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Abstract—A novel approach for identifying the geometric and 
material characteristics of layered composite structures through 
an inverse wave and finite element methodology is proposed. 
These characteristics are obtained through multi-frequency 
single shot measurements. It is emphasized that the success of the 
approach is independent of the employed excitation frequency 
regime, meaning that both structural dynamics and ultrasound 
frequency spectra can be employed. Since a full FE description is 
employed for the periodic composite, the presented approach is 
able to account for structures of arbitrary complexity. The pro-
cedure is applied to a sandwich panel with composite facesheets 
and results compared well with two wave-based characterization 
techniques: the Inhomogeneous Wave Correlation method and 
the Transition Frequency Characterization method.  
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I. INTRODUCTION 

 
Composite structures are increasingly used in modern 

aerospace and automobile industries due to their well-known 

benefits. However, the verification and Non-Destructive Evalu-

ation (NDE) of the actual mechanical properties of the assem-

bled layered structure remains a very much open engineering 

challenge. Over the past decades, different system identifica-tion 

methods in the time domain [1], frequency domain [2] and time-

frequency domain [3] have been proposed.  
One can cite the experimental method for the character-

ization of Nomex cores [4], or the vibratory identification 

technique proposed in Matter et al. [5]. Finite Element (FE) 

based wave methods assume a full 3D displacement field and 

are therefore capable of capturing the entirety of wave motion 

types in the waveguide under investigation in a very accu-rate 

and efficient manner. FE-based wave propagation within 

periodic structures was firstly considered in [6]. The Wave 

and Finite Element (WFE) method was introduced in [7], [8] 

in order to facilitate the post-processing of the eigenproblem 

solutions. The WFE has recently found applications in 

predict-ing the vibroacoustic and dynamic performance of 

composite panels and shells [9], [10], [11] , with complex 

periodic structures [12], [13] having been investigated. The 

variability of vibroacoustic transmission through layered 

structures [14], [15], [16], as well as structural identification 

[17] have also been considered.  
The principal novel contribution of this work is the devel-

opment of a comprehensive methodology coupling periodic 
structure theory to FE in order to identify the characteristics 

 
 
of each individual layer of a composite structure. The paper is 

organised as follows: Sec.II presents the inverse WFE-based 

computational scheme for identification of layered structures. 

In Sec. III, numerical and experimental case studies are 

presented for validating the exhibited identification approach. 

Conclusions are eventually drawn in Sec. IV. 
 

II. AN INVERSE WAVE AND FINITE ELEMENT 
METHODOLOGY FOR STRUCTURAL IDENTIFICATION 

 
An arbitrarily complex and periodic in the x direction 

waveguide is illustrated in Fig.1. The structure may comprise 

an arbitrary number of layers which may be anisotropic. It is 

assumed that some of the structural characteristics are 

unknown (or even variable over time) and need to be 

evaluated through a non-destructive evaluation process. The 

identifiable properties include the thickness, density as well as 

the material characteristics of each individual layers. In the 

following, a wave and finite element scheme is employed in 

order to recover the required properties of the layered 

structure through the acquired propagating wave data. 
 
A. Obtaining the reference and the WFE wave characteristics 
 

The required data to be extracted and later fed into the 

structural identification process are the wave phase speeds (or 

wavenumbers) of specific wave types propagating within the 

laminate under investigation. A number of methods can be 

employed for exciting and measuring specific propagating 

wave modes within a composite structure. Piezoelectric [18] 

or even non-contact laser actuation [19] can be employed for 

exciting and measuring wave properties in the ultrasound fre-

quency range, while within the structural dynamics spectrum 

more conventional shaker and accelerometer devices can be 

employed  
An illustration of the configuration is depicted in Fig.2. The 

waveguide is excited at a specified central harmonic signal of 

frequency f0 at a location x = x0 and the signal is monitored at 

location x = x1, after which the signal has travelled over a 

distance of L = x1 − x0. Once the experimental or numerical 
signal measurements are logged, the wavenumbers and group 
velocities of the excited waves can be easily determined.  

Time histories are initially registered at the excitation and 
monitoring locations. The maximum amplitudes of the time 
history signals X(t) are obtained from the Hilbert Transforms  
H [X(t)] of the acquired signals in the time domain. Hilbert 
Transform H[X(t)] of the acquired time signal X(t) is used 
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Fig. 1. Caption of the WFE modelled composite waveguide with the left and 

right side nodes QL, QR bullet marked. The range of interior nodes QI is also 
illustrated. 

 

 

to evaluate the main attributes of X(t). The signal envelope is 

determined at emission, x0 and arrival, x1 while the time 
delay is defined by the time difference between the maximal 
amplitudes of the envelopes. The total Time of Flight of the 
wave signal from the point of excitation to the monitoring 

point is measured as the time difference t(x1)−t(x0) between 
the maximum amplitudes of the excited and the monitored 
signal envelopes. In ultrasonic NDE, the wavenumber of the 
wave package (of wave type j) is straightforward to obtain as: 

 

 

 

which can be directly compared to the reference wavenumber 

values kj,rf . 
 

