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Abstract: In nature, engineering technology and daily life, wetting phenomena are widespread
and have essential roles and significance. Bionics is becoming increasingly important nowadays
and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting
process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based
on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic
surfaces with microstructures in various arrangements. The research results show that the wettability
of biomimetic functional surfaces can be regulated by regulating the shape and arrangement of
photoresist micro-pillars. At the same time, the effects of surface microstructure configuration and
roughness on the heat and mass transfer processes within the droplets were also comprehensively
studied. The results show that a biomimetic surface with cylindrical micro-pillars can effectively
inhibit the evaporative cooling effect of the liquid–vapour interface. This effect becomes more evident
with the increase in roughness, and the interface temperature difference can be reduced by up to
18%. Similarly, the biomimetic surface with cylindrical micro-pillars can also effectively promote the
evaporation rate of sessile droplets, which can be increased by about 13%. In addition, the research
also shows that regardless of the structure, substrate temperature changes will significantly impact
the wetting phenomenon of the biomimetic surface. This study aims to guide the optimal design of
biomimetic surfaces prepared based on photoresistance.

Keywords: photoresist; bionic surface; droplet evaporation; wetting phenomena

1. Introduction

Bionic principles, as an independent discipline born in the 1950s and 1960s [1], have
been widely used in the entire field of science and engineering [2–4]. Among them, func-
tional biomimetic surfaces can give a surface the unique functions it requires by simulating
the various microstructures, physics, chemistry and other characteristics of the surface or
skin of plants and animals, giving them broad application prospects [5,6]. Based on this,
the design and preparation of biomimetic functional surfaces have received more and more
attention [7,8]. Particularly due to the development of the electronics industry, biomimetic
surfaces have been further combined and applied in emerging electronic equipment fields
such as flexible devices [9], biosensors [10] and electronic skin [11] due to their unique
properties. As the cornerstone of the electronic manufacturing field, the photolithography
process determines the performance of the advanced electronic equipment and products
mentioned above [12,13]. Therefore, applying photolithography technology to prepare
biomimetic surfaces is significant to the bionic design of electronic equipment.

Regarding the preparation of biomimetic functional surfaces, whether using pho-
tolithography or other means, the design of biomimetic surface microstructures is always
crucial, and an essential part of this is the choice of a micro- or nanostructure configura-
tion [14,15]. Wu et al. [16], based on electro-spun nanofibers, fabricated a series of natural
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biological bio-inspired surfaces exhibiting anisotropic wettability in two to three direc-
tions. Kostal et al. [17] combined hydrophilic and super-hydrophobic microstructures on
a biomimetic surface to form a composite structure. The results show that a biomimetic
surface with this type of pattern can achieve a 60% increase in fog collection efficiency.
Similarly, based on fog collection, Azad et al. [18] and Choi et al. [19] have produced bionic
functional surfaces with super-hydrophilic and dual wettability microstructures, improv-
ing their fog collection efficiency. Based on natural inspiration, Jian et al. [20] prepared a
biomimetic surface with a micron-nanoscale hierarchical structure based on nano-fumed
silica, which has significant super-hydrophobic properties and excellent anti-icing and
anti-frost functions. Xu et al. [21] prepared a hierarchical micro/nano super-hydrophobic
surface on the surface of a copper metal foam through a solution immersion method, which
had a high mechanical stability. Bio-inspired by the bionics of hydrophobic springtail skin,
Yin et al. [22] prepared a biomimetic super-hydrophobic surface with a mushroom-shaped
microstructure through 3D lithography printing. They proved that the realisation of hy-
drophobicity has nothing to do with the material and is entirely due to geometric factors.
Baron et al. [23] prepared a bionic surface with a structure similar to the skin of reptiles and
insects through femtosecond laser pulse processing, which can achieve various wettability
performances from hydrophilic to super-hydrophobic. Stratakis et al. [24] also used pulsed
laser processing to process micro/nano bionic structures on the silicon surface to obtain
different degrees of wettability. Similarly, Huang et al. [25] prepared micro-silicon pillar
substrates by photolithography and studied the effects of roughness and substrate temper-
ature on the evaporation characteristics of sessile droplets. The dot/line microstructure
patterns prepared by Zhang et al. [26] can control the surface adhesion strength and wetta-
bility direction, which is reversible. Lu et al. [27] also used laser technology, bio-inspired
by the leaves of Bauhinia, to etch circular patterns on the surface of stainless steel, thus
preparing a bionic super-hydrophobic surface. Wei et al. [28] used laser technology to etch
micropapillary structures on the magnesium alloy surface and prepared biomimetic super-
hydrophobic surfaces. Li et al. [29] prepared a honeycomb bionic hierarchical structure
on the aluminium alloy surface through laser ablation technology, achieving an excellent
super-hydrophobic effect. Liang et al. [30] used high-speed wire-cutting technology to pre-
pare a bionic functional surface inspired by cicada wings on the surface of aluminium alloy,
which also has good super-hydrophobic properties. As mentioned above, extensive and
in-depth research has been conducted on the configuration of microstructures. Still, most
of the research is based on achieving the super-hydrophobic properties of the biomimetic
surface [31], and research based on conventional hydrophilic biomimetic surfaces or the
transformation of surface wettability is still relatively rare.

