

Accepted Manuscript

HyperSPAM: A study on Hyper-heuristic Coordination Strategies in
the Continuous Domain

Fabio Caraffini, Ferrante Neri, Michael Epitropakis

PII: S0020-0255(18)30851-X
DOI: https://doi.org/10.1016/j.ins.2018.10.033
Reference: INS 14014

To appear in: Information Sciences

Received date: 5 September 2018
Revised date: 16 October 2018
Accepted date: 23 October 2018

Please cite this article as: Fabio Caraffini, Ferrante Neri, Michael Epitropakis, HyperSPAM: A study on
Hyper-heuristic Coordination Strategies in the Continuous Domain, Information Sciences (2018), doi:
https://doi.org/10.1016/j.ins.2018.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ins.2018.10.033
https://doi.org/10.1016/j.ins.2018.10.033

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

HyperSPAM: A study on Hyper-heuristic Coordination
Strategies in the Continuous Domain

Fabio Caraffini, Ferrante Neri

Institute of Artificial Intelligence, School of Computer Science and Informatics, De Montfort University,

Leicester, United Kingdom

Michael Epitropakis

Data Science Institute, Department of Management Science, Lancaster University Management School,
Lancaster University, Lancaster, United Kingdom

Abstract

This article proposes a simplistic algorithmic framework, namely hyperSPAM, com-

posed of three search algorithms for addressing continuous optimisation problems. The

Covariance Matrix Adaptation Evolution Strategy (CMAES) is activated at the begin-

ning of the optimisation process as a preprocessing component for a limited budget.

Subsequently, the produced solution is fed to the other two single-solution search al-

gorithms. The first performs moves along the axes while the second makes use of a

matrix orthogonalization to perform diagonal moves.

Four coordination strategies, in the fashion of hyperheuristics, have been used to

coordinate the two single-solution algorithms. One of them is a simple randomized

criterion while the other three are based on a success based reward mechanism. The

four implementations of the hyperSPAM framework have been tested and compared

against each other and modern metaheuristics on an extensive set of problems including

theoretical functions and real-world engineering problems.

Numerical results show that the different versions of the framework display broadly

a similar performance. One of the reward schemes appears to be marginally better than

the others. The simplistic random coordination also displays a very good performance.

Email address: fabio.caraffini@dmu.ac.uk (Fabio Caraffini)
URL: www.tech.dmu.ac.uk/~fcaraf00 (Fabio Caraffini)

Preprint submitted to Information Sciences October 23, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

All the implementations of hyperSPAM significantly outperform the other algorithms

used for comparison.

Keywords: Automated design of algorithms, Hyper-heuristics, Memetic computing,

Optimization algorithms, Adaptive Operator Selection

1. Introduction

The development of modern technologies imposes the integration of computational

intelligence and soft computing techniques in robotics and engineering [36, 21, 46]

with the aim of making accurate and often real-time decisions [42, 24].

Behind a decision problem there is an optimisation problem and behind a machine5

which makes a decision there is often a search algorithm seeking for the optimal solu-

tion or its approximation, see [50]. The design of an algorithm is often not a trivial task

and the fact that there is no universal optimiser [48, 20] suggests that efficiently de-

signed algorithms should specifically address the features of the problems to optimise.

Following this consideration, for over thirty years, researchers in metaheuristic op-10

timisation attempted to overcome the difficulties of algorithmic design. A popular

approach consists of integrating within the algorithm the knowledge of the problem

[16, 35, 51] and a domain specific design based on tuning and ad-hoc operators.

Another major approach is the use of multiple algorithms/operators in the hope that

algorithmic frameworks making use of multiple search strategies behave flexibly and15

adapt to solve a diverse array of problems. In their early implementations, algorithms

employing this approach are known as hybrid algorithms. Subsequently, the research in

the field of hybrid approaches focussed on the automatic/semiautomatic coordination

of the various search strategies integrated into the framework. However, historically,

the nomenclature of modern hybrid algorithms is not based on the coordination strat-20

egy. On the contrary, the nomenclature reflects how researchers interpret the concept

of hybridisation. A possible incomplete classification of hybrid algorithms is the fol-

lowing.

• Portfolio algorithms [37, 7]: a hybrid algorithm is a library of search algorithms

that share a computational budget to concurrently contribute to the solution of the25

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

problem.

• Hyperheuristics [3, 2, 10]: a hybrid algorithm is a library of search algorithms

endowed with a coordination engine that selects and activates the various algo-

rithms, or generates dedicated search components for the problem at hand.

• Memetic Computing algorithms [33, 34, 49, 22]: a hybrid algorithm is a struc-30

ture which contains a main solver and multiple search algorithms sitting within

an algorithmic framework.

• Ensemble of algorithms/strategies [31, 30]: multiple and complementary ele-

ments (search strategies or generic elements to handle issues in optimisation) are

used within an algorithmic framework.35

It must be remarked that this classification, based on historical nomenclature, does

not highlights the algorithmic differences among the approaches but only the view/algorithmic

philosophies of the researchers [43, 11]. As it can be noticed from their descriptions,

these four categories have overlapping features and cannot be distinguished as clear

separate algorithmic philosophies.40

Within the context of optimisation performed by hybrid algorithms and their de-

sign issues, this article investigates the role and effectiveness of diverse coordination

strategies for search algorithms. This study is performed on a set of a few and simple

search algorithms by embracing some studies previously carried out in the literature,

that is the so called Ockham’s razor for Memetic Computing. More specifically, paper45

[23] experimentally demonstrates that many hybrid search algorithms are excessively

complex, see also [40, 27]. The simple single-solution algorithm composed of three

search strategies has been shown to be able to outperform complex population-based

algorithms. Following this simplicity philosophy, in [4] an algorithmic framework is

proposed, namely Parallel Memetic Structure, which makes use of two simple local50

search components to alternitavely perturb a single solution. The Ockham’s razor has

been employed in other studies [5, 38, 39].

In [6] also a simplistic design inspired by the Ockham’s razor is proposed. The al-

gorithm in [6] achieves a very good performance by using a Parallel Memetic Structure

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[4] and a pre-processing component based on the Covariance Matrix Adaptive Evolu-55

tion Strategy (CMAES) [18] as well as an estimator of the problem separability. The

estimation of the separability was then used to fix an activation probability for the other

search algorithms. The resulting framework was named Separability Analyzer for Au-

tomatic Memes (SPAM). In [11] a randomised version of the SPAM framework has

been proposed and tested.60

The present article makes use of the search algorithms of the SPAM framework and

proposes, instead of exploiting the information about the separability, the integration

within it of four automated adaptive strategies for coordinating the search algorithms.

The four resulting implementations have been tested and compared among them and

against modern metaheuristics as well as against competition winner algorithms. Re-65

sults are given for two theoretical testbeds and three real-world problems. Since the

proposed framework is based on the SPAM search algorithms and, like Hyperheuris-

tics, makes use of coordination components we will refer to it as hyperSPAM.

The remainder of this article is organised in the following way. Section 2 described

the component of the framework as well as the three coordination strategies. Section70

3 describes the experimental setup, shows and comments the results of the proposed

framework. Section 4 gives the conclusion of this study.

2. The hyperSPAM Framework

Before analysing the components of the framework, let us state the general problem

and define the notation. Without a loss of generality, we will refer to the minimization75

problem of an objective function (or fitness) f (x), where the candidate solution x is a

vector of n design variables x1,x2, . . . ,xn in an n-dimensional decision space D. Thus,

the optimisation problem considered in this paper consists of the detection of that so-

lution x∗ ∈ D such that f (x∗) < f (x), and this is valid ∀x ∈ D. Array variables are

highlighted in bold face throughout this paper.80

The proposed hyperSPAM is composed of the following three search algorithms:

• the Covariance Matrix Adaptation Evolution Strategy

• the S algorithm

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• the R algorithm

and a re-sampling component to prevent from search stagnation.85

The following sections describe separately each search algorithm

2.1. Pre-processing: Covariance Matrix Adaptation Evolution Strategy

At the beginning of the optimisation process, a set of µ candidate solutions is sam-

pled within D. For a limited portion of the budget, the Covariance Matrix Adaptation

Evolution Strategy (CMAES) with rank-µ-update and weighted recombination, see90

[18], is applied. This optimisation method consists of

1. sampling from a multivariate distribution λ points;

2. compute their fitness values;

3. update the shape of the multivariate distribution in order to progressively adapt

to the basins of attraction.95

The sampling of the generic kth individual at the generation g+1 is given by:

x(g+1)
k ∼N

(
〈x〉gw,(σg)2 Cg

)
(1)

where N
(
m,σ2C

)
is a multivariate normal distribution of mean m, stepsize σ , and

estimated covariance matrix C. The mean value 〈x〉gw is a weighted sum of the µ

candidate solutions (µ ≤ λ) displaying the best performance at the generation g, see

[18] for details.

The stepsize σ and covariance matrix are progressively updated at each generation.100

The update rule for the covariance matrix is:

Cg+1 = (1− ccov)Cg + ccov
1

µcov
pc

g+1
(
pc

g+1
)T

+

+ccov

(
1− 1

µcov

)
∑µ

i=1

(
xg+1

i−b −〈x〉
g
w

)(
xg+1

i−b −〈x〉
g
w

)T

where xg
i−b denotes the ith best individuals at the generation g, ccov is a parameter

determining the learning rate for the estimated covariance matrix C, and pc is a vector

namely evolution path that determines the adaptation of the covariance matrix. The

update formula is given by:105

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

pc
g+1 = (1− cc)pc

g +Hg+1
σ
√

cc (2− cc)

√µe f f

σg

(
〈x〉g+1

w −〈x〉gw
)

where µe f f =
1

∑µ
1 w2

i
, cc is a parameter, Hg+1

σ is a function defined by cases that can

take values 0 or 1. Also the stepsize σg+1 is iteratively updated. Details about CMAES

implementations can be found e.g. in [19], and [18]. At the end of each generation the

µ individuals displaying the best performance are selected and used to compute 〈x〉g+1
w .

The CMAES is run only once and with a limited computational budget. At the end110

of this CMAES run, that is the preprocessing of the algorithm, a final population is cal-

culated. Within this population, the candidate solution x with the highest performance

is processed by the single solution algorithms described in the following sections.

2.2. The first single solution search algorithm: the S algorithm

The S implementation requires a generic input solution x and a trial solution xt.

