existing studies, the 2% bias from the deep

learning pricing method in our study is reasonable.
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To illustrate the effectiveness intuitively, Figure 6 compares the stan-

dardized prediction prices of deep learning and the standardized real prices

of average options. Figure 6(a) shows that the predicted prices and the real

prices are close to a line approaching 45 degrees with a very narrow width,

which indicates that the prediction of deep learning in actual data is excel-

lent and the errors in both training set and test set are small. Indeed, Figure

6(b) shows that most of the absolute pricing errors compared with real data

are between ±0.0015 in both training set and testing set. Similarly, Figure

6(c) displays that the relative pricing errors of standardized prices are quite

small, except for a small number of cases where the option values near zero,

naturally leading to large relative errors.

The results in Figure 6 shows that the performance of deep learning by

real data is better than the performance of deep learning by the data gen-

erated by the computer. There are two reasons for the advantage of deep

learning by real data. First, in the real market, there are barely transactions

near extreme situations where the standardized option price C/K approxi-

mates 0. As pointed out before, the standardized option values near 0 push

up the relative pricing errors. Second, the option parameter values in the

real data must be distributed in some short intervals instead of the large

ranges in the numerical experiment. Therefore, Figure 6 illustrates that the

learning process using real data is much more effective than using the data

generated by the computer.

Last, we emphasize that to obtain the superior results in Figure 6, the

empirical test conducted here does not require any assumptions on the prob-

ability distribution of the underlying asset, such as the common log-normal
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distribution. It only needs to correctly specify model parameters which im-

pact on the option price and to collect sufficient sample data. Therefore,

our machine learning method provides a new model-free approach for pricing

financial assets. The model-free approach not only solves the challenges of

pricing assets like arithmetic Asian options without closed-form solutions but

also solves the pricing problems with closed-form solutions, e.g., pricing ge-

ometric Asian options, through an alternative way that avoids controversial

model assumptions for the closed-form solutions. The implication from Fig-

ure 6 demonstrates that machine learning has a very bright future in financial

applications.

4. Conclusion

In this paper, we use a deep learning model to predict Asian option

prices and we examine the effectiveness and efficiency of the deep learning

method by performing a numerical experiment and an empirical test with

real data. In the numerical experiment, we investigate the effectiveness by

using three sets of data that are generated by the computer according to

three types of traditional methods: the exact formula of geometric Asian

options, the simulation of geometric Asian options, and the simulation of

arithmetic Asian options.

The numerical results and empirical analysis show that no matter which

set of data is used to train the deep learning model, it can predict the Asian

option prices with high accuracy. Compared with the three traditional meth-

ods, the speed of the trained deep learning model is extremely fast. To verify

the feasibility of the deep learning method in practice, we use a set of real data
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about WTI Average Price Options to train the deep learning model, which

produces more accurate results than those in the numerical experiment us-

ing our three sets of simulation data. The deep learning method achieves

superior performance in the real data because there are fewer extreme cases

in the real data than in the computer-generated data in our numerical ex-

periments. Our numerical results imply that the deep learning method is

expected to be robust to be applied in practice since our numerical experi-

ments are tougher than the real situation. Furthermore, the deep learning

method is a model-free approach for asset pricing, which avoids non-realistic

model assumptions.

Artificial intelligence enters a new era after the on-going improvement of

computer performance and the wide applications of machine learning. The

applications of artificial intelligence in many fields have achieved remarkable

results but their applications in finance just started. In finance, there are

many tasks of finding a functioning relationship between a dependent vari-

able and a series of independent variables from finance data in real-time.

Generally, traditional methods are not capable of fulfilling such tasks. In

this paper, we provide a method of applying the recent development in ma-

chine learning to price a class of financial products. We demonstrate that the

method is effective as other applications of machine learning in other areas.

This method can be conveniently applied by investment managers or traders

in the industry of financial trading in the real world. With the development

of computer techniques and big data, artificial intelligence in finance has a

much brighter future than we expected.
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