B. Formulation of the identification objective function 
 

The objective function of the identification process to be 
minimized is then obtained through a least squares approach 
as 

 

F(P) = (km,rf − km,f e)
2
 (4) 

 

with km,rf and km,f e being measured and calculated respec-

tively at frequency ωm for the same wave type, while P is the 
vector of parameters to be identified; in the very general case 
this is expressed as 

P = Gxy,1, Gxz,1, Gyz,1, h1, ρm,1, · · · ρm,lMAX  ⊤ 
(5) 
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for layers l ∈ [1, lmax]. In the above, mmax is the total 

number of reference eigenvalues which can be used in the 

identification procedure. It is obvious that the minimum 

required mmax is equal to the number of parameters to be 

identified, however results for additional frequencies will 

generally improve the precision of the identification process. 

An excessive mmax is undesired, as for each computation of 

F, an equivalent number of eigenproblems needs to be solved. 
 

In order to accelerate the Newton-like iterative scheme, the 
first (or even the second) gradient of the objective function 

∂F
 may be provided for each sought structural property βi as

∂β
i 

 

∂F 
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 X       
The generic iterative procedure of the post-processing iden-

tification process is presented in Algorithm 1. 
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the corresponding wavenumber kj can be given by 

log γj,f e 
k

j,f e 
=

 −iLx 

 

H where the phase velocity of the signal cp can be obtained 
from its ToF and its propagation distance L. It is noted that the 
phase velocity for a non-dispersive wave is equal to its group 
velocity. 

H The propagation constants for the elastic waves 
travelling in the x direction can be sought through the forward 
Wave and Finite Element (WFE) scheme as described in [17]. 
The advantage of the WFE approach is the fact that since the 
excitation frequency is controlled and known, an unlimited 
number of eigenvalues (for the same wave) can be extracted for 
the corresponding number of frequencies. Since each resulting 

jth eigenvalue (propagation constants for each wave type) can 

be expressed as 

H m
=1 

H X 

H m
MAX 



 

III. NUMERICAL AND EXPERIMENTAL CASE 

STUDIES 
(1) A.  Numerical validation of the identification 

scheme
 

 

The numerical case study relates to 

identifying the thick-ness, density and 

Young’s modulus for a monolayer metallic 

structure under investigation. The properties 

exhibited under Structure I (see Table 1) are 

employed. A longitudinal pressure wave 

excitation is numerically imposed at a cross 

section of the modelled structure. A general 

presentation of the measurement process is 

depicted in Fig.3). 
 

The propagating waveform is depicted in 
Fig.4 for six wave pulses of different 
frequencies. As expected, negligible dispersion 
occurs for all six pulses, thanks to the high 

number of cycles n0 employed for the Hanning 
window process, as well as to the non-dispersive 
nature of pressure waves. 

 

Six wavenumber measurements are 
recovered for an equiv-alent number of 
different ultrasonic frequencies, namely from 

 

(2) 100kHz to 350kHz with a step of 50kHz. The 
reference wave characteristics related to the 
recovered wavenumber values are shown in 
Fig.5. These are retained for comparison with 
the WFE obtained results for the same 
propagating wave type 

(3) which will form the objective function of the identification
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Fig. 2. Illustration of the suggested configuration for obtaining the reference wave characteristics to be later compared with the WFE ones. All simulations are 
performed using ANSYS V4.15. Three-dimensional solid brick elements are employed for enhanced accuracy and a minimum mesh density of 15 elements per 
wavelength is retained. 
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Fig. 3. General representation of the ToF measurements. The pulse input is generated using an excitation device at the input point while the time delay is 
measured at the monitoring point. Note that better results are obtained when no edge reflections are interfering with the registered pulse. 

 

 

problem. The same process is repeated for a flexural wave 
propagating within the monolayer structure with the results 
also presented in the same figure. 
 

Once the reference wave characteristics km,rf are estab-lished, 

the objective function F can be established as a function of the 

structural properties to be identified E, ρ and h. A single element 

is employed for the formulation of the WFE model which results 

in very fast eigenproblem solutions. An identification criterion 

equal to 10 is employed (suggesting that any local minimum with 

a value less than that would be considered as a solution). The 

minimization process was completed in 58 iterations each of 

which lasted approximately 8 seconds, resulting in a total 

computation time of 460s on a conventional laptop device. This 

suggests that employing dedicated optimization software and 

high-performance com-puting equipment would radically reduce 

this amount of post-processing. The final value of the objective 

function when pressure wave measurements were employed was 

of the order of 10
−1

. The second best identified solution gave an 

objective function value at the order of 10
1
, therefore confirming 

the optimality of the result. The identified parameters are 

exhibited in Table 1 and are in excellent agreement with the ones 

initially used in the full FE model (maximum divergence is 

considerably less than 1%). The result therefore validates the 

 
 

accuracy and robustness of the proposed scheme. 