This search algorithm is based on one of the operators used in [45]. S perturbs the

candidate by computing, for each coordinate i,

xt
i = xi−ξ , (2)

where ξ is the exploratory radius. Subsequently, if xt outperforms x, the solution x is

updated (the values of xt are copied in it), otherwise a half step in the opposite direction

is performed:

xt
i = xi +

ξ
2
. (3)

Again, xt replaces x if it outperforms it. If there is no update, i.e. the exploration was115

unsuccessful, the radius ξ is halved. This exploration is repeated for all the design

variables. We indicate with x′ the output of the S implementation. For the sake of

clarity, Algorithm 1 describes the working principles of the S search algorithm.

2.3. The second single solution search algorithm: the R algorithm

The second search algorithm is the Rosenbrock algorithm (R), see [41]. At the

beginning of the optimisation of this component, R is similar to S as it explores each

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Pseudo-code of the S search algorithm.
1: INPUT x

2: while condition on the local computational budget do

3: xt = x

4: for i = 1 : n do

5: xt
i = xi−ξ

6: if f
(
xt
)
>= f (x) then

7: xt
i = xi +

ξ
2

8: end if

9: if f
(
xt
)
< f (x) then

10: x = xt

11: end if

12: end for

13: if x 6= xt then

14: ξ = ξ
2

15: end if

16: end while

17: OUTPUT x

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of the n directions, perturbing the input solution x with an initial step size vector h. A

matrix A is also initialized as the identity matrix. Each step of this algorithm consists

of the following. As long as new improvements are found, for j = 1,2, . . . ,n, a new

trial point xt is generated perturbing the each ith design variable of solution x in the

following way:

xt
i = xi +h j ·Ai, j (4)

for i = 1,2, . . . ,n. In case of success (the trial solution outperforms the solution x),

x is updated and the step size is increased of a factor α (h j = α · h j), otherwise it is

decreased by means of a factor β and the opposite direction is tried (h j = −β · h j).

As said, this procedure is repeated until it is possible to improve upon the solution

x. Once every possible success has been found and exploited in each base direction,

the coordinate system is rotated towards the approximated gradient by means of the

Gram-Schmidt orthogonalization procedure. This operation results into an update of

the matrix A. After the orthogonalization, the step size vector h is reinitialized and the

procedure is repeated, using the rotated coordinate system, perturbing again the current

elite x according to Eq. (4): it is important to notice that, when a rotated coordinate

system is used, i.e. the matrix A is no longer an identity matrix, this trial generation

mechanism corresponds to a diagonal move by following the direction given by the

gradient. The Rosenbrock Algorithm terminates when a stop criterion is met. The

stop criterion is given by two conditions. The first criterion is based on the minimum

element of the perturbation vector h, the second is based on the minimum difference

between xt and x design variables. More specifically, R is continued until the following

condition is true:

min(|h|)> ε OR min(|xt−x|)> ε (5)

where min() is the minimum vector element. If for a step there is no improvement at120

all, only the first condition is considered. At the end of the R application the output is

indicated with x′.

Algorithm 2

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TAlgorithm 2 Pseudo-code of the R search algorithm

INPUT x, α , β , ε

initialise h to 0.1 of the ranges of the decision space D

initialise A = eye(n) identity matrix of size n

while min(|h|)> ε AND min(|xt−x|)> ε do

while improvements can be found do

for j = 1 : n do

for i = 1 : n do

xt
i = xi +h j ·Ai, j

end for

if f
(
xt
)
<= f (x) then

h j = αh j

x = xt

Flag improvement tracker

else

h j =−βh j

end if

end for

end while

Apply the Gram-Schmidt orthogonalisation to the basis of vectors represented by

the matrix A and generate a new matrix A

end while

OUTPUT x

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.4. Coordination mechanisms

After the CMAES activation, S and R are alternatively activated in order to im-125

prove upon the solution x. The activation of the two search algorithms (operators) is

coordinated by selective hyper-heuristic mechanisms, i.e., Adaptive Operator Selection

(AOS) models [2, 15, 10].

The adaptive operator selection models utilize theoretical models and empirical

algorithms from a wide variety of different scientific fields, to select the most suitable130

action/operator to be applied in the next step, based on their historical performance

gains. In the proposed, framework the AOS models (M) select at each step between

the S and R algorithms. A credit assignment module (C) is devoted to estimate the

quality of each algorithm and assign a score, or credit, to the applied algorithm based

on its performance gains.135

Next, we briefly present in detail the two main modules of the coordination mech-

anism, the utilized credit assignment module (Section 2.4.1) and the adaptive operator

selection models (Section 2.4.2).

2.4.1. Credit assignment module

The main role of the credit assignment module is to assess the quality of all avail-140

able actions to be taken based on their historical performance. The well performing

actions should have better quality than the worst performing actions, at the current

state of the search based on their search effectiveness.

Let A = {α1,α2, . . . ,ακ} denote the set of the κ available search algorithms. In our

simplistic case, κ = 2, that is α1 = S and α2 = R. In other words, the set of search145

algorithms is A = {S,R}.
Let us consider a generic search algorithm αi and let us indicate with xin and xout

the solution before and after the application of αi, respectively. Let us assume that

xout is initialized equal to xin and updated only when αi has improved upon the initial

solution. Under these conditions, the fitness improvement sαi of an operator at the time

t expressed as

sαi (t) = f
(
xout)− f

(
xin
)

(6)

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is recorded and stored in a dynamic array Sαi . Clearly, the index sαi (t) is equal to zero

if no improvement is achieved.

After t times the search algorithm αi has been activated the reward rαi (t) is calcu-

lated:150

rαi (t) =
∑
|Sαi |
j=1 sαi(j)

|Sαi |
(7)

where |Sαi | denotes the cardinality of the set Sαi .

It can be noted that the reward is the historical average improvement of αi. On the

basis of the credit assignment, an empirical correction is performed in order to reward

those search algorithms that recently led to improvements rather than those occurred in

earlier stages of the search process, see [44, 15].155

In order to achieve this aim, the quality index qαi (t) of the search algorithm αi at

the time t is calculated by:

qαi (t) = rαi (t)+ γ (sαi (t)− rαi (t))

= (1− γ)rαi (t)+ γsαi (t) (8)

where γ ∈ (0,1] is the adaptation rate which can amplify the influence of the most

recent rewards over their history.

2.4.2. Adaptive Operator Selection160

The quality index calculated in eq. (8) is used by AOS components to assign a

selection probability to each search algorithm. In this study, we selected the following

adaptive mechanisms.

Random Selection:. Random Selection (RS) is a simple sampling procedure that draw

values from a uniformly random distribution, as such, the two search algorithms have165

the same probability (0.5) of being selected throughout the algorithm [1, 26]. Random

Selection is used here as a control mechanism in order to investigate the effectiveness

of the adaptive schemes.The algorithm employing the random selection is here referred

to as hyperSPAM-RS.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Probability Matching:. Probability Matching (PM) [44] is a probabilistic model that170

assigns to each operator a probability proportional to its empirical quality, while re-

specting the remaining operators. Specifically, given a set of κ available operators

A = {α1,α2, . . . ,ακ} and a probability vector p(t) = {pα1(t), pα2(t), . . . , pακ (t)} of

the selection probabilities for all operators, where initially all probabilities are equal

(pαi(t) = 1/κ,∀αi ∈ A).175

PM uses the following update rule rule to adapt the activation probabilities of each

search algorithm:

pαi(t) = pmin +(1−κ · pmin)
qαi(t)

∑κ
i=1 qαi(t)

(9)

where pmin ∈ [0,1] is the minimal probability value of each operator, which ensures

that the application of each operator will not cease throughout the search process [44]

and qαi (t +1) is the quality index of αi at the time t +1 calculated in eq. (8).

The algorithm employing this coordination mechanism is here referred to as hyperSPAM-

PM.180

Adaptive Pursuit:. Adaptive Pursuit (AP) is a simple probabilistic model that follows

a winner-takes-all strategy [44]. It attempts to address PM’s drawback by increasing

the probability of the best search algorithm (αi?), while simultaneously decreasing the

probabilities of the remaining operators, according to the following formulas:

αi? = arg max
i=1,2,...,κ

{qαi(t +1)} (10)

pαi(t +1) =

pαi(t)+β (pmax− pαi(t)), if αi = αi?

pαi(t)+β (pmin− pαi(t)), otherwise
. (11)

where β ∈ [0,1] is a user-defined parameter (i.e., learning rate) that amplifies the greed-

iness of the winner-takes-all strategy. Higher values of β strongly favor the best oper-

ator.

The algorithm employing this coordination mechanism is here referred to as hyperSPAM-

AP.185

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Multinomial Distribution Tracking:. Multinomial distribution tracking (MT) makes

uses of the multinomial distribution with an exponential smoothing mechanism to

model an adaptive operator selection mechanism. The underpinning idea of this adap-

tive scheme is that the selection probabilities (i.e., distribution parameters) quickly

react to the changes in performance of the search algorithms [12, 9], whilst it utilizes a190

forgetting mechanism to amplify recent observations and forget historical ones.

More specifically, Multinomial distribution tracking (MT) utilizes a Recursive Least

Squares adaptive filter with an exponential weighted factor on the multinomial distribu-

tion. It essentially incorporates an exponential weighted factor (also known as forget-

ting factor λ ∈ [0,1]) in the log-likelihood of a multinomial distribution to discount the195

impact of past observations and enable adaptation of the estimated parameter values.

The parameters of the multinomial distribution are estimated through a Maximum

Likelihood Estimator of the new log-likelihood. As such, the selection probability of

each action pαi(t +1) = θ̂ ML
αi

can be estimated according to the following formulas:

pαi(t +1) =
nαi(t)

∑κ
i=1 nαi(t)

(12)

nαi(t) = nαi(t−1)+Dαi(t), (13)

for t = 1,2, · · · and nαi(0) = 0, where nαi(t) represents the effective window width and200

Dαi(t) indicates the number of successes of each action αi at time t.

To calculate the number of successes Dαi(t), a transformation of the empirical

quantity qαi(t) of each action αi to an integer number has to be performed to comply

with the multinomial required input values. Thus, at each time step t, the proportion of

the empirical quantity that is associated with each action is firstly calculated and then a

number of total c slots is proportionally assigned across all actions. The transformation

of Dαi(t) is calculated according to the following formula:

Dαi(t) =

⌊
c · qαi(t)

∑κ
i=1 qαi(t)

⌋
(14)

The algorithm employing this coordination mechanism is here referred to as hyperSPAM-

MT.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.5. Replacement or re-sample

After the application of each search algorithm (S or R) the quality of the output205

solution x′ is compared with the quality of the input solution x. If the search algo-

rithm improved upon the input solution, i.e. if f (x′) < f (x) then the output solution

replaces the candidate solution x and again processed by the search algorithm selected

by the coordination mechanism. If the search algorithm was ineffective and the co-

ordination mechanism selects the same search algorithm for the following activation210

the re-sampling inspired by the exponential crossover of Differential Evolution and

described in [6] is performed.