In the preparation process for biomimetic functional surfaces, in addition to the design
mentioned above of the surface configuration, choosing the material used to fabricate the
microstructure also has a crucial influence on the overall performance of the biomimetic
surface [32,33]. At present, profiting from the diversity of non-metallic materials, the
preparation of bionic surfaces based on them is receiving widespread attention [34]. Hu
et al. [35] used photosensitive resin as a raw material and adopted a 3D printing method to
prepare a spring bionic surface with an improved waterproof performance. Liu et al. [36]
also used 3D printing to prepare a super-hydrophobic biomimetic surface inspired by
Nepenthes peristome, with a petal-like microstructure using fluid resin. Based on fem-
tosecond laser technology, Bian et al. [37] used PDMS and silicone as raw materials to
prepare the biomimetic functional surface bio-inspired by lotus leaves, giving it anisotropy
of interfacial resistance for droplet rolling. In addition, being bio-inspired by the cactus,
Wang et al. [38] prepared a bump array arrangement on a silicon wafer through an etching
process. Then, they subjected its surface to super-hydrophobic treatment to prepare a
super-hydrophobic surface with an impressive water-collecting function. At the same time,
the preparation of biomimetic surfaces based on metal materials has also been widely stud-
ied [39,40]. Being bio-inspired by the natural surface of rice leaves, Yang et al. [41] prepared
groove and nipple bionic microstructures on an aluminium alloy surface, achieving an
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excellent hydrophobic effect. Wan et al. [42] also prepared an anti-condensation biomimetic
functional surface with a micro-groove structure based on an aluminium alloy surface,
naturally bio-inspired by the surface of a bamboo leaf. Similarly, inspired by the nature of
reed leaves, Gao et al. [43] prepared a biomimetic functional surface with anisotropic and
isotropic switchable wettability on the copper metal surface. In addition, the preparation of
bionic functional surfaces based on various other materials has also received widespread
attention. Inspired by various organisms, Feng et al. [44] successfully prepared a patterned
smooth super-hydrophilic surface based on ink direct printing, significantly improving the
water collection efficiency by about 139%. Yao et al. [45] prepared a lotus-shaped bionic
film based on fluorine-containing polymers with excellent super-hydrophobic properties.
So far, in the research on biomimetic functional surfaces, numerous materials have been
selected in the preparation process to achieve various properties. However, in these studies,
research on biomimetic functional surfaces directly based on photoresist materials is still
rare, and the influence of photoresist material characteristics on the wetting properties of
biomimetic surface microstructures remains to be studied.