 
TABLE I  

PROPERTIES OF NUMERICALLY MODELLED STRUCTURAL LAYERS AND 
IDENTIFIED CHARACTERISTICS THROUGH THE INVERSE WFE SCHEME  

 
Structure I   

ρ = 7850 kg/m3 
h = 1 mm  

E = 170 GPa 
v = 0.29   

Identified structural characteristics of each layer   
ρ = 7857.43 kg/m3 

h = 0.9973 mm E 
= 174.32 GPa 

 

B. Experimental validation of the identification scheme   
The proposed identification strategy is applied to a 

sandwich structure, and results are compared with the ones 
obtained experimentally in Droz et al. [20] from IWC method, 

static experiments and the Transition Frequency 

Characterization (TFC). 
 

The structure is a rectangular (60 cm × 288 cm) sandwich 
plate whose constitutive materials are a 10 mm-thick Nomex 
honeycomb core involving a 3.2 mm cell size, while propa-
gation is considered in the W-direction. The sandwich’s skins 
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Fig. 4. Time acquisition at x = 0 (black curves) and x = 3cm (red curves) with the wave envelopes depicted in the monolayer structure. The number of cycles is n0=9. The 
ToF is measured at the maximal amplitude of Hilbert transform (solid lines) signal. 
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Fig. 5. Reference wavenumber values obtained through a numerical solution of the full FE model for the monolayer structure. Results for a pressure 
propagating wave ( ) and a flexural propagating one ( ). 

 

 
are 0.6 mm-thick Hexforce with multi-axial, carbon-reinforced 
fibres. The density of the skins given by the manufacturer is 

ρs = 1451 kg.m
−3 and the core’s density is ρc = 99 kg.m

−3
. 

 
Taking into account the material characteristics provided by 

the manufacturer for the layered panel, the WFE iterative 

process is formed and the properties of the panel are identified 

through the presented Newton-like minimization scheme. The 

process depicted in Fig.6 and detailed by Algorithm 1 was 

programmed and executed with the experimentally obtained 

flexural wavenumbers serving as the reference measured val-

ues. The structural parameters to be identified are the Young’s 

 

 

modulus of the facesheet and the shear modulus of the core in 

the direction of wave propagation. A new design was therefore 

generated after each iteration, taking into account the first 

derivative of F. After converging to a minimum of F, the final 

value of the objective function was compared to the 

identification criterion. If the identification condition was not 

satisfied, a drastically altered design was evaluated by the 

iterative algorithm. An identification criterion equal to 10 was 

employed while the minimization process converged in 91 

iterations each of which lasted approximately 14 seconds, re-

sulting in a total computation time of 1274s on a conventional 
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Fig. 6. Experimental procedure for the WFE-based model updating strategy.  

 
 
Algorithm 1 Newton-like iterative scheme for identifying the 
parameters of a layered structure   

1: Input measured reference wave characteristics. Determine 

total number of local minima to be investigated and evalu-

ated. Define identification criterion for objective function 

F 
 

2: i ← 1 Input structural parameters for initial design to be 
evaluated  

3: Substitute new set of structural parameters in symbolic 

expressions of M, K, 
∂K

 , 
∂M

 and formulate the ∂βi ∂βi 

corresponding matrices for the periodic unit cell of the 
layered design under investigation  

4: Solve the WFE eigenproblem for design i. Compute WFE 
wave velocities and wavenumbers 

5: Compute  F  and  the  sensitivity  values  
∂F

  for  each 

∂βi 

structural parameter βi to be recovered 

6: if dF < Solution convergence criterion then  
7: Solution corresponds to a local minimum  
8: if F < Identification criterion then 

 
9: Solution corresponds to global identification solution 

and process can end  
10: else 
 
11: Radically alter the structural parameters and go to 

Step 3  
12: end if 
13: else  

14: 
Use ∂F in order to alter structural parameters for ∂βi 

 
converging towards a local minimum. i ← i + 1 (next 
solution step). Go to Step 3  

15: end if  
 
 
 

 

laptop device. 

 
The identified Young’s modulus for the skins of the 

laminate and the shear modulus of the honeycomb core 
through the presented scheme are compared to those of the 
experimental methods as: 

 
 

 

Emanuf = 70 GPa and Gmanuf ∈ [30 − 38] MPa 

EIWC = 62 GPa and GIWC = 37.8 MPa 

ETFC = 69.8 GPa and GTFC = 36.5 MPa 

EWFE = 69.5 GPa and GWFE = 37.1 MPa 
 
which are both in very good agreement with the values pro-
vided by the experimental methods, therefore experimentally 
validating the exhibited computational scheme. 
 

IV.  CONCLUDING REMARKS 

 
In this work a new identification technique, based on FE 

modelling and the properties of propagating waves in layered 

structures, is developed and applied. The principal 

contribution resulting from this work is a robust numerical 

NDE procedure for recovering effective structural parameters 

of complex, layered composites. 
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