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Abstract 

Several ice protection strategies have been developed to overcome the icing hazards in the 

aerospace industry. The electro-thermal method is one of the popular approaches to prevent ice 

accretion and accumulation on aircraft surfaces. Given the increasing requirement of 

composites on aircraft structures, metal frameworks/fibre reinforced composites have been 

developed as a de-icing solution for the new generation aircraft. The present work aimed to 

fabricate self-heating multi-wall carbon nanotubes based composites for ice protection and to 

study their electro-thermal and mechanical characteristics. Carbon nanotube buckypapers 

(CNPs) were prepared and embedded in fibre reinforced polymer composites by two methods: 

pre-preg and resin impregnation. The influence of the carbon nanotube network structure on 

the mechanical properties and electrical characteristics of the composites was evaluated. 

Mechanical tests, three-point flexural test and interlaminar shear strength test, demonstrated 

improved mechanical characteristics of the CNP based composites. De-icing performance of 

the composites was conducted through a heating test in a climate chamber at -20˚C. The results 

indicated that the CNP-based composite is a promising self-heating material candidate for ice 

protection systems.  

Keywords Multi-wall carbon nanotubes, Buckypaper, Electrical resistance, Self-heating 

composite, De-icing. 

Acronyms 

2-CNP: double layer of carbon nanotubes buckypapers 

CNP: carbon nanotubes buckypaper 

CNT: carbon nanotubes 

ILSS: interlaminar shear strength 

MWCNT: multi-wall carbon nanotubes 

PTFE: polytetrafluorethylene 

PV: pre-preg vacuum method 

PV-CNP: CNP modified composite with PV method 

PP: pre-preg pressure method  

PP-CNP: CNP modified composite with PP method 

RV: resin impregnation vacuum method 

RV-CNP: CNP modified composite with RV method 

RV-ref: reference sample for RV method 

RP: resin impregnation pressure method 

RP-CNP: CNP modified composite with RP method 

RP-ref: reference sample for RV method 

RV-2-SCNP: 2 soaked CNP layers in RV composite 

RP-2-SCNP: 2 soaked CNP layers in RP composite 

SCNP: soaked (in thermosetting resin) carbon nanotubes buckypaper 

SEM: scanning electron microscope 
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1 Introduction 

In-flight icing poses a serious hazard to aircraft safety and performance. Ice protection systems 

are often used to protect aircraft surfaces from ice accretion during the flight or on the ground.  

Several ice protection strategies to prevent ice accretion have been developed over the years, 

including heating surfaces with hot air generated from the engine, or electrical heating 

elements, and inflatable boots supplied by air from the engine or electro-mechanical systems1-

6.  

Electro-thermal de-icing constructions are frequently required in the aerospace sector, to 

prevent ice accumulation and remove the ice from aircraft surfaces during the flight. Typically 

an electro-thermal structure consists of a metallic framework/element and an inorganic 

insulator which is normally complicated patterned and heavy5, 6. Incorporating a traditional 

metal foil heater technology within a composite construction may lead to a weak layer, 

especially for inter-laminar shear loads7. Recent research works have focused on electrically 

conducting nanomaterials8-14 and found that nanocomposite materials could be incorporated 

into the composite structure, offering the possibility of heating for ice protection and avoiding 

structure weakening15-21. Coleman et al.20 and Wang et al.21 studied the intercalation of 

polymers into porous internal structure of carbon nanotube (CNT) sheets, called buckypapers 

(CNP). The nanotube buckypapers were prepared by the filtration of CNTs dispersed in water 

with the aid of a surfactant. The intercalation process was obtained by soaking the nanotube 

sheets in polymer solutions. The resulting composites showed improved tensile strength20 and 

Young’s modulus21, indicating a promising approach for the fabrication of nanocomposites 

with high CNT loading. 