In summary, due to its excellent application value, research on bionic surface mi-
crostructures has been widely conducted. However, most of the research is based on
the realisation of super-hydrophobic properties, and there are few studies on hydrophilic
biomimetic surfaces or the hydrophilic–hydrophobic transformation of biomimetic surfaces.
Moreover, most preparations of bionic surfaces are based on common metal or non-metal
materials, and there are still few studies on directly preparing surface bionic microstruc-
tures based on using photoresists as raw materials. Therefore, this paper uses the SU-8
photoresist to prepare biomimetic functional surfaces with various microstructures on
silicon substrates based on bio-inspiration. The effects of microstructure parameters on
the wettability of photoresist biomimetic surfaces and their sessile droplet heat and mass
transfer characteristics are studied using deionised water as the working fluid. Sections 1
and 2 introduce the research status and experimental preparation. In Section 3 of this paper,
the effects of micropillar shape, micropillar arrangement (roughness) and substrate temper-
ature change on the wettability of the biomimetic surface and the heat and mass transfer
process at the droplet’s liquid–vapour interface are studied. In Section 4, the research results
are summarised. This work explores the influence of biomimetic surface microstructure
design on wettability and provides effective properties of biomimetic microstructures in
photoresists.

2. Material and Experimental Setup

The bionic functional surface in this study was designed based on the concept of
bionics, which was proposed in 1958, and the term “Biomimetics” was introduced in
1991 [46]. As shown in Figure 1a, plant surfaces and animal skin in nature have some
unique characteristics, and thus, based on observing the microstructure of their surfaces,
bionic microstructures can be designed. Among a series of bionic microstructures, etching
a micro-pillar on the surface is one of the most widely used design strategies [47,48]. Based
on this, as shown in Figure 1b, this study also used SU-8 as a raw material to prepare micro-
pillar structures on the silicon wafer to realise the preparation of biomimetic functional
surfaces. The morphology of the prepared biomimetic functional surface is shown in
Figure 1c. Some physical properties of the photoresist SU-8 2000 series are shown in
Table 1.

Table 1. Basic physical properties of photoresist SU-8 2010.

Physical Properties Approximate Values

Glass Transition Temperature (◦C) 210
Thermal Stability (◦C @ 5% wt. loss) 315

Thermal Conductivity (W/mK) 0.3
Coeff. of Thermal Expansion (ppm) 52

Adhesion Strength (mPa) 38
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the parameters that determine the configuration and arrangement of the prepared micro-
pillars are mainly the pillar spacing S, the pillar height H and the pillar diameter (cylin-
drical pillar)/side length (square pillar) D. The configuration parameters of each surface 
are shown in Table 2. It is worth mentioning that, considering the processing accuracy of 
SU-8 photoresist (0.5 to 200 µm), the processing structure parameters were selected be-
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the roughness factor on the surface can also be calculated based on Equations (1) and (2), 
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Figure 1. (a) Common bionic prototypes in the biomimetic surface design process (b) raw materi-
als used for surface preparation; and (c) schematic diagram of the three-dimensional structure of
photoresist micropillars.

The specific process of preparing the micro-pillar structure on the silicon wafer surface
is shown in Figure 2. As shown in the figure, the substrate was first cleaned with acetone
solvent, and after cleaning, it was baked at 200 ◦C for 30 min to remove surface water
molecules. After that, the SU-8 photoresist was dispersed and spin-coated onto the substrate
surface using a spinner. It is worth mentioning that the SU-8 photoresist has a wide
range of applications in micro–nano devices, electronic technology and even biomedical
fields, thanks to its high resolution and stable thermo-electromechanical and chemical
properties [49–51]. Therefore, based on its wide range of applications and potential, SU-8
was selected as the material for directly preparing surface bionic microstructures in this
paper. Then, the photoresist was soft-baked and slowly cooled. After that, the photoresist
was exposed to ultraviolet light through a mask reticle to prepare the desired pattern and a
solvent was used to remove the unexposed areas. Then, the final stage was to hard-bake the
photoresist at 150–200 ◦C to permanently solidify it, ultimately obtaining the microstructure
required for the design. Meanwhile, it also can be seen in Figure 2 that the parameters that
determine the configuration and arrangement of the prepared micro-pillars are mainly the
pillar spacing S, the pillar height H and the pillar diameter (cylindrical pillar)/side length
(square pillar) D. The configuration parameters of each surface are shown in Table 2. It
is worth mentioning that, considering the processing accuracy of SU-8 photoresist (0.5 to
200 µm), the processing structure parameters were selected between 10 and 50 microns.
At the same time, based on various configuration parameters, the roughness factor on the
surface can also be calculated based on Equations (1) and (2), and the result is also listed in
Table 2.