Let us indicate with x′ the input candidate solution. One design variable index jrand

is randomly selected and the corresponding design variable in x′ is selected and copied

into the output candidate solution x. Then, contiguous design variables are copied, one215

by one, from x′ into x until a random number is less than the crossover probability

Cr. The remaining design variables of x are filled with random numbers within the

corresponding range. The re-sample procedure is explained in Algorithm 3.

Algorithm 3 Re-sampling of x
1: INPUT x′

2: generate a random solution x within the decision space

3: generate a random index jrand and assign x jrand = x′jrand

4: generate a random value h from a uniform distribution U (0,1)

5: j = jrand +1

6: while h≤Cr AND j < n do

7: x j = x′j

8: if j == n then

9: j = 1

10: end if

11: k = k+1

12: generate a random value h from a uniform distribution U (0,1)

13: end while

14: OUTPUT x

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This procedure is applied to avoid that the same solution is processed twice by the

same search algorithm after a failure.220

In order to directly control the quota of design variables copied from x to x′, let us

introduce

q≈ nm

n

where nm is the number of design variables we expect to copy into and n is the to-

tal number of design variables (problem dimensionality). In order to achieve that on

average nm are copied into x′ we need to impose that

Crnq = 0.5.

By solving this equation, we set the parameter Cr as

Cr =
1

nq
√

2
. (15)

The general hyperSPAM framework that employs an AOS model (e.g., hyperSPAM-

PM, hyperSPAM-AP, hyperSPAM-MT) is shown in Algorithm 4.

Fig. 1 depicts a graphical representation of the general hyperSPAM framework.

The solid line represents the optimisation data flow while the dashed lines refer to

the adaptation/control components. Below the Adaptive Operator Selection block we225

represent as an electric switch the activation of either S or R search algorithms.

3. Experimental Results

This section describes the experiments carried out, displays the results, and provide

some comments about them. The experiments have been performed on benchmark tests

as well as on a real-world problem of engineering design.230

3.1. Benchmark Sets

In order to extensively test the algorithms under examination we have tested them

over the following benchmarks:

• CEC2013 benchmark [29] in 10, 30, and 50 variables.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CMAES

Adaptive Operator Selection

S R

Credit Assignement Module

RE-SAMPLE (with inheritance)

x

x

x' x'

x'

x

credit

Figure 1: Graphical representation of the hyperSPAM framework

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 4 The general hyperSPAM algorithmic framework
1: Perform the pre-processing phase by applying CMAES as shown in Section 2.1 and select the candidate

solution x displaying the best performance.

2: Initialize the AOS model M and the credit assignment module C .

3: while the remaining budget is available do

4: Select the search algorithm based on the AOS model M

5: if S is selected then

6: Apply the S search algorithm to x and return x′, see Subsection 2.2

7: else

8: Apply the R search algorithm to x and return x′, see Subsection 2.3

9: end if

10: Update credit assignment module C and calculate qαi (t) for S and R

11: Update the AOS model M to select the following search algorithm

12: if the operator failed at improving upon x performance (f (x′) ≥ f (x)) and the selected operator is

the same that failed then

13: Resample x according to Algorithm 3, see Subsection 2.5

14: else if f (x′)< f (x) then

15: x = x′

16: end if

17: end while

• BBOB2010 benchmark [32] in 100 variables.235

• Real-world problems 1, 2, and 7 from CEC2011 [8], i.e. Parameter Estimation

for Frequency-Modulated (FM) Sound Waves in six dimensions, Lennard-Jones

Potential Problem in 30 dimensions, Spread Spectrum Radar Poly-phase Code

Design, respectively.

3.2. Experimental Setup240

For the 111 problems under examination, four hyperSPAM implementations have

been run. For all these implementations we set each algorithmic component with the

following parameters:

• The CMAES pre-processing is parameterless e.g. λ = 4+3log(n) and µ = λ
2 ,

see [18] and [17];245

• S is run with an initial step ξ = 0.4d, where d is the variable range along one

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

variable of the decision space D, and a local computational budget of 1000 fitness

functional calls;

• R is run with precision ε = 10−5, see eq. (5), factor α = 2, β = 0.5, and a local

computational budget not exceeding 1000 fitness functional calls;250

• The re-sampling has been run with q = 0.5, see eq. (15);

• The credit assignment is run with γ = 0.1 on the basis of the studies in [13, 44].

The parameters specific to the four implementations are the following:

• hyperSPAM-RS: parameterless;

• hyperSPAM-PM: α = 0.8 and pmin = 0.05, see eq. (9);255

• hyperSPAM-AP: pmin = 0.05, β = 0.8, see eq. (10);

• hyperSPAM-MT: c = 1000, α = 0.8, λ = 0.99 and pmin = 0.05, see eq. (14)

and [9].

Furthermore, the following popular metaheuristics have been included in the com-

parison:260

• CMAES according to the implementation reported in [17]: parameterless and

self-tuning;

• MDE-pBX as described in [25], i.e. population size 100, q = 0.15, CRm = 0.6,

Fm = 0.5, N = 1.5);

• CCPSO2 as described in [28]: population size 30, p = 0.5, number of divisions265

in 10 and 30 variables {2,5,10}, number of divisions in 50 and 100 variables

{2,5,10,50,100}).

For each problem, each algorithm has been run for 5000× n fitness evaluations

(function calls), where n is the number of variables of the problem. Thirty independent

runs have been performed for each algorithm on each problem.270

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

For each problem, the best average function value is highlighted in bold. Fur-

thermore, for each problem, a statistical pair-wise comparison has been performed by

applying the Wilcoxon signed-rank test, see [47]. In all the result tables reported in

this study, a + indicates that hyperSPAM-MT significantly outperforms the competi-

tor, a − indicates that hyperSPAM-MT is outperformed, and a = is shown when the275

performance of the two algorithms is statistically indistinguishable.

In order to further enhance the statistical significance of the numerical results the

Holm-Bonferroni procedure, see [14], has been applied to perform a ranking of the

algorithms under study with respect to the problems under consideration. A detailed

description of the procedure including intermediate steps is reported in [6].280

The numerical results displayed in this study have been structured in the following

way:

1. At first we compared the four hyperSPAM variants under consideration over the

testbed problems.

2. We selected the hyperSPAM implementation with the best performance and tested285

against the three above-mentioned competitor metaheuristics.

3. We displayed the result of the Holm-Bonferroni procedure summarizing the re-

sults for all the problems and algorithms included in this study.

4. We presented the results for the real-world problems.

3.3. Comparison among hyperSPAM variants290

The four variants of hyperSPAM have been tested and compared. Tables 1, 2, and

3 display the results on CEC2013 testbed in 10, 30, and 50 dimensions, respectively.

Table 4 shows the results on BBOB2010 testbed in 100 dimensions.

Table 5 shows the ranking of the hyperSPAM implementations according to the

Holm-Bonferroni procedure.295

Numerical results show that the performance of the four HuperSPAM variants are,

albeit similar, not identical. This can interpreted that the search algorithms compos-

ing the hybrid framework, e.g. hyperheuristic and memetic, is fundamental but their

coordination can indeed make a difference.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 1: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for the

four hyperSPAM implementations on CEC2013[29] in 10 dimensions.

hyperSPAM-MT hyperSPAM-PM hyperSPAM-AP hyperSPAM-RS

f1 0.00e+00 ± 0.00e+00 0.00e+00±0.00e+00 + 0.00e+00±0.00e+00 + 0.00e+00±0.00e+00 +

f2 0.00e+00 ± 0.00e+00 0.00e+00±1.36e−13 = 8.09e−11±8.04e−10 = 0.00e+00±0.00e+00 +

f3 5.23e+03 ± 5.11e+04 1.31e+00±3.50e+00 = 3.92e+01±2.70e+02 = 3.22e+00±1.34e+01 =

f4 0.00e+00 ± 0.00e+00 0.00e+00±0.00e+00 + 0.00e+00±0.00e+00 + 0.00e+00±0.00e+00 +

f5 1.14e−13 ± 8.95e−14 1.14e−13±6.63e−14 = 1.14e−13±7.01e−14 = 1.14e−13±8.04e−14 =

f6 3.87e+00 ± 4.70e+00 4.11e+00±4.78e+00 = 4.01e+00±4.76e+00 = 3.55e+00±4.58e+00 =

f7 6.69e+01 ± 8.24e+01 6.04e+01±6.04e+01 = 5.58e+01±5.17e+01 = 6.35e+01±2.06e+02 =

f8 2.04e+01 ± 1.17e−01 2.04e+01±1.38e−01 = 2.04e+01±1.09e−01 = 2.04e+01±1.30e−01 =

f9 6.80e+00 ± 1.72e+00 6.73e+00±1.72e+00 = 6.98e+00±2.11e+00 = 7.16e+00±1.88e+00 =

f10 1.40e−02 ± 1.28e−02 1.48e−02±1.40e−02 = 1.54e−02±1.35e−02 = 1.36e−02±1.20e−02 =

f11 5.79e+00 ± 2.49e+00 6.30e+00±2.86e+00 = 6.33e+00±2.45e+00 = 6.89e+00±3.27e+00 +

f12 1.77e+01 ± 7.77e+00 1.80e+01±9.61e+00 = 1.92e+01±9.48e+00 = 2.12e+01±1.11e+01 =

f13 3.83e+01 ± 1.44e+01 3.55e+01±1.52e+01 = 3.34e+01±1.51e+01 - 3.90e+01±1.69e+01 =

f14 2.40e+02 ± 1.36e+02 2.18e+02±1.05e+02 = 2.39e+02±1.21e+02 = 2.62e+02±1.24e+02 =

f15 1.01e+03 ± 3.21e+02 1.00e+03±3.65e+02 = 1.06e+03±3.21e+02 = 1.06e+03±2.91e+02 =

f16 2.47e−01 ± 1.41e−01 2.92e−01±1.98e−01 = 2.92e−01±1.72e−01 = 2.79e−01±1.57e−01 =

f17 1.54e+01 ± 3.72e+00 1.58e+01±4.28e+00 = 1.58e+01±3.38e+00 = 1.52e+01±3.38e+00 =

f18 4.03e+01 ± 1.10e+01 4.17e+01±1.42e+01 = 3.95e+01±1.38e+01 = 4.54e+01±1.50e+01 +