There is some recent progress on the fabrication of self-heating composites based on carbon 

nanotubes for electro-thermal de-icing applications18, 19, 22, 23. A thin layer of carbon nanotube 

buckypaper could be placed between glass fibre fabrics, then infiltrated with a thermosetting 

resin, and underwent curing reactions. The formed composites exhibited excellent electrical 

heating performance and stability. However, the simultaneous influence of the conducting CNT 

buckpaper on the mechanical properties of the composites has yet to be studied. Due to static 

and dynamic loads suffered by the composite parts during the flight conditions, it is essential 

to have better understanding on the mechanical behaviours of the CNP-based electro-thermal 

composite structures. 
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In this work, carbon nanotubes buckypapers embedded in fibre reinforced polymer composites 

have been fabricated by two processing routes and the related electro-thermal and mechanical 

properties were investigated. CNP layers were produced by filtration technique from CNT 

suspension and laid up together with pre-preg fabrics. Mechanical tests and the study of heating 

performance demonstrated that the CNP-based composite is a promising self-heating material 

candidate for ice protection.   

2 Experimental details 

2.1 Raw materials 

Multiwalled carbon nanotubes (MWCNTs) from Carbon Nanotubes Plus, Madisonville, USA 

were used in this work. The nanotubes had an average outer diameter of 5 - 15 nm and length 

of 10 - 30 m. Acetone was purchased by Merck KGaA, Darmstadt, Germany. The 

thermosetting resin was araldite MY750 supplied by Huntsman, Switzerland and the hardener 

HX300G/NC was supplied by Robnor Resins, UK. The glass fabric pre-pregs used in this work 

were DMS435 and CEL100-1. DM435 pre-preg fabrics were supplied by Meggitt Polymers 

and Composite Airframe Systems Division, Shepshed, UK. The matrix of the DMS435 pre-

preg fabric was made of resin MY750 mixed with hardener HX300G/NC. The nominal resin 

content was 50 wt%. CEL100-1 (CEL100-1-G105-4ES-45%RW-1270mm) was a cyanate ester 

pre-preg with a 4-harness glass fabric and nominal resin weight content of 45%, provided by 

SHD Composites, Sleaford, UK. 

2.2 Preparation of buckypapers 

Carbon nanotubes buckypaper (CNP) is a macroscopic aggregate of carbon nanotubes (CNTs). 

To produce the CNT buckypaper, a water-based suspension of multiwall carbon nanotubes and 

surfactant (0.1 wt% Triton X-100) was ultrasonicated for 30 min and then filtered by a PTFE 

membrane (Omnipore Membrane Filter PTFE, 1 m pores). The CNP was then detached from 

the membrane after drying at 35˚C overnight. The obtained samples were 55 mm squares. 

2.3 Fabrication of composites with integrated CNP sheets 

2.3.1 Resin impregnation method 

CNP samples were soaked in 2 grams of epoxy araldite MY750/acetone (100/30 weight ratio) 

solution for 30 min. Soaked buckypapers (SCNP) were kept under vacuum for 30 min, to allow 

for the solvent to evaporate and degas the resin at the same time. The buckypapers impregnated 

with resin were then laminated with pre-preg glass fibres fabric consisting of the same epoxy 
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resin. The lay-up configuration was arranged according to the tests to be carried out. The curing 

cycles in this method are described as below. 

RV (Resin Vacuum) treatment: heating rate 2˚C/min and curing at 150˚C for 1h under 

vacuum. Samples fabricated using this process were named as resin impregnation vacuum 

samples (RV-CNP). 

RP (Resin Pressure) treatment: heating rate 2˚C/min and curing at 150˚C for 1h under 0.4 

MPa pressure. Samples from this process were called resin impregnation pressure samples 

(RP-CNP). 

2.3.2 Pre-preg method 

The buckypapers were laminated between pre-preg plies of CEL 100-1. The lay-up 

configuration was arranged according to the test to be carried out. The curing cycles in this 

method are described as below. 

PV (Prepreg Vacuum) treatment: heating rate 0.5˚C/min and curing at 90˚C for 6h under 

vacuum. Samples from this process were named as pre-preg vacuum samples (PV-CNP). 

PP (Prepreg Pressure) treatment: heating rate 0.5˚C/min and curing at 90˚C for 6h under 0.6 

MPa pressure. Samples from this process were called pre-preg pressure samples (PP-CNP). 

2.3.3 Lay-up and configuration 

The lay-up details of the different samples are given in Table 1, together with the description 

of the process conditions. In the lay-up column, 3 or 8 are indicated as the number of pre-preg 

layers. The number of the utilised pre-preg layers was related to the type of tests.  The samples 

were named accordingly to their fabrication process. For electrical resistance, heating 

performance and ice protection tests, the samples were 60 mm x 60 mm squares. The heating 

area corresponded to the CNP surface area. The lay-up included 3 pre-preg fabric layers / CNP 

(or SCNP) / copper electrode / CNP (or SCNP) / 3 pre-preg fabric layers. The electrodes were 

copper stripes of 5 mm x 14 mm x 0.2 mm. Silver paint, from Agar Scientific, was manually 

applied by a brush in contact with the CNP (or SCNP) which was used to help with electrical 

resistance reduction at the interface between CNP (or SCNP) and copper electrodes. 

For mechanical tests, specimens were machined from 100 mm x 200 mm rectangle composite 

plates, containing 8 pre-preg plies / 2 CNP (or SCNP) / 8 pre-preg plies. 

Table 1 – Description of sample process conditions and lay-up details 

Sample name Production process Lay-up 



5 
 

RV-CNP 

Resin impregnation method, with curing 

condition of 150 ˚C for 1h under 

vacuum. 

1- Pre-preg layers (3 or 8) 

2- 2 layers of SCNP 

3- Pre-preg layers (3 or 8) 

RP-CNP 

Resin impregnation method, with curing 

condition of 150 ˚C for 1h under 0.4 

MPa pressure. 

1- Pre-preg layers (3 or 8) 

2- 2 layers of SCNP 

3- Pre-preg layers (3 or 8) 

PV-CNP 
Pre-preg method, with curing condition 

of 90 ˚C for 6h under vacuum. 

1- Pre-preg layers (3 or 8) 

2- 2 layers of CNP 

3- Pre-preg layers (3 or 8) 

PP-CNP 
Pre-preg method, with curing condition 

of 90 ˚C for 6 h under 0.6 MPa pressure. 

1- Pre-preg layers (3 or 8) 

2- 2 layers of CNP 

3- Pre-preg layers (3 or 8) 

 

3 Characterization 

3.1 Electrical resistance  

The electrical resistance was evaluated by an ohmmeter (Cropico DO4A ohmmeter). The 

electrical characteristics were calculated using the following equations: 

 = 𝑅 𝑆/𝑙                                               Equation (1) 

                           = 1 /                                           Equation (2) 

where m) is the electrical resistivity, R () is the electrical resistance, S (m2) is the cross 

section area of the CNP layer, l (m) is the tested length of the CNP layer,  and   (S/m) is the 

calculated electrical conductivity 

3.2 Microstructural characterization 

The microstructural characterization was carried out using a scanning electron microscope 

(SEM) JSM-7001F by JEOL and a 3D laser scanner microscope Keyence VK-X150K. 

3.3 Heating performance 

The copper electrodes of the sample were connected to a power supply (linear DC bench power 

supply CSI530S, Circuit Specialists) that provided a constant electrical potential difference of 

5 V in order to analyse the heating performance. The electrical resistance of the sample was 

calculated by Ohm’s law. A thermal imaging camera (FLIR E4, operating in Multi-Spectral 

Dynamic Imaging mode) was used to measure the sample temperature during the test. The 

highest surface temperature and the electric current were recorded at regular intervals since the 

start of the heating process.  
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3.4 De-icing test 

The sample was placed in a sub-ambient environment at -20˚C where 100 ml of distilled water 

were nebulized. A 2 mm thick ice was formed on the top surface of the sample. The sample 

was connected to a power supply and a constant potential electrical difference of 5 V was 

applied until the ice was fully removed from the surface. The surface temperature and the 

electric current were regularly registered during the test. 

3.5 Mechanical tests 

Three-point flexure test and interlaminar shear strength (ILSS) were performed. The samples 

were machined from the composite plates. The samples dimensions were determined by the 

testing standard, respectively. For three-point flexure test, according to ASTMD790, the size 

of the samples was 94 mm x 10 mm x 5 mm; while the CNPs (or SCNPs) were located in the 

middle of the samples, as represented in Figure 1, where the maximum stress area was 

localized.  For ILSS, the samples dimension was 20 mm x 10 mm x 5 mm, while the load range 

was up to 3 kN and the displacement range was up to 1.5 mm (CRAIG 100 method24).  

As described previously, the samples for mechanical tests were machined from 100 mm x 200 

mm rectangle composite plates, containing 8 pre-preg plies / 2 CNP (or SCNP) / 8 pre-preg 

plies. 

 
Figure 1 - Schematic diagram of a three-point flexural test sample 

 

4 Results and discussion 

4.1 Electrical resistance 

The electrical characteristics of the CNP and composite samples are listed in Table 2. Single 

and double CNP layers were tested. The average thickness of one CNP layer was around 0.120 

mm (± 0.007 mm). The 2-CNP sample was made by overlapping 2 buckypaper layers on top 

of each other. The 2-CNP thickness had been calculated by doubling the nominal single layer 

thickness value. The electrical resistance values of the CNP composites are listed in Table 2, 

together with standard deviation, average sample thickness, electrical resistivity  and 
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electrical conductivity . Electrical resistivity values of composite samples in Table 2 are 

calculated based on the composite thickness. The composite samples were prepared by laying 

up 2 buckypaper sheets. The electrical characteristics of the composite samples are compared 

to those of the double CNP (2-CNP) layers. 

Table 2 - Electrical characteristics of single (CNP) buckypaper, double (2-CNP) layers of buckypaper and the 

composite samples   

Samples 
Resistance 

Resistance 

St.dev. 
Thickness  

  mm m) (S/m) 

Single CNP 5.5 0.5 0.12 0.661 1513.2 

2-CNP 2.4 0.6 0.24 0.574 1741.7 

RV-CNP 3.8 0.6 2.80 10.6 94.0 

RP-CNP 3.7 0.2 2.40 8.9 112.6 

PV-CNP 1.8 0.3 1.00 1.8 555.6 

PP-CNP 1.7 0.2 1.00 1.7 588.2 

 
MWCNTs are randomly distributed and contact with each other, forming the CNP conductive 

network (Figure 2). The electrical conduction in the composite samples is attributed to the 

combination of MWCNTs and their junctions. The electrical resistance along a carbon 

nanotube is much lower than the junction resistance so that the CNP network can be illustrated 

by a series of resistors consisting of compactly connected nanotubes18, 19, 25, 26. The contacts 

between the CNTs create the pathways for the electrical current to flow through. Despite the 

insulating characteristics of the epoxy around the MWCNT bundles, the electrical conductivity 

of 2-CNP does not have a significant variation, compared with the RV-CNP and the RP-CNP 

samples. This means that the conducting pathways of the MWCNT network are not 

significantly affected by the insulating resin. Pre-preg samples have approximately 50% lower 

electrical resistance compared with the samples produced by resin impregnation method. These 

values are slightly lower than the electrical resistance of 2-CNP samples. The composite 

fabrication process would affect the electrical resistance except in the pre-preg method. This 

could be due to the low amount of resin involved in the process, coming from the pre-preg 

fabric. Moreover the buckypapers used in pre-preg method were not previously soaked in any 

thermosetting resin. The amount of resin coming from the pre-preg fabric was not enough to 

completely impregnate the CNTs sheets and to affect/increase their electrical resistance. The 

lower electrical resistance values of PP-CNP and PV-CNP samples could be due to the silver 

paint applied on the electrodes surface. The paint helped to increase the electrical conductivity 

locally at the interface between the CNP and the electrodes. 
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a) 

  
b) 

Figure 2 - SEM images of soaked buckypaper after the curing cycle: a) RV sample; b) RP sample  

 

The low standard deviations (Table 2) indicate that the pressure helped to obtain a more 

repeatable result in the resin impregnation method. The electrical resistances of RP-CNP and 

RV-CNP samples are higher than that of the pure double CNPs layers. This is probably due to 

the resin electrical insulating characteristics and the involved resin reduced the direct contacts 

of CNTs. 

During the machining of the specimens for morphological analysis and mechanical tests, 

delamination was observed in the samples fabricated with the pre-preg method (Figure 3a and 

3b). For the PV-CNP (Figure 3a) and PP-CNP (Figure 3b) samples, delamination occurred 

along the interface between the two CNPs. This was likely happened because the resin did not 

fully impregnate the porous CNP and thus proper bonding was not formed between the layers. 

Due to the delamination, PP-CNP and PV-CNP samples had not been selected for further 

analysis and tests. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3 - Cross section images of: a) PV-CNP sample; b) PP-CNP sample; c) RV-CNP sample; d) RP-CNP 

sample. 
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The CNT weight percentage, in the RV-CNP and RP-CNP composite samples, has been 

calculated and listed in Table 3, while the weight of the copper electrodes has been subtracted. 

The average weight values for RV and RP samples are 13.0 g and 14.0 g, respectively. 

Considering that in each sample there are two CNP buckypaper sheets, the CNP weight 

percentage in both the composites is less than 1 wt%.  

Table 3 - Buckypaper weight percentage in the composite structure  

Sample 

Composite 

Weight 

Weight 

St.dev. 

CNT 

content 

(g) (g) (wt%) 

RV-CNP 13.0 0.5 0.8 

RP-CNP 14.0 0.3 0.7 

 

Thickness analysis of RV-CNP and RP-CNP samples are shown in Figure 4 and the thickness 

values are listed in Table 4. RV-2-SCNP and RP-2-SCNP refer to the soaked buckypapers 

(SCNP) layers used in resin impregnation methods; the number 2 means that two CNPs sheets 

have been laid-up. In both RV and RP method, the thickness of RV-2-SCNP and RP-2-SCNP 

(Table 4) are higher than the 2-CNP thickness (Table 2). The resin impregnation causes the 

thickness increase and thus the electrical resistance increase. Because of insulating properties 

of the resins, the conductive area is limited to the CNPs area. In order to calculate the electrical 

resistivity more accurately (Table 4), the heating element cross section (Figure 4) has been 

analysed. 

 
a) 

 
b) 

Figure 4 - Thickness analysis for: a) RV-CNP sample; b) RP-CNP sample. The light blue vertical line indicates 

where the thickness has been measured. 

 

Table 4 - Electrical characteristics of CNP soaked in thermosetting resin 

Sample 
Resistance Thickness  

 (mm) m) (S/m) 

RV-2-SCNP 3.8 0.421 1.6 625.1 

RP-2-SCNP 3.7 0.408 1.5 662.4 

 
In existing reports, CNTs had been mixed with polymer resins to produce  electrical conducting 

nanocomposites, but the resulting structures often exhibited relatively low electrical 

conductivity (less than 1 S/m), as the impregnation of polymer matrices decreased the 

continuity of the CNT conducting network for the current flow 26-29. The CNP based composites 
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in this study have demonstrated higher electrical conductivity thanks to the better integration 

of the formed CNTs conducting network, in which the negative impact from the polymeric 

resin would be minimized. 

4.2 Heating performance 

In Figure 5 two thermal images show the temperature distribution on the surfaces of the RV-

CNP sample (Figure 5a) and the RP-CNP sample (Figure 5b), respectively. Both images show 

an even heat distribution on the sample surface, between the two electrodes. The 

aforementioned fact indicates that the current flow is constant over the entire surface. 

 
a) 

 
b) 

Figure 5 - Thermal images of: a) RV-CNP sample; b) RP-CNP sample 

 
Figure 6 and Figure 7 plot the changes of temperature T, current I and resistance R of the 

different samples during the heat performance test. The standard deviations are indicated in the 

curves. In general, the standard deviations of RP samples is smaller than those of the RV 

samples. It can be noticed that RP samples have much constant values than RV samples. It is 

likely that the pressure during the curing process helps to establish and stabilise the electrical 

paths and resistance. All the studied curves can be divided in three stages. There is a linear 

increase of the temperature (first), followed by a decreasing of temperature rising speed 

(second) until the temperature reach a stable value (third).  

The power consumption values of composite samples during the heating test are listed in Table 

5 and Table 6. Power density values were around 2 kW/m2 and the maximum reached 

temperatures were higher than 100˚C. For de-icing systems, lower temperatures as well as 

lower power densities can be used to avoid possible thermal damage of the composite structure. 

The sample with the lowest electrical resistance reached the highest power density value (2.4 

kW/m2 for RV class and 2.2 kW/m2 for RP class, respectively) and the highest temperature 

(133˚C for RV class and 132˚C for RP class, respectively). 
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Table 5 - Heating performance and testing characteristics  of RV-samples 

Sample 
Current Resistance Power 

Power 

density 
TMAX 

(A)  (W) (kW/m2) (˚C) 

1 1.0 4.9 5.2 1.7 111 

2 1.3 3.9 6.4 2.1 120 

3 1.4 3.5 7.1 2.4 133 
 

 
 

Table 6 - Heating performance and testing characteristics of RP-samples 

Sample 
Current Resistance Power 

Power 

density 
TMAX 

(A)  (W) (kW/m2) (˚C) 

1 1.2 4.0 6.2 2.1 118 

2 1.3 3.7 6.7 2.2 132 

3 1.3 3.8 6.7 2.2 130 
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a) 

 
b) 

 
c) 

Figure 6 - Curves of RV-samples characteristics registered during the heating performance test: a) 

temperature T; b) current I; c) resistance R. The orange lines represent the average value of the respective 

characteristic. 
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a) 

 

  
b) 

 
c) 

Figure 7 - Curves of RP-samples characteristics registered during the heating performance test: a) 

temperature T; b) current I; c) resistance R. The light blue lines represent the average value of the respective 

characteristic. 
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4.3 De-icing test 

Figure 8 shows the sample covered by rime ice in a cold environment at -20˚C (Figure 8a) and 

the sample after 120s electro-thermal heating (Figure 8b). Due to the Joule effect the 

temperature rises where the electrical current flows as the heat distribution indicated in Figure 

8d. This test simulates the ice protection system working in the electro-thermal de-icing 

configuration.  

 
a) 

 
b) 

 
c) 

 
d) 

Figure 8 - Photos and thermal images of a RV sample during the de-icing test in the cold environment: a, c) 

at the beginning of the heating; b, d) after 120s heating 

 

Figure 9 show the temperature (T) changes of different samples during the de-icing test. The 

ice melting time was considered as the moment, after the beginning of the test, in which the 

sample average temperature rose over 0˚C. The ice melting time range of RV samples was 

between 30s and 60s, while for the RP samples the ice melting time range was between 30s 

and 40s. When the ice was melted, the temperature of the RV and RP samples rose at 0.8˚C/s. 

It can be noticed that the temperature deviation of RP samples are narrower than those for RV 

samples, as indicated in the heating performance test. 

In Table 7 the power consumption and power densities of de-icing are listed. In all the cases, 

the ice on the samples was completely removed after 120s. It was noticed that, at the end of the 

experiment, the temperature was still rising. Lower voltages could be used, causing the increase 



15 
 

of the ice melting time, but the working temperature would be lower than 100˚C to avoid the 

possible thermal damage of the composite structure. Power density values around 2kW/m2 were 

within the range of the reported values18, 19, 22. 

 Table 7 - De-icing tests characteristics of RV and RP samples 

Sample 
Power St.dev. 

Power 

density 
St.dev. 

(W) (W) (kW/m2) (kW/m2) 

RV-CNP 6.0 0.7 1.99 0.25 

RP-CNP 6.5 0.4 2.14 0.14 

 

 

 
a) 

 
b) 

Figure 9 – Increase of temperature during the de-icing test: a) RV samples; b) RP samples. 
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4.4 Mechanical tests 

The details of samples for mechanical tests can be found in Table 1. CNP composites produced 

with RV treatment are referred as RV-CNP; while the RP-CNP designation was assigned to 

CNP composites produced with RP treatment. Reference samples were produced with lay-up 

of just pre-preg fabrics and they were named RV-ref for RV treatment and RP-ref for RP 

treatment, respectively. Flexural test results are listed in Table 8. The RP samples have higher 

fracture stress value than the RV ones. . The pressure during curing cycle is considered as the 

main reason of the difference. The RP-CNP samples also demonstrated higher (about 9 % 

more) fracture stress than RP-ref, indicating that the buckypapers acted like a reinforcement 

layer in the composite structure. However, for RV samples, their fracture stress is lower than 

that of RV-ref. Due to the high defect concentration (as visible in Figure 10c), it is not possible 

to determine if the buckypapers acted as defect source weakening the RV-CNP samples. 

Table 8 – Three-point flexural tests results. 

Sample 

Fracture 

Stress 
St. Dev. 

Young's 

modulus 
St. Dev. 

 

CNT  

content 

(MPa) (MPa) (GPa) (GPa) (wt%) 

RP-CNP 353.3 13.7 16.3 0.6 0.7 

RP-ref 321.0 15.2 14.1 0.3 - 

RV-CNP 231.6 10.1 11.4 0.6 0.8 

RV-ref 283.6 9.3 12.8 0.4 - 
 

 

Considering the high defect concentration, RV method (Figure 10a and 10c) seems not to be 

an ideal process for the fabrication of the self-heating composites. To avoid the formation of 

porosity, some pressure should be applied during the curing cycle of the thermosetting system 

(resin/hardener), as confirmed from the porosity-free structures of RP samples (Figure 10b and 

10d). RP-ref (Figure 10b) and RP-CNP (Figure 10d) show similar fracture morphology. This 

indicates that the SCNP layer did not cause obvious change in the fracture mechanism. Figure 

10d shows that the crack propagated in the SCNP layer. This could explain the higher fracture 

stress of the RP-CNP samples.  
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a) b) 

 
c) 

 
d) 

Figure 10 – Three-point flexural tested samples: a) RV-ref sample; b) RP-ref sample; c) RV-CNP sample; d) 

RP-CNP sample 

 

ILSS results are listed in Table 9. The RP-CNP and RP-ref samples have slightly lower values 

than RP-ref. The buckypaper did not bring significant changes to this characteristic. ILSS 

average value of RV-CNP is lower than RV-ref (30% lower). A typical RV-CNP fracture 

surface is given in Figure 11. The buckypapers have probably weakened the structure, acting 

as a defect affecting thus the interface between. In RV-CNP samples, the crack propagated 

along the interface between the two CNP sheets. The buckypapers interface seems to be a weak 

point for the RV-CNP samples. This result has confirmed that the CNP layer acted as a defect 

in the RV-CNP samples. The pressure during curing cycle would be the key reason of the 

different mechanical responses between RP-CNP and RV-CNP. The use of pressure enhanced 

the interface bond between the CNP sheets. The above results further highlight that the RV 

treatment may not be appropriate for manufacturing of the self-heating composites. 

 
Figure 11 - Laser microscope image of ILSS RV sample with crack between two SCNP sheets  

 

Table 9 - Interlaminar Shear Strength results of the studied composite structures 

Sample 

ILS 

Strength 
St. Dev. 

 

CNT 

content 

(MPa) (MPa) (wt%) 

RP-CNP 45.0 2.2 0.7 
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RP-ref 48.1 1.1 - 

RV-CNP 27.5 0.8 0.8 

RV-ref 38.1 2.1 - 

 

In Figure 12 and Figure 13, the ILSS t stress–strain curves of the RV and RP samples are 

depicted. Each test includes five specimens. RP samples reach higher stress values than RV 

ones, thanks to their better microstructural characteristics. The small standard deviation of the 

RP samples indicates a rather homogeneous composite structure even after the incorporation 

of the CNPs. As discussed in the previous session, the pressure, hence better consolidation, 

during the curing process would be the main reason of better mechanical performance of RP 

samples.   

The gaps on the RV-CNP curves (for  > 12.5 %, Figure 12a) are caused by the fractures that 

were created on the sample during the test (example in Figure 11). It can be noticed from the 

curves that all the RV-CNP samples have been damaged during the test. This is a further proof 

that RV is not an ideal method for the fabrication of the CNP based self-heating composites. 

The ILSS results indicate that RP-CNP and RP-ref have similar stress-strain behaviour, see 

Figure 13. The regular/linear trend of the curves indicates that the specimens have not been 

damaged during the test. The RP samples (CNP and ref) have been able to withstand up to 3kN 

interlaminar shear load. In Figure 13, the average strain value at the end of the test is between 

15%20% for RP-CNP samples and between 20%25% for RP-ref, respectively. These results 

indicate a more rigid mechanical response for RP-CNP samples. 

From the mechanical tests results for the RP-CNP specimens, it can be deducted that the CNPs 

do not cause a deterioration of the mechanical characteristics of the composite structure. 

Moreover, the flexural tests show a slight improvement of the fracture strength, about 10% 

higher. These results indicate that the RP method is appropriate for the fabrication of the CNP 

based self-heating composite. 
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a)  

 
b) 

Figure 12 - Stress - strain ( curves in interlaminar shear strength test for Resin Impregnation Vacuum 

samples: (a) RV-CNP; (b) RV-ref  
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a) 

 
b) 

Figure 13 - Stress - strain () curves in interlaminar shear strength test for Resin Impregnation Pressure 

samples: (a) RP-CNP; (b) RP-ref 
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5 Conclusions 

In this work, carbon nanotubes buckypapers embedded in fibre reinforced polymer composites 

have been fabricated by two processing approaches. Their electrical and mechanical properties 

were investigated. The first approach was the resin impregnation method, in which the CNPs 

were soaked in Araldite MY750. The second approach was the pre-preg method, where the 

buckypapers were layered between cyanate ester pre-preg plies.  

The electrical resistance tests showed that both methods produced samples with electrical 

resistance lower than 5. In the pre-preg method, the resin did not affect the electrical 

resistance, but its amount was not enough to completely impregnate the CNTs sheets and bond 

the layers together, leading thus to delamination that occurred along the interface between the 

two CNPs. In the resin impregnation method, the use of pressure during curing was much 

effective to minimize the porosity and improve the consolidation of the composite material 

when compared with vacuum bag only approach. 

The heating performance and ice protection tests showed power density values of around 

2kW/m2, values well within the literature reported values.  Lower voltages could be used, 

which would increase the ice melting time, but on the other hand would reduce the risk of 

thermal damage of the composite structure. Power density values could be increased by further 

reduction of the electrical resistance of the CNTs composite. 

Flexural and ILSS tests show that in RP (resin impregnation pressure method) process the 

buckypaper did not weaken the mechanical characteristics. The pressure during curing cycle 

helped to create a stronger consolidation between the buckypapers and the matrix resin. The 

overall results indicate that RP method is an ideal process to fabricate the CNP-based self-

heating composite. 

A further study is recommended to optimize the design and the manufacturing process of the 

self-heating composite, to increase the power density of the CNT modified structures and to 

integrate the new nanostructures in real dimension components.  
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