Table 2. Biomimetic surface microstructural parameters.

CS-1 CS-2 CS-3 SS-1 SS-2 SS-3

Average height H (µm) 15 50 30 30 30 40
Diameter/Side Length D (µm) 20 20 30 30 20 20

Spacing S (µm) 15 40 20 20 20 20
Roughness factor (f ) 1.769 1.873 2.131 2.44 2.50 3.0
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Figure 2. Photoresist biomimetic surface production process.

In addition, the experimental equipment and process used in the study of sessile
droplet evaporation are also shown in Figure 3. The droplets can be stably placed through
the pipette (London LaboQuip, London, UK) on the biomimetic functional surface, which
has a heating device at the bottom to control the bottom surface temperature between 50
and 80 ◦C. During the evaporation process of the droplet, the droplet profile, such as the
change in its contact angle and height, is measured in real-time by the Optical Tensiometers
(Biolin Scientific, Espoo, Finland). At the same time, during the evaporation process, the
temperature distribution at the droplet liquid-vapour interface is also recorded by the IR
Camera (FLIR LLC, Wilsonville, OR, USA). At the same time, as the bottom temperature
changes, the temperature of the droplet will also change, and its thermophysical properties
will also change. The changes in the thermophysical parameters of deionized (DI) water
under different temperature conditions are shown in Table 3.
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Figure 3. Equipment and operation procedures for the evaporation experiment of sessile droplets on
bionic surfaces.

Table 3. Physical properties of deionized water at different temperatures.

50 ◦C 60 ◦C 70 ◦C 80 ◦C

Density (g/cm3) 0.98804 0.98321 0.97778 0.97180
Viscosity (mPa·s) 0.5494 0.4688 0.4061 0.3635

Surface Tension (dyn/cm) 67.91 66.18 64.42 62.61
Thermal Conductivity (mW/m·K) 640.60 650.91 659.69 667.02



Biomimetics 2024, 9, 724 6 of 17

In addition, there are different calculation methods for the roughness factor for square
and cylindrical pillars. When the surface microstructure is a square pillar, the roughness
factor can be calculated by Equation (1):

f =
(S + L)2 + 4 · L · H

(S + L)2 (1)

In addition, when the surface microstructure is a cylindrical pillar, the roughness
factor can be calculated by Equation (2):

f =
(S + D)2 + π · D · H

(S + D)2 (2)

At the same time, the Wenzel model could be expressed as:

cosθ∗ = r · cosθ (3)

where θ* is the measured contact angle, θ is the contact angle with a smooth surface, and r
is the surface roughness,

In addition, the Cassie–Baxter equation could be expressed as:

cosθ∗ = r · fSL · cosθ + fSL − 1 (4)

where the fSL is the proportion of the actual wetted surface.

3. Results and Discussion
3.1. Effect of Microstructure Configuration on Biomimetic Surface Wettability

This study first investigated the effect of micro-pillar shape on the performance of
biomimetic functional surfaces. First, two surfaces, SS-1 and CS-3, were selected, whose
surface microstructures have similar dimensions (pillar height: 25 µm; pillar spacing: 20 µm;
pillar side length/diameter: 30 µm). The changes in the contact angle and dimensionless
contact diameter during the evaporation of a 1.0 µL DI water droplet on the surface
are shown in Figure 4, where d0 is the initial contact diameter, and d is the real-time
contact diameter during the evaporation process. The evaporation process of the droplet’s
evaporation when the substrate temperature is 50 ◦C is shown in Figure 4a. The contact
angle of the droplet on the SS-1 surface is more significant than that of the droplet on
the CS-3 surface, with a difference of about 9%. It is also worth noting that the contact
angle on the SS-1 surface is greater than 90◦, which is hydrophobic, while the contact angle
on the CS-3 surface is less than 90◦, which is hydrophilic. As evaporation proceeds, the
contact angle gradually decreases. At the end of evaporation, since the measurement of
the contact angle of the droplet becomes difficult, the change in the contact angle of the
droplet is represented by a dotted line. Therefore, in this paper, since the last stage of
evaporation occupies a very short period of the entire process and has a minimal impact
on the overall process, it is ignored to simplify the calculation and analysis. At the same
time, the contact line remains fixed on the SS-1 or CS-3 surface in the early stage of droplet
evaporation. Still, as the evaporation proceeds, the contact line of the droplet begins to
shrink, and the contact diameter decreases by about 15%. Therefore, the droplet experiences
two evaporation modes on the biomimetic surface: the constant contact radius (CCR) mode
and the Mixed mode. The CCR mode refers to the contact radius remaining unchanged.
In contrast, the Mixed mode refers to the contact radius and contact angle decreasing
simultaneously during evaporation. In addition, the process of the change in the droplet
when the substrate temperature increases from 50 ◦C to 60 ◦C, 70 ◦C or 80 ◦C is shown in
Figures 4b, 4c and 4d, respectively. The total evaporation life of the droplets decreases with
the increase in temperature, and the evaporation mode of the droplets still maintains the
two modes of CCR and Mixed.
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At the same time, the changes in the dimensionless height of the droplet on CS-3 and
SS-1 under different substrate temperature conditions are shown in Figure 5a, where h0
is the initial height of the droplet and h is the real-time height of the droplet during the
evaporation process. With the increase in temperature, the rate of change in droplet height
gradually increases, increasing by about 4 times from 50 ◦C to 80 ◦C, which is caused by the
significant acceleration of the evaporation rate. At the same time, the height reduction rate
of the droplet on the CS-3 surface is always slightly higher than that on the SS-1 surface,
which is due to the stronger wettability of the CS-3 surface. In addition, the changes in
the droplet’s initial equilibrium contact angle (ECA) under different surface and substrate
temperatures are shown in Figure 5b. On both the CS-3 and SS-1 surfaces, the contact
angle of the DI water droplet decreases with the increase in the substrate temperature,
and the average decrease rates are −0.19◦/◦C and −0.18◦/◦C, respectively. In addition,
the droplets on the CS-3 surface are always in a hydrophilic state (ECA < 90◦), while
the droplets on the SS-1 surface are basically in a hydrophobic state (ECA > 90◦). This
phenomenon can be attributed to the fact that the droplets on the CS-3 surface are in the
Wenzel state, while the droplets on the SS-1 surface are in the Cassie–Baxter state.
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3.2. Effect of Microstructure Arrangement on Biomimetic Surface Wettability

The previous Section studied the influence of the shape of the micropillar struc-
ture on the wettability of biomimetic surfaces. In this section, we will comprehensively
explore the effects of the configuration and arrangement of micro-structures on the wet-
tability of biomimetic surfaces. The evaporation process of the droplet on the different
surfaces when the substrate temperature is 50 ◦C, 60 ◦C, 70 ◦C and 80 ◦C is shown in
Figures 6a, 6b, 6c and 6d, respectively. Furthermore, the contact angle of the droplet on
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the SS surface is always greater than that on the CS series surface, which indicates that
the wettability of the CS series surface is always more substantial than that of the SS
series surface. In addition, as the evaporation proceeds, the contact angle of the droplet
continuously decreases, while the contact line is in a pinned state in the first half and
then shrinks as the evaporation proceeds. Therefore, no matter which surface is being
used, the droplet evaporation process will transition from the CCR to the Mixed mode. In
addition, it can be seen from Figure 6b–d that when the substrate temperature increases, its
evaporation process does not change significantly, except that the lifetime is significantly
reduced. The droplet’s evaporation mode still transitions from the CCR to the Mixed mode.
The wettability of the CS series surface is always more substantial than that of the SS series
surface. In addition, it can also be found that the SS series surfaces maintain the droplet
pinning state for a longer time, contributing to its ability to produce a hydrophobic state.

In summary, the size and arrangement of biomimetic surface microstructures signifi-
cantly impact wettability. For the purposes of comparison, the magnitudes of the initial
equilibrium contact angles of the droplets on the CS and SS series surfaces are shown
in Figure 7a. The ECA of the droplets on the SS series surface is greater than 90◦, and
they are all hydrophobic. However, the ECA of the droplets on the CS-1 surface is greater
than 90◦ at low temperatures (Tsub < 70 ◦C), and the ECA gradually decreases and is less
than 90◦ as the temperature rises to 80 ◦C. This phenomenon might be attributed to the
change in the droplet contact angle from the Cassie–Baxter state to the Wenzel state. In
addition, on the CS-2 and CS-3 surfaces, the ECA of the droplets was consistently below
90◦, indicating their hydrophilicity. Moreover, SS series surfaces can increase the contact
angle by about 12% on average compared with CS series surfaces. This could be attributed
to the square pillar microstructure having denser gaps, making it easier for droplets to
be in the Cassie–Baxter wetting state. Therefore, the cylindrical micro-pillars can achieve
the hydrophobic properties ofthe biomimetic surface under certain conditions. In contrast,
this property is more accessible using a square micro-pillar structure. At the same time,
on any surface, the ECA of DI water droplets decreases with increasing temperature, and
the average rate of decrease is about 0.17◦/◦C. At the same time, under different substrate
temperatures and surfaces, the changes in the work of adhesion (WoA) at the solid–liquid
interface at the initial equilibrium state of the droplet are shown in Figure 7b. The work
of adhesion on the CS series surface is always greater than that on the SS surface, with
the maximum difference reaching up to 36%. This means that more work is required to
separate the droplet on the CS series surface or that more energy is released during the
wetting process of the droplet on the CS series surface.
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3.3. Effect of Microstructure Arrangement on Sessile Droplet’s Liquid–Vapour Interface
Heat Transfer

In addition to the wetting characteristics, this article will continue by exploring the
influence of biomimetic functional surface microstructure on the sessile droplet interfacial
heat transfer characteristics. Taking the CS-3 and SS-3 surfaces as examples, when the
substrate temperatures are 50 ◦C and 80 ◦C, the temperature distribution changes at the
droplet’s liquid–vapour interface when the substrate temperatures are 50 ◦C and 80 ◦C
are shown in Figures 8a and 8b, respectively. It can be seen, intuitively, that no matter if
the substrate temperature increases from 50 ◦C to 80 ◦C, the temperature distribution of
the liquid–vapour interface of the droplet on the CS-3 surface will be more uniform each
period. In addition, as the evaporation process proceeds, the temperature of the droplet’s
liquid–vapour interface gradually increases. These phenomena can be mainly attributed to
the fact that, as evaporation proceeds, the height of the droplets gradually decreases, which
enhances the heat transfer inside the droplets and thus gradually increases the temperature
of the liquid–vapour interface.
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In addition, it can be seen from Figure 8 that the temperature distribution of the liquid–
vapour interface of the droplets on the SS-3 surface is more uneven at almost every stage
of droplet evaporation. At the same time, the temperature distribution at the central line
position of the droplet at the beginning, middle and end of evaporation under the substrate
temperature range from 50 to 80 ◦C is shown in Figure 9. Among them, the temperature
distribution when the droplet is located on the CS-3 surface when the substrate temperature
increases from 50 ◦C to 80 ◦C is shown in Figures 9a, 9c, 9e and 9g, respectively. As the
substrate temperature increases, the non-uniformity of the temperature of the droplets
in the initial stage also increases, up to 37%. This phenomenon also occurs on the SS-3
surface, as shown in Figure 9b,d,f,h. In addition, by comparison, it can be found that, under
the same substrate temperature conditions, the temperature distribution of the droplet’s
liquid–vapour interface on the SS-3 surface is more uneven, which could be attributed to
the hydrophobicity of the SS series surface.
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Figure 9. The temperature distribution at the centre-line of the droplet’s liquid–vapour interface at
different periods when the substrate temperature of the CS-3 surface is (a) 50 ◦C, (c) 60 ◦C, (e) 70 ◦C
or (g) 80 ◦C; the temperature distribution at the centre line of the droplet’s liquid–vapour interface at
different periods when the substrate temperature of the SS-3 surface is (b) 50 ◦C, (d) 60 ◦C, (f) 70 ◦C
or (h) 80 ◦C.
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In addition, the droplet’s liquid–vapour interface’s maximum temperature differ-
ence (Tdiff, max) under various surface and substrate temperature conditions is shown in
Figure 10a. The maximum temperature difference refers to the temperature difference
between the centre of the droplet’s liquid–vapour interface and the contact line, such
as the mark in Figure 8. On any surface, the maximum temperature difference in the
droplets always increases with increasing substrate temperature, up to a difference of 37%.
At the same time, when the substrate temperature increases, the gap in the maximum
temperature difference between different surfaces remains unchanged basically, such as
the maximum temperature difference between the SS-3 and CS-3 surfaces kept at 2.5 ◦C
when the substrate temperature rises from 50 ◦C to 80 ◦C. At the same time, when the
substrate temperature is in the range of 50–80 ◦C, the CS surface can reduce the maximum
temperature difference by about 18% compared with the SS surface. These phenomena
indicate that the evaporative cooling effect at the droplet’s liquid–vapour interface will be
enhanced as the biomimetic surface hydrophobicity increases. In addition, the changing
trends in the average evaporation rate of droplets on various surfaces under different sub-
strate temperature conditions are also shown in Figure 10b. As the temperature increases,
the evaporation rate of the droplets increases significantly, increasing by about 4 times on
average from 50 ◦C to 80 ◦C. In addition, the evaporation rate of the droplets on the SS
series surface is always lower than that on the CS series surface, with an average decrease
of about 13%, which can be attributed to the dual effects of decreased internal heat transfer
of the droplets and enhanced interfacial evaporative cooling effect.
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4. Conclusions

Inspired by natural bionics, this study designed a bionic functional surface with a
micro-pillar structure through photolithography technology. Based on this, the effects
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of the microstructure structural parameters and arrangement on the biomimetic surface
wettability and the heat and mass transfer process at the liquid–vapour interface of the
sessile droplets were further studied. The research results show that under conditions
of the same or similar size parameters, the arrangement and structural changes of the
photoresist bionic micro-pillars will change the gap tightness and roughness factor, which
may affect the surface wettability. In addition, the substrate temperature will also affect
the wettability. As the temperature increases, the contact angle of the DI water droplets
on any surface will decrease, enhancing the biomimetic surface wettability. In addition,
the microstructure of the biomimetic surface also significantly impacts the heat and mass
transfer process at the liquid–vapour interface of the sessile droplets. Studies have shown
that, compared with the CS series surfaces, the liquid–vapour interface of the droplets
on the SS series surfaces has a more uneven temperature distribution, with an average
difference of up to 18%. This can be attributed to the fact that the SS series surface not
only increases the thermal resistance inside the droplet but also causes a more obvious
evaporative cooling effect at the liquid-vapour interface. Naturally, under the combined
effect of these factors, the evaporation rate of droplets on the SS series surface is suppressed,
and the reduction can reach 13% compared with the CS series surface. In addition, this
paper prepared a biomimetic functional surface based on SU-8 as the raw material. This
study shows the feasibility of using SU-8 directly to prepare the required functional surface
with weak hydrophobic and weak hydrophilic properties. This research method is expected
to guide the use of SU-8 in the preparation of bionic equipment in the fields of biomedicine,
semiconductors, electronic packaging, solar energy and even micro fuel cells.
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