f19 7.06e−01 ± 2.64e−01 7.33e−01±3.44e−01 = 7.53e−01±3.25e−01 = 7.47e−01±3.39e−01 =

f20 4.18e+00 ± 3.21e−01 4.11e+00±3.64e−01 = 4.10e+00±4.36e−01 = 4.16e+00±3.82e−01 =

f21 3.01e+02 ± 1.07e+02 2.86e+02±1.26e+02 = 3.04e+02±1.15e+02 = 2.95e+02±1.26e+02 =

f22 3.29e+02 ± 1.41e+02 3.34e+02±1.19e+02 = 3.35e+02±1.42e+02 = 3.63e+02±1.45e+02 =

f23 1.31e+03 ± 3.15e+02 1.52e+03±4.16e+02 + 1.43e+03±4.01e+02 + 1.51e+03±3.52e+02 +

f24 2.02e+02 ± 3.77e+01 1.93e+02±4.46e+01 - 1.87e+02±4.48e+01 - 1.88e+02±4.26e+01 -

f25 2.18e+02 ± 1.13e+01 2.15e+02±1.90e+01 = 2.16e+02±1.67e+01 = 2.16e+02±1.81e+01 =

f26 1.69e+02 ± 5.85e+01 1.67e+02±6.02e+01 = 1.74e+02±6.16e+01 = 1.79e+02±6.67e+01 =

f27 3.74e+02 ± 7.30e+01 3.81e+02±7.32e+01 = 3.83e+02±8.27e+01 = 3.74e+02±6.43e+01 =

f28 3.05e+02 ± 1.62e+02 2.92e+02±9.79e+01 = 3.60e+02±4.72e+02 = 3.20e+02±1.44e+02 =

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 2: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for the

four hyperSPAM implementations on CEC2013[29] in 30 dimensions.

hyperSPAM-MT hyperSPAM-PM hyperSPAM-AP hyperSPAM-RS

f1 0.00e+00 ± 2.02e−13 0.00e+00±2.05e−13 = 0.00e+00±2.11e−13 = 0.00e+00±2.01e−13 =

f2 1.49e+03 ± 1.12e+03 1.75e+03±1.90e+03 = 1.40e+03±1.28e+03 = 1.56e+03±1.22e+03 =

f3 1.17e+06 ± 3.41e+06 7.88e+05±1.79e+06 = 1.93e+06±5.74e+06 = 8.86e+05±1.80e+06 =

f4 3.13e−04 ± 2.45e−03 5.16e−04±4.54e−03 = 2.48e−05±8.03e−05 = 5.12e−05±1.88e−04 =

f5 1.14e−13 ± 5.47e−13 1.14e−13±6.49e−13 + 1.14e−13±5.85e−13 = 1.14e−13±5.22e−13 =

f6 1.77e−01 ± 8.74e−01 9.73e−02±4.74e−01 = 2.85e−01±2.11e+00 = 2.40e−01±1.32e+00 =

f7 5.12e+01 ± 3.57e+01 4.00e+01±2.58e+01 - 3.73e+01±2.67e+01 - 4.93e+01±3.91e+01 =

f8 2.09e+01 ± 9.03e−02 2.09e+01±7.13e−02 = 2.10e+01±6.87e−02 + 2.09e+01±7.62e−02 =

f9 3.07e+01 ± 4.10e+00 3.00e+01±3.58e+00 = 3.07e+01±3.90e+00 = 3.06e+01±4.25e+00 =

f10 1.29e−02 ± 8.12e−03 1.28e−02±7.93e−03 = 1.06e−02±7.31e−03 - 1.15e−02±7.34e−03 =

f11 2.91e+01 ± 5.90e+00 2.94e+01±6.43e+00 = 2.89e+01±6.94e+00 = 2.78e+01±6.47e+00 =

f12 7.96e+01 ± 5.27e+01 9.80e+01±6.27e+01 = 8.82e+01±5.62e+01 = 8.69e+01±5.61e+01 =

f13 1.99e+02 ± 7.06e+01 1.99e+02±6.82e+01 = 1.82e+02±7.35e+01 = 1.90e+02±7.65e+01 =

f14 8.04e+02 ± 2.05e+02 7.83e+02±2.03e+02 = 7.99e+02±2.09e+02 = 8.40e+02±2.24e+02 =

f15 3.81e+03 ± 7.13e+02 4.78e+03±7.59e+02 + 3.97e+03±6.51e+02 = 4.59e+03±7.60e+02 +

f16 1.48e−01 ± 9.27e−02 1.42e−01±1.23e−01 = 1.52e−01±1.09e−01 = 1.37e−01±9.61e−02 =

f17 5.59e+01 ± 9.02e+00 5.71e+01±7.70e+00 = 5.43e+01±6.86e+00 = 5.49e+01±7.69e+00 =

f18 2.36e+02 ± 4.78e+01 2.37e+02±5.44e+01 = 2.32e+02±5.62e+01 = 2.47e+02±5.94e+01 =

f19 2.63e+00 ± 6.76e−01 2.64e+00±6.63e−01 = 2.58e+00±6.90e−01 = 2.66e+00±6.84e−01 =

f20 1.44e+01 ± 5.53e−01 1.45e+01±5.14e−01 = 1.44e+01±6.31e−01 = 1.45e+01±5.60e−01 =

f21 2.31e+02 ± 5.04e+01 2.40e+02±5.62e+01 = 2.38e+02±6.79e+01 = 2.38e+02±6.37e+01 =

f22 1.10e+03 ± 2.96e+02 1.08e+03±3.02e+02 = 1.04e+03±2.45e+02 = 1.06e+03±2.58e+02 =

f23 5.00e+03 ± 7.59e+02 6.05e+03±9.37e+02 + 5.07e+03±9.26e+02 = 6.17e+03±9.22e+02 +

f24 2.80e+02 ± 9.99e+01 3.00e+02±1.88e+02 = 2.66e+02±3.30e+01 = 2.98e+02±1.43e+02 =

f25 2.93e+02 ± 1.55e+01 2.94e+02±1.84e+01 = 2.94e+02±1.52e+01 = 2.94e+02±1.45e+01 =

f26 2.84e+02 ± 8.59e+01 2.80e+02±8.66e+01 = 2.86e+02±8.24e+01 = 2.79e+02±8.38e+01 =

f27 8.21e+02 ± 1.64e+02 8.27e+02±1.92e+02 = 8.30e+02±1.79e+02 = 8.14e+02±1.95e+02 =

f28 7.86e+02 ± 1.82e+03 6.27e+02±1.36e+03 = 6.78e+02±1.36e+03 = 6.06e+02±1.28e+03 =

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 3: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for the

four hyperSPAM implementations on CEC2013[29] in 50 dimensions.

hyperSPAM-MT hyperSPAM-PM hyperSPAM-AP hyperSPAM-RS

f1 2.27e−13 ± 0.00e+00 2.27e−13±0.00e+00 + 2.27e−13±0.00e+00 + 2.27e−13±0.00e+00 +

f2 2.59e+04 ± 1.28e+04 2.66e+04±1.35e+04 = 2.68e+04±1.17e+04 = 2.77e+04±1.30e+04 =

f3 6.19e+06 ± 8.61e+06 8.55e+06±1.43e+07 = 6.98e+06±9.27e+06 = 7.48e+06±9.35e+06 =

f4 4.85e+02 ± 4.85e+02 5.59e+02±5.01e+02 = 4.39e+02±5.21e+02 = 5.07e+02±4.66e+02 =

f5 3.41e−13 ± 8.70e−13 3.41e−13±1.05e−12 + 3.41e−13±9.29e−13 = 3.41e−13±9.02e−13 =

f6 3.14e+01 ± 1.80e+01 2.74e+01±1.75e+01 = 2.69e+01±1.77e+01 = 2.99e+01±1.72e+01 =

f7 4.46e+01 ± 1.93e+01 4.75e+01±2.38e+01 = 4.84e+01±2.13e+01 = 4.66e+01±2.16e+01 =

f8 2.11e+01 ± 6.39e−02 2.11e+01±6.66e−02 - 2.11e+01±6.62e−02 - 2.11e+01±6.08e−02 -

f9 5.74e+01 ± 4.96e+00 5.49e+01±5.03e+00 - 5.45e+01±4.79e+00 - 5.07e+01±3.96e+00 -

f10 1.15e−02 ± 7.41e−03 1.24e−02±7.26e−03 = 1.07e−02±6.19e−03 = 1.14e−02±7.13e−03 =

f11 5.77e+01 ± 9.97e+00 5.87e+01±1.05e+01 = 5.48e+01±1.06e+01 = 5.70e+01±1.08e+01 =

f12 3.09e+02 ± 1.37e+02 2.98e+02±1.43e+02 = 2.88e+02±1.33e+02 = 3.49e+02±1.48e+02 +

f13 5.39e+02 ± 1.01e+02 5.33e+02±1.12e+02 = 5.06e+02±1.25e+02 = 5.34e+02±1.04e+02 =

f14 1.43e+03 ± 3.09e+02 1.41e+03±3.09e+02 = 1.40e+03±3.13e+02 = 1.41e+03±2.80e+02 =

f15 6.96e+03 ± 6.72e+02 8.50e+03±1.09e+03 + 7.30e+03±1.06e+03 + 8.16e+03±1.14e+03 +

f16 8.26e−02 ± 4.79e−02 8.36e−02±3.88e−02 = 8.10e−02±4.18e−02 = 8.61e−02±4.76e−02 =

f17 9.70e+01 ± 1.04e+01 9.62e+01±1.11e+01 = 9.71e+01±1.06e+01 = 9.81e+01±7.86e+00 =

f18 5.18e+02 ± 8.96e+01 5.37e+02±9.93e+01 = 5.27e+02±8.95e+01 = 5.83e+02±1.49e+02 +

f19 4.61e+00 ± 9.69e−01 4.73e+00±8.92e−01 = 4.68e+00±9.90e−01 = 4.67e+00±8.84e−01 =

f20 2.43e+01 ± 5.08e−01 2.44e+01±2.86e−01 = 2.43e+01±5.25e−01 = 2.44e+01±3.24e−01 =

f21 4.58e+02 ± 3.52e+02 4.27e+02±3.30e+02 = 4.25e+02±3.60e+02 = 5.59e+02±3.88e+02 +

f22 2.06e+03 ± 4.02e+02 2.06e+03±3.17e+02 = 2.02e+03±3.78e+02 = 2.01e+03±3.98e+02 =

f23 9.61e+03 ± 1.18e+03 1.12e+04±1.27e+03 + 9.78e+03±1.41e+03 = 1.07e+04±1.20e+03 +

f24 3.39e+02 ± 3.14e+01 3.62e+02±2.14e+02 = 3.55e+02±1.60e+02 = 3.53e+02±2.09e+02 -

f25 3.85e+02 ± 2.29e+01 3.79e+02±1.99e+01 = 3.78e+02±2.03e+01 - 3.71e+02±1.45e+01 -

f26 3.10e+02 ± 1.10e+02 3.08e+02±2.97e+02 = 2.94e+02±1.05e+02 = 2.67e+02±2.46e+02 -

f27 1.34e+03 ± 2.25e+02 1.28e+03±2.33e+02 = 1.25e+03±2.25e+02 - 1.26e+03±2.32e+02 -

f28 1.69e+03 ± 3.42e+03 1.63e+03±2.22e+03 = 1.74e+03±2.72e+03 = 1.21e+03±1.37e+03 =

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for the

four hyperSPAM implementations on BBOB2010 [32] in 100 dimensions.

hyperSPAM-MT hyperSPAM-PM hyperSPAM-AP hyperSPAM-RS

f1 2.42e−13 ± 2.12e−13 2.42e−13±2.12e−13 = 2.42e−13±2.12e−13 = 2.42e−13±2.12e−13 =

f2 1.42e−13 ± 1.68e−13 1.71e−13±1.55e−13 + 1.71e−13±1.48e−13 = 1.42e−13±1.58e−13 =

f3 1.01e+02 ± 1.79e+01 1.04e+02±1.70e+01 = 1.03e+02±1.86e+01 = 1.04e+02±1.77e+01 =

f4 1.37e+02 ± 1.75e+01 1.37e+02±2.01e+01 = 1.37e+02±2.03e+01 = 1.35e+02±2.22e+01 =

f5 1.26e−11 ± 4.00e−12 4.93e−08±2.91e−07 + 1.17e−06±7.08e−06 + 1.28e−09±3.18e−09 +

f6 3.52e−08 ± 5.57e−08 6.15e−08±7.12e−08 + 5.37e−08±7.12e−08 + 8.19e−08±1.08e−07 +

f7 5.23e+01 ± 1.48e+01 5.26e+01±1.40e+01 = 5.47e+01±1.24e+01 = 5.41e+01±1.51e+01 =

f8 3.56e+01 ± 7.86e+00 3.66e+01±1.11e+01 = 3.61e+01±1.06e+01 = 3.65e+01±7.55e+00 +

f9 4.46e+01 ± 1.12e+01 4.39e+01±7.26e+00 = 4.41e+01±8.56e+00 = 4.58e+01±8.05e+00 +

f10 5.21e+02 ± 1.42e+02 5.27e+02±1.50e+02 = 5.13e+02±1.34e+02 = 5.45e+02±1.87e+02 =

f11 8.38e+01 ± 3.46e+01 8.72e+01±3.08e+01 = 8.34e+01±2.80e+01 = 8.17e+01±2.25e+01 =

f12 4.79e−02 ± 2.52e−01 5.29e−02±1.98e−01 = 1.19e−02±4.76e−02 = 1.65e−02±8.57e−02 =

f13 1.07e+00 ± 1.43e+00 1.06e+00±1.24e+00 = 1.25e+00±1.52e+00 = 4.72e−01±7.02e−01 -

f14 4.87e−05 ± 5.88e−06 5.07e−05±6.32e−06 + 4.88e−05±6.95e−06 = 5.01e−05±6.75e−06 =

f15 2.71e+02 ± 4.03e+01 2.75e+02±4.48e+01 = 2.75e+02±4.44e+01 = 2.70e+02±4.09e+01 =

f16 2.37e+00 ± 8.08e−01 2.31e+00±8.27e−01 = 2.49e+00±7.90e−01 = 2.43e+00±9.60e−01 =

f17 8.45e+00 ± 4.46e+00 8.55e+00±4.71e+00 = 8.47e+00±4.50e+00 = 8.66e+00±4.34e+00 =

f18 1.90e+01 ± 1.06e+01 1.84e+01±1.15e+01 = 1.75e+01±1.11e+01 = 1.81e+01±1.16e+01 =

f19 1.82e+00 ± 2.94e−01 1.96e+00±4.27e−01 + 1.97e+00±3.79e−01 + 2.04e+00±4.90e−01 +

f20 1.19e+00 ± 1.61e−01 1.14e+00±1.09e−01 = 1.15e+00±1.17e−01 = 1.16e+00±1.17e−01 =

f21 3.74e+00 ± 3.84e+00 3.89e+00±4.11e+00 = 4.82e+00±5.66e+00 = 4.40e+00±7.65e+00 =

f22 6.75e+00 ± 7.22e+00 7.94e+00±9.28e+00 = 6.10e+00±7.53e+00 = 6.36e+00±7.66e+00 =

f23 7.69e−01 ± 4.37e−01 8.23e−01±3.93e−01 = 7.67e−01±4.06e−01 = 9.24e−01±5.12e−01 +

f24 3.11e+02 ± 6.12e+01 3.10e+02±6.43e+01 = 3.24e+02±5.42e+01 = 3.16e+02±6.23e+01 =

Table 5: Holm-Bonferroni procedure (reference: hyperSPAM-MT, Rank = 2.52e+00) ranking the hyper-

SPAM implementations

j Optimizer Rank z j p j δ/ j Hypothesis

1 hyperSPAM-AP 2.50e+00 -1.36e-01 4.46e-01 5.00e-02 Accepted

2 hyperSPAM-RS 2.30e+00 -1.63e+00 5.12e-02 2.50e-02 Accepted

3 hyperSPAM-PM 2.19e+00 -2.38e+00 8.62e-03 1.67e-02 Rejected

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.5 1 1.5 2 2.5

·105

0.7

0.8

0.9

1
·104

Fitness functional call

A
ve

ra
ge

er
ro

r
hyperSPAM-MT
hyperSPAM-AP
hyperSPAM-RS
hyperSPAM-PM

Figure 2: Average error trend of hyperSPAM-MT against the other hyperSPAM variants on f15 of the

CEC2013 beanchmark in 50 dimensions

Among the four hyperSPAM implementations, hyperSPAM-MT displays the best300

performance. This performance is significantly superior to that of hyperSPAM-PM and

only marginally better that hyperSPAM-AP and hyperSPAM-RS.

It is worthwhile commenting the performance comparison between hyperSPAM-

MT and hyperSPAM-RS. Indeed the sophisticated multinomial tracking appears to be,

on average, beneficial to the algorithmic performance. However, a simple random se-305

lection by the uniform distribution function and without any adaptation is not much

worse in this case. Analogous results were found in the context of Differential Evo-

lution in [38]. As a conjecture, we think that similar results are achieved since a pool

of only two search algorithms is considered in this study. A longer list of search algo-

rithms where some appear preferable to others might dynamically skew the multino-310

mial distribution thus making it remarkably different to the uniform distribution used

by hyperSPAM-RS.

Fig. 2 displays the average error trend for the four hyperSPAM variants and shows

that hyperSPAM-MT outperforms the other hyperSPAM schemes.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.4. Comparison against popular metaheuristics315

Since hyperSPAM implementation with Multinomial Distribution Tracking, hyperSPAM-

MT, displayed the best performance, it has been compared against the popular meta-

heuristics considered in this studty. Tables 6, 7, and 8 display the results on CEC2013

testbed in 10, 30, and 50 dimensions, respectively. Table 9 shows the results on

BBOB2010 testbed in 100 dimensions.320

Table 10 summarises the statistically significant wins, draws, and losses in each

testbed and in total. Table 11 shows the ranking of the hyperSPAM-MT and meta-

heuristics included in this study according to the Holm-Bonferroni procedure.

Numerical results show that hyperSPAM-MT significantly displays the best perfor-

mance, thus demonstrating that the hyperSPAM framework is indeed effective. The325

second best performance is displayed by MDE-pBX which achieves very good results

on a number of problems in 10 dimensions. However the MDE-pBX does not seem to

address problems in higher dimensions as effectively as hyperSPAM-MT. Furthermore,

the comparison against CMAES shows that CMAES displays the best performance on

some problems and a poorer performance on the remaining problems. In particular330

the performance of CMAES is excellent for ill conditioned problems but appears to

degrade when multiple local optima are present in the decision space.

Fig. 3 displays an example of average error trend of hyperSPAM-MT against the

metaheuristics considered in this study. In order to enhance the readability of the re-

sults, the trends are shown on linear and logarithmic scales.335

3.5. Ranking of all the algorithms

The seven algorithms in this study have been ranked according to the Holm-Bonferroni

procedure with respect to all the CEC2013 and BBOB2010 problems and to all the di-

mensionality values under consideration. The results of the ranking are displayed in

Table 12.340

The results of the Holm-Bonferroni procedure show that the hyperSPAM frame-

work, regardless of the coordination mechanism, significantly outperforms the com-

petitor algorithms.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 6: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for

hyperSPAM-MT against CMAES MDE-pBX, and CCPSO2 on CEC2013[29] in 10 dimensions.

hyperSPAM-MT CMAES MDE-pBX CCPSO2

f1 0.00e+00 ± 0.00e+00 0.00e+00±0.00e+00 = 0.00e+00±3.22e−14 = 2.78e−03±9.28e−03 +

f2 0.00e+00 ± 0.00e+00 0.00e+00±0.00e+00 = 2.58e+03±5.12e+03 + 1.86e+06±1.22e+06 +

f3 5.23e+03 ± 5.11e+04 1.54e−01±8.99e−01 - 9.14e+03±3.98e+04 + 7.20e+07±1.10e+08 +

f4 0.00e+00 ± 0.00e+00 0.00e+00±0.00e+00 + 6.64e−01±3.14e+00 + 1.02e+04±2.59e+03 +

f5 1.14e−13 ± 8.95e−14 0.00e+00±0.00e+00 - 0.00e+00±7.01e−14 - 1.04e−02±2.37e−02 +

f6 3.87e+00 ± 4.70e+00 6.31e+00±8.56e+00 = 5.51e+00±4.86e+00 = 3.81e+00±4.09e+00 +

f7 6.69e+01 ± 8.24e+01 1.27e+14±8.89e+14 = 6.70e+00±9.32e+00 - 3.77e+01±1.27e+01 =

f8 2.04e+01 ± 1.17e−01 2.04e+01±1.17e−01 = 2.05e+01±9.89e−02 + 2.04e+01±8.01e−02 =

f9 6.80e+00 ± 1.72e+00 1.49e+01±3.90e+00 + 2.37e+00±1.57e+00 - 5.64e+00±7.38e−01 -

f10 1.40e−02 ± 1.28e−02 1.89e−02±1.40e−02 + 1.07e−01±7.65e−02 + 1.96e+00±9.60e−01 +

f11 5.79e+00 ± 2.49e+00 2.11e+02±2.76e+02 + 3.00e+00±1.98e+00 - 2.70e+00±1.86e+00 -

f12 1.77e+01 ± 7.77e+00 3.47e+02±3.28e+02 + 9.83e+00±3.94e+00 - 3.45e+01±9.16e+00 +

f13 3.83e+01 ± 1.44e+01 2.42e+02±2.93e+02 + 2.08e+01±9.71e+00 - 4.16e+01±9.15e+00 =

f14 2.40e+02 ± 1.36e+02 1.76e+03±4.07e+02 + 1.19e+02±1.02e+02 - 8.89e+01±6.43e+01 -

f15 1.01e+03 ± 3.21e+02 1.78e+03±3.79e+02 + 7.71e+02±2.45e+02 - 1.05e+03±2.89e+02 =

f16 2.47e−01 ± 1.41e−01 4.12e−01±3.44e−01 + 5.98e−01±4.43e−01 + 1.33e+00±2.26e−01 +

f17 1.54e+01 ± 3.72e+00 9.96e+02±3.02e+02 + 1.29e+01±1.69e+00 - 1.81e+01±2.90e+00 +

f18 4.03e+01 ± 1.10e+01 1.01e+03±2.96e+02 + 2.02e+01±4.69e+00 - 5.82e+01±6.20e+00 +

f19 7.06e−01 ± 2.64e−01 1.14e+00±4.41e−01 + 6.67e−01±2.22e−01 = 9.62e−01±4.13e−01 +

f20 4.18e+00 ± 3.21e−01 4.79e+00±2.69e−01 + 2.71e+00±6.46e−01 - 3.60e+00±2.12e−01 -

f21 3.01e+02 ± 1.07e+02 3.88e+02±4.75e+01 + 3.96e+02±2.80e+01 + 3.71e+02±6.00e+01 +

f22 3.29e+02 ± 1.41e+02 2.29e+03±3.89e+02 + 1.63e+02±1.35e+02 - 1.25e+02±6.30e+01 -

f23 1.31e+03 ± 3.15e+02 2.17e+03±4.46e+02 + 8.42e+02±3.20e+02 - 1.40e+03±2.87e+02 =

f24 2.02e+02 ± 3.77e+01 3.56e+02±1.22e+02 + 2.05e+02±5.23e+00 - 2.12e+02±1.77e+01 =

f25 2.18e+02 ± 1.13e+01 2.56e+02±3.92e+01 + 2.01e+02±2.97e+00 - 2.14e+02±8.51e+00 -

f26 1.69e+02 ± 5.85e+01 2.75e+02±1.21e+02 + 1.45e+02±4.34e+01 - 1.70e+02±2.35e+01 =

f27 3.74e+02 ± 7.30e+01 3.93e+02±9.43e+01 = 3.03e+02±1.43e+01 - 4.22e+02±5.01e+01 +

f28 3.05e+02 ± 1.62e+02 1.43e+03±1.22e+03 + 3.01e+02±4.80e+01 - 3.85e+02±1.49e+02 +

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 7: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for

hyperSPAM-MT against CMAES MDE-pBX, and CCPSO2 on CEC2013[29] in 30 dimensions.

hyperSPAM-MT CMAES MDE-pBX CCPSO2

f1 0.00e+00 ± 2.02e−13 0.00e+00±1.33e−13 - 2.27e−13±2.86e−13 + 2.73e−12±8.10e−12 +

f2 1.49e+03 ± 1.12e+03 0.00e+00±1.67e−13 - 2.85e+05±3.07e+05 + 2.20e+06±1.11e+06 +

f3 1.17e+06 ± 3.41e+06 9.75e+01±3.99e+02 - 3.61e+07±5.99e+07 + 1.22e+09±1.21e+09 +

f4 3.13e−04 ± 2.45e−03 0.00e+00±1.25e−13 - 3.49e+02±3.71e+02 + 5.73e+04±1.66e+04 +

f5 1.14e−13 ± 5.47e−13 9.09e−13±2.17e−12 - 2.02e−10±1.41e−09 - 1.32e−07±3.04e−07 +

f6 1.77e−01 ± 8.74e−01 6.26e+00±1.58e+01 - 3.31e+01±2.77e+01 + 3.76e+01±2.85e+01 +

f7 5.12e+01 ± 3.57e+01 2.61e+05±1.35e+06 = 5.57e+01±1.91e+01 + 1.17e+02±2.37e+01 +

f8 2.09e+01 ± 9.03e−02 2.10e+01±5.61e−02 + 2.10e+01±5.95e−02 + 2.10e+01±5.91e−02 +

f9 3.07e+01 ± 4.10e+00 4.42e+01±7.80e+00 + 2.08e+01±4.29e+00 - 3.05e+01±2.07e+00 =

f10 1.29e−02 ± 8.12e−03 2.03e−02±1.44e−02 + 1.94e−01±1.21e−01 + 2.09e−01±9.15e−02 +

f11 2.91e+01 ± 5.90e+00 6.81e+01±9.69e+01 + 4.80e+01±1.48e+01 + 5.37e−01±6.30e−01 -

f12 7.96e+01 ± 5.27e+01 8.09e+02±9.34e+02 + 6.81e+01±2.37e+01 = 2.18e+02±5.39e+01 +

f13 1.99e+02 ± 7.06e+01 1.73e+03±1.66e+03 + 1.52e+02±3.37e+01 - 2.62e+02±4.71e+01 +

f14 8.04e+02 ± 2.05e+02 5.36e+03±7.30e+02 + 1.18e+03±4.14e+02 + 6.96e+00±3.52e+00 -

f15 3.81e+03 ± 7.13e+02 5.39e+03±6.21e+02 + 4.03e+03±7.60e+02 = 4.01e+03±5.15e+02 +

f16 1.48e−01 ± 9.27e−02 1.29e−01±9.88e−02 = 1.39e+00±8.13e−01 + 2.45e+00±3.72e−01 +

f17 5.59e+01 ± 9.02e+00 4.12e+03±7.55e+02 + 6.93e+01±1.29e+01 + 3.13e+01±5.20e−01 -

f18 2.36e+02 ± 4.78e+01 3.95e+03±7.83e+02 + 8.24e+01±1.73e+01 - 2.42e+02±6.25e+01 =

f19 2.63e+00 ± 6.76e−01 3.50e+00±9.68e−01 + 8.95e+00±4.34e+00 + 8.70e−01±1.78e−01 -

f20 1.44e+01 ± 5.53e−01 1.50e+01±5.59e−09 + 1.09e+01±7.29e−01 - 1.39e+01±4.24e−01 -

f21 2.31e+02 ± 5.04e+01 3.19e+02±9.07e+01 + 3.02e+02±7.13e+01 + 2.63e+02±5.88e+01 +

f22 1.10e+03 ± 2.96e+02 6.90e+03±9.65e+02 + 1.11e+03±5.32e+02 = 1.23e+02±7.38e+01 -

f23 5.00e+03 ± 7.59e+02 6.71e+03±7.22e+02 + 4.40e+03±8.16e+02 - 5.23e+03±5.90e+02 +

f24 2.80e+02 ± 9.99e+01 8.08e+02±5.68e+02 + 2.30e+02±1.09e+01 - 2.81e+02±1.13e+01 +

f25 2.93e+02 ± 1.55e+01 3.79e+02±1.40e+02 + 2.76e+02±1.71e+01 - 3.02e+02±6.30e+00 +

f26 2.84e+02 ± 8.59e+01 4.63e+02±4.44e+02 = 2.16e+02±4.23e+01 - 2.01e+02±3.37e+00 =

f27 8.21e+02 ± 1.64e+02 7.89e+02±2.13e+02 = 6.53e+02±1.21e+02 - 1.08e+03±6.10e+01 +

f28 7.86e+02 ± 1.82e+03 2.27e+03±3.81e+03 + 3.00e+02±2.23e−10 + 5.23e+02±5.26e+02 +

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 8: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for

hyperSPAM-MT against CMAES MDE-pBX, and CCPSO2 on CEC2013[29] in 50 dimensions.

hyperSPAM-MT CMAES MDE-pBX CCPSO2

f1 2.27e−13 ± 0.00e+00 2.27e−13±0.00e+00 = 2.73e−12±6.28e−12 + 7.50e−12±4.07e−11 +

f2 2.59e+04 ± 1.28e+04 2.27e−13±0.00e+00 - 9.35e+05±5.45e+05 + 4.16e+06±2.05e+06 +

f3 6.19e+06 ± 8.61e+06 3.17e+04±1.30e+05 - 1.36e+08±1.42e+08 + 2.98e+09±2.84e+09 +

f4 4.85e+02 ± 4.85e+02 2.27e−13±0.00e+00 - 1.17e+03±8.74e+02 + 1.10e+05±4.86e+04 +

f5 3.41e−13 ± 8.70e−13 1.89e−09±7.96e−10 + 4.30e−09±1.75e−08 = 7.84e−04±5.48e−03 +

f6 3.14e+01 ± 1.80e+01 4.27e+01±6.15e+00 = 5.89e+01±2.47e+01 + 4.63e+01±1.13e+01 +

f7 4.46e+01 ± 1.93e+01 4.52e+01±1.71e+01 = 6.95e+01±1.23e+01 + 1.47e+02±2.02e+01 +

f8 2.11e+01 ± 6.39e−02 2.12e+01±3.41e−02 = 2.12e+01±4.11e−02 + 2.12e+01±3.41e−02 +

f9 5.74e+01 ± 4.96e+00 7.79e+01±9.33e+00 + 4.24e+01±6.64e+00 - 5.86e+01±3.25e+00 =

f10 1.15e−02 ± 7.41e−03 2.68e−02±1.76e−02 + 4.37e−01±4.84e−01 + 1.87e−01±9.78e−02 +

f11 5.77e+01 ± 9.97e+00 1.99e+02±4.41e+02 + 1.19e+02±3.08e+01 + 8.70e−01±9.21e−01 -

f12 3.09e+02 ± 1.37e+02 2.39e+03±1.49e+03 + 1.63e+02±3.22e+01 - 4.50e+02±8.38e+01 +

f13 5.39e+02 ± 1.01e+02 3.23e+03±1.47e+03 + 3.17e+02±4.71e+01 - 5.72e+02±7.14e+01 =

f14 1.43e+03 ± 3.09e+02 8.73e+03±9.69e+02 + 2.66e+03±8.55e+02 + 6.85e+00±2.91e+00 -

f15 6.96e+03 ± 6.72e+02 9.03e+03±9.59e+02 + 7.44e+03±7.87e+02 + 8.36e+03±8.60e+02 +

f16 8.26e−02 ± 4.79e−02 7.78e−02±3.89e−02 = 1.86e+00±8.40e−01 + 2.65e+00±6.30e−01 +

f17 9.70e+01 ± 1.04e+01 7.06e+03±9.80e+02 + 1.80e+02±3.38e+01 + 5.16e+01±3.68e−01 -

f18 5.18e+02 ± 8.96e+01 7.05e+03±9.63e+02 + 1.85e+02±3.15e+01 - 4.97e+02±1.05e+02 =

f19 4.61e+00 ± 9.69e−01 6.02e+00±1.39e+00 + 4.06e+01±2.57e+01 + 1.49e+00±2.30e−01 -

f20 2.43e+01 ± 5.08e−01 2.50e+01±1.37e−01 + 2.00e+01±9.34e−01 - 2.33e+01±8.48e−01 -

f21 4.58e+02 ± 3.52e+02 8.22e+02±3.53e+02 + 9.00e+02±3.29e+02 + 4.54e+02±3.43e+02 +

f22 2.06e+03 ± 4.02e+02 1.18e+04±1.38e+03 + 3.09e+03±1.01e+03 + 1.14e+02±9.38e+01 -

f23 9.61e+03 ± 1.18e+03 1.18e+04±1.01e+03 + 9.01e+03±9.03e+02 - 1.08e+04±1.27e+03 +

f24 3.39e+02 ± 3.14e+01 1.78e+03±1.03e+03 + 2.88e+02±1.68e+01 - 3.60e+02±9.51e+00 +

f25 3.85e+02 ± 2.29e+01 4.87e+02±2.03e+02 + 3.67e+02±1.44e+01 - 3.96e+02±1.14e+01 +

f26 3.10e+02 ± 1.10e+02 6.56e+02±7.48e+02 = 3.57e+02±7.06e+01 = 2.19e+02±5.43e+01 =

f27 1.34e+03 ± 2.25e+02 1.33e+03±3.83e+02 = 1.25e+03±1.31e+02 - 1.83e+03±8.52e+01 +

f28 1.69e+03 ± 3.42e+03 2.52e+03±3.95e+03 - 4.66e+02±4.64e+02 + 6.85e+02±1.02e+03 +

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 9: Average error ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for

hyperSPAM-MT against CMAES MDE-pBX, and CCPSO2 BBOB2010 [32] in 100 dimensions.

hyperSPAM-MT CMAES MDE-pBX CCPSO2

f1 2.42e−13 ± 2.12e−13 2.84e−14±0.00e+00 = 1.39e−07±6.61e−07 + 3.27e−13±1.93e−13 +

f2 1.42e−13 ± 1.68e−13 3.90e−09±2.46e−08 + 1.44e−03±6.89e−03 + 1.53e−12±2.34e−12 +

f3 1.01e+02 ± 1.79e+01 2.69e+02±5.26e+01 + 4.93e+02±8.69e+01 + 7.87e+00±8.26e+00 -

f4 1.37e+02 ± 1.75e+01 4.12e+02±5.23e+01 + 8.75e+02±1.25e+02 + 2.22e+01±1.34e+01 -

f5 1.26e−11 ± 4.00e−12 1.26e+02±2.19e+01 + 7.55e+00±1.03e+01 + 2.11e−04±1.00e−03 +

f6 3.52e−08 ± 5.57e−08 7.82e−14±3.07e−14 - 4.43e+01±3.80e+01 + 8.76e+01±4.14e+01 +

f7 5.23e+01 ± 1.48e+01 3.74e+01±7.21e+00 - 2.96e+02±7.80e+01 + 3.49e+02±5.19e+01 +

f8 3.56e+01 ± 7.86e+00 9.20e−01±1.44e+00 - 2.00e+02±7.69e+01 + 1.22e+02±3.73e+01 +

f9 4.46e+01 ± 1.12e+01 1.13e+00±1.73e+00 - 1.34e+02±3.71e+01 + 1.10e+02±3.19e+01 +

f10 5.21e+02 ± 1.42e+02 3.35e−09±8.68e−09 - 1.69e+04±8.86e+03 + 2.59e+04±7.29e+03 +

f11 8.38e+01 ± 3.46e+01 0.00e+00±2.84e−14 - 1.58e+01±7.69e+00 - 5.33e+02±1.96e+02 +

f12 4.79e−02 ± 2.52e−01 3.41e−13±5.68e−13 - 1.57e+01±2.38e+01 + 8.66e+00±1.23e+01 +

f13 1.07e+00 ± 1.43e+00 1.73e+00±2.45e+00 = 4.54e+00±7.29e+00 + 3.09e+00±3.72e+00 +

f14 4.87e−05 ± 5.88e−06 2.04e−08±3.27e−09 - 2.56e−03±2.37e−03 + 1.28e−03±1.44e−04 +

f15 2.71e+02 ± 4.03e+01 2.87e+02±4.38e+01 + 6.76e+02±1.15e+02 + 1.35e+03±2.39e+02 +

f16 2.37e+00 ± 8.08e−01 2.39e+00±6.48e−01 = 1.71e+01±3.69e+00 + 2.73e+01±4.55e+00 +

f17 8.45e+00 ± 4.46e+00 9.95e+00±4.69e+00 + 3.36e+00±4.45e−01 - 8.72e+00±1.61e+00 =

f18 1.90e+01 ± 1.06e+01 2.13e+01±1.50e+01 = 1.25e+01±1.84e+00 - 3.22e+01±5.47e+00 +

f19 1.82e+00 ± 2.94e−01 1.38e+00±2.30e−01 - 2.37e+00±8.13e−01 + 7.96e+00±1.19e+00 +

f20 1.19e+00 ± 1.61e−01 1.87e+00±1.13e−01 + 2.10e+00±1.18e−01 + 5.00e−01±6.29e−02 -

f21 3.74e+00 ± 3.84e+00 1.19e+01±1.30e+01 + 4.31e+00±5.83e+00 = 3.03e+00±3.42e+00 =

f22 6.75e+00 ± 7.22e+00 1.77e+01±1.48e+01 + 9.38e+00±8.52e+00 + 5.15e+00±5.89e+00 +

f23 7.69e−01 ± 4.37e−01 2.44e+00±2.03e+00 + 2.30e+00±7.64e−01 + 2.50e+00±4.44e−01 +

f24 3.11e+02 ± 6.12e+01 3.11e+02±5.85e+01 = 3.74e+02±4.73e+01 + 1.08e+03±1.48e+02 +

Table 10: Number of statistically significant wins +, draws =, and losses - of hyperSPAM-MT against

CMAES MDE-pBX, and CCPSO2

CMAES MDE-pBX CCPSO2

CEC2013-10D 20+, 6=, 2- 7+,3=,21- 16+,7=,5-

CEC2013-30D 18+, 4=, 6- 15+,3=, 10- 19+, 3=, 6-

CEC2013-50D 18+, 6=, 4- 17+, 2=, 9- 18+, 4=, 6-

BBOB-100D 10+, 4=, 10- 20+, 1=, 3- 19+, 2=, 3-

Total 66+, 20=, 22- 59+, 9=, 53- 72+, 16=, 20-

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 11: Holm-Bonferroni procedure (reference: hyperSPAM-MT, Rank = 3.04e+00) ranking hyperSPAM-

MT against three popular metaheuristics

j Optimizer Rank z j p j δ/ j Hypothesis

1 MDE-pBX 2.58e+00 -3.33e+00 4.28e-04 5.00e-02 Rejected

2 CCPSO2 2.22e+00 -5.99e+00 1.06e-09 2.50e-02 Rejected

3 CMAES 2.08e+00 -7.01e+00 1.21e-12 1.67e-02 Rejected

0 1 2 3 4 5

·105

0

100

200

300

Fitness functional call

A
ve

ra
ge

er
ro

r

hyperSPAM-MT
CCPSO2
CMAES

MDEpBX

0 1 2 3 4 5

·105

10−11

10−8

10−5

10−2

101

104

Fitness functional call

A
ve

ra
ge

er
ro

r
(l

og
)

Figure 3: Average error trend of hyperSPAM-MT against the CMAES, MDE-pBX, and CCPSO2 on f5

of the BBOB2010 beanchmark in 100 dimensions. The trend is shown according to a linear (above) and

logarithmic (below) scale

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 12: Holm-Bonferroni procedure (reference: hyperSPAM-MT, Rank = 4.56e+00)ranking all the algo-

rithms present in this study

j Algorithm Rank z j p j δ/ j Hypothesis

1 hyperSPAM-AP 4.51e+00 -1.82e-01 4.28e-01 5.00e-02 Accepted

2 hyperSPAM-RS 4.25e+00 -1.20e+00 1.15e-01 2.50e-02 Accepted

3 hyperSPAM-PM 4.19e+00 -1.42e+00 7.80e-02 1.67e-02 Accepted

4 MDE-pBX 3.79e+00 -3.02e+00 1.27e-03 1.25e-02 Rejected

5 CCPSO2 3.23e+00 -5.20e+00 9.92e-08 1.00e-02 Rejected

6 CMAES 2.75e+00 -7.09e+00 6.61e-13 8.33e-03 Rejected

Furthermore, when the full list of algorithms is considered, although hyperSPAM-

MT displays the best performance, it does not significantly outperform the other hy-345

perSPAM implementations. This fact confirms that the search algorithms composing a

hybrid framework are extremely important. Even a random coordination of the search

algorithms of the type in hyperSPAM-RS displays a good performance which is better

than MDE-pBX, CCPSO2, CMAES, and better than one of the adaptive scheme. How-

ever, the multinomial tracking implemented in hyperSPAM-MT is the most promising350

scheme. According to our interpretation, this is due to a suitable balance between a

randomisation of the selection of the search algorithms and a mechanism rewarding

the algorithms displaying the best performance. This scheme makes use of a multi-

nomial distribution to sample the search algorithm. Although this distribution is bi-

ased to adaptively prefer the most promising search algorithms, the forgetting factor355

prevents the distribution from focusing on search algorithms that were successful at

earlier stages of the optimisation. Thus, the multinomial tracking tend to keep the

randomization level of the selection mechanism quite high.

3.6. Numerical results on real-world applications

HyperSPAM-MT has been run on the above-mentioned real-world problems sam-360

pled from CEC2011 [8]. The competitor metaheuristics used in this article have also

been run on the real-world problems for comparison. Table 13 displays the results and

Wilcoxon test. Table 14 displays the result of the Holm-Bonferroni procedure.

Numerical results show that there is no algorithm which outperforms the others.

On average the algorithm are statistically all equivalent. On two problems the CCPSO2365

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 13: Average fitness ± standard deviation and statistic comparison (reference: hyperSPAM-MT) for

hyperSPAM-MT against CMAES MDE-pBX, and CCPSO2 on CEC2011[8] in 6, 30, and 20 dimensions.

hyperSPAM-MT CMAES MDE-pBX CCPSO2

Prob1(6D) 1.87e+01 ± 1.21e+01 3.37e+01±1.28e+01 + 8.16e+00±6.77e+00 - 6.77e+00±3.79e+00 -

Prob2(30D) −1.86e+01 ± 4.68e+00 −2.53e+01±2.74e+00 - −2.20e+01±4.32e+00 - −2.67e+01±1.74e+00 -

Prob7(20D) 7.29e−01 ± 1.47e−01 5.82e−01±8.31e−02 - 1.08e+00±1.77e−01 + 1.16e+00±1.25e−01 +

Table 14: Holm-Bonferroni procedure (reference: hyperSPAM-MT, Rank = 2.00e+00) ranking hyperSPAM-

MT, MDE-pBX, CCPSO2, and CMAES on the CEC2011 real-world problems

j Optimizer Rank z j p j δ/ j Hypothesis

1 CCPSO2 3.00e+00 1.22e+00 8.90e-01 5.00e-02 Accepted

2 CMAES 2.67e+00 8.16e-01 7.93e-01 2.50e-02 Accepted

3 MDE-pBX 2.33e+00 4.08e-01 6.58e-01 1.67e-02 Accepted

appears to be promising while on one CMAES appears to offer a better performance.

According to our interpretation, these results, in accordance with the No Free Lunch

Theorems [48], highlight that neither S nor R are very suitable to address these spe-

cific problems. However, hyperSPAM-MT still performs a reasonably well on these

problems.370

4. Conclusion

This paper proposes a simple hyperheuristic framework for continuous optimisation

problems, namely hyperSPAM, and presents a study on the mechanism for coordina-

tion of the search algorithms. Numerical results show that the proposed framework ap-

pears to flexibly address a large number of different problems and outperforms popular375

metaheuristics, regardless of the coordination mechanism. Thus, the choice of correct

search algorithms composing a hybrid algorithm appears to be fundamental. This is an

important caveat in algorithmic design when sophisticated adaptive schemes are de-

signed: if the search algorithms are correctly selected a simple random coordination

can lead to satisfactory results.380

The study on four mechanism for adaptive coordination demonstrates that, although

there is no clear outperformance of any scheme over the others, an adaptation using an

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

evolving multinomial distribution appears to display the best performance. The ran-

domised element of this adaptation is high due to a forgetting factor which inhibits

that the distribution is skewed around the search algorithms displaying the best perfor-385

mance. However, the adaptation biases the selection preference and rewards the search

algorithms that appears to be the most effective during the optimisation process. The

detection of the correct balance between these two elements seems to be one important

factor for the success of adaptation in hybrid algorithms.

References390

References

[1] Benlic, U., Epitropakis, M. G., Burke, E. K., 2017. A hybrid breakout local search

and reinforcement learning approach to the vertex separator problem. European

Journal of Operational Research 261 (3), 803–818.

[2] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., zcan, E., Qu, R.,395

2013. Hyper-heuristics: a survey of the state of the art. Journal of the Operational

Research Society 64 (12), 1695–1724.

[3] Burke, E. K., Kendall, G., Soubeiga, E., 2003. A Tabu Search hyperheuristic for

Timetabling and Rostering. Journal of Heuristics 9 (6), 451–470.

[4] Caraffini, F., Neri, F., Iacca, G., Mol, A., 2013. Parallel memetic structures. In-400

formation Sciences 227 (0), 60 – 82.

[5] Caraffini, F., Neri, F., Passow, B., Iacca, G., 2014. Re-sampled inheritance search:

High performance despite the simplicity. Soft Computing 17 (12), 2235–2256.

[6] Caraffini, F., Neri, F., Picinali, L., 2014. An analysis on separability for memetic

computing automatic design. Information Sciences 265, 1–22.405

[7] Cauwet, M.-L., Liu, J., Rozière, B., Teytaud, O., Feb 2016. Algorithm portfolios

for noisy optimization. Annals of Mathematics and Artificial Intelligence 76 (1),

143–172.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] Das, S., Suganthan, P., 2010. Problem definitions and evaluation criteria for cec

2011 competition on testing evolutionary algorithms on real world optimization410

problems. Jadavpur Univ., Nanyang Technol. Univ., Kolkata, India.

[9] Epitropakis, M., Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M., 2012.

Tracking particle swarm optimizers: An adaptive approach through multinomial

distribution tracking with exponential forgetting. In: IEEE Congress on Evolu-

tionary Computation (CEC2012). pp. 1–8.415

[10] Epitropakis, M. G., Burke, E. K., 2018. Hyper-heuristics. In: Martı́, R., Panos, P.,

Resende, M. G. C. (Eds.), Handbook of Heuristics. Springer International Pub-

lishing, Cham, pp. 1–57.

URL https://doi.org/10.1007/978-3-319-07153-4_32-1

[11] Epitropakis, M. G., Caraffini, F., Neri, F., Burke, E. K., 2014. A separability420

prototype for automatic memes with adaptive operator selection. In: 2014 IEEE

Symposium on Foundations of Computational Intelligence, FOCI 2014, Orlando,

FL, USA, December 9-12, 2014. IEEE, pp. 70–77.

[12] Epitropakis, M. G., Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., Vrahatis,

M. N., 2012. Tracking differential evolution algorithms: An adaptive approach425

through multinomial distribution tracking with exponential forgetting. In: Ma-

glogiannis, Plagianakos, Vlahavas (Eds.), Artificial Intelligence: Theories and

Applications. No. 7297 in LNCS. Springer, pp. 214–222.

[13] Fialho, A., 2010. Adaptive operator selection for optimization. Ph.D. thesis, Uni-

versité Paris-Sud XI, Orsay, France.430

[14] Garcia, S., Fernandez, A., Luengo, J., Herrera, F., 2008. A study of statistical

techniques and performance measures for genetics-based machine learning: ac-

curacy and interpretability. Soft Computing 13 (10), 959–977.

[15] Gretsista, A., Burke, E. K., 2017. An iterated local search framework with adap-

tive operator selection for nurse rostering. In: Battiti, R., Kvasov, D. E., Sergeyev,435

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Y. D. (Eds.), Learning and Intelligent Optimization - 11th International Confer-

ence, LION 11, Nizhny Novgorod, Russia, June 19-21, 2017, Revised Selected

Papers. Vol. 10556 of Lecture Notes in Computer Science. Springer, pp. 93–108.

URL https://doi.org/10.1007/978-3-319-69404-7_7

[16] Hallawa, A., Yaman, A., Iacca, G., Ascheid, G., 2017. A framework for knowl-440

edge integrated evolutionary algorithms. In: Squillero, G., Sim, K. (Eds.), Appli-

cations of Evolutionary Computation: 20th European Conference, EvoApplica-

tions 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Part I.

Springer International Publishing, pp. 653–669.

[17] Hansen, N., 2012. The CMA Evolution Strategy.445

http://www.lri.fr/ hansen/cmaesintro.html.

[18] Hansen, N., Müller, S. D., Koumoutsakos, P., 2003. Reducing the Time Complex-

ity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation

(CMA-ES). Evolutionary Computation 11 (1), 1–18.

[19] Hansen, N., Ostermeier, A., 2001. Completely derandomized self-adaptation in450

evolution strategies. Evolutionary Computation 9 (2), 159–195.

[20] Ho, Y.-C., Pepyne, D. L., Mar 2002. Simple explanation of the no free lunch

theorem of optimization. Cybernetics and Systems Analysis 38 (2), 292–298.

[21] Iacca, G., Caraffini, F., Neri, F., 2013. Memory-saving memetic computing for

path-following mobile robots. Appl. Soft Comput. 13 (4), 2003–2016.455

[22] Iacca, G., Caraffini, F., Neri, F., 2014. Multi-strategy coevolving aging particle

optimization. Int. J. Neural Syst. 24 (1).

[23] Iacca, G., Neri, F., Mininno, E., Ong, Y. S., Lim, M. H., 2012. Ockham’s Razor

in Memetic Computing: Three Stage Optimal Memetic Exploration. Information

Sciences 188, 17–43.460

[24] Iliya, S., Neri, F., 2016. Towards artificial speech therapy: A neural system for

impaired speech segmentation. Int. J. Neural Syst. 26 (6), 1–16.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] Islam, S., Das, S., Ghosh, S., Roy, S., Suganthan, P., 2012. An Adaptive Dif-

ferential Evolution Algorithm With Novel Mutation and Crossover Strategies for

Global Numerical Optimization. Systems, Man, and Cybernetics, Part B: Cyber-465

netics, IEEE Transactions on 42 (2), 482–500.

[26] Karafotias, G., Hoogendoorn, M., Eiben, A. E., 2014. Parameter Control in Evo-

lutionary Algorithms: Trends and Challenges. IEEE Transactions on Evolution-

ary Computation PP (99), 1–1.

[27] Kononova, A. V., Corne, D. W., Wilde, P. D., Shneer, V., Caraffini, F., 2015.470

Structural bias in population-based algorithms. Information Sciences 298, 468 –

490.

[28] Li, X., Yao, X., 2012. Cooperatively Coevolving Particle Swarms for Large Scale

Optimization. Evolutionary Computation, IEEE Transactions on 16 (2), 210–224.

[29] Liang, J. J., Qu, B. Y., Suganthan, P. N., Hernndez-Daz, A. G., 2013. Problem475

Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-

Parameter Optimization. Tech. Rep. 201212, Zhengzhou University and Nanyang

Technological University, Zhengzhou China and Singapore.

[30] Mallipeddi, R., Iacca, G., Suganthan, P. N., Neri, F., Mininno, E., 2011. Ensem-

ble Strategies in Compact Differential Evolution. In: Proceedings of the IEEE480

Congress on Evolutionary Computation. pp. 1972–1977.

[31] Mallipeddi, R., Mallipeddi, S., Suganthan, P. N., 2010. Ensemble strategies with

adaptive evolutionary programming. Information Sciences 180 (9), 1571–1581.

[32] N. Hansen, Auger, A., Finck, S., Ros, R., et al., 2010. Real-Parameter Black-Box

Optimization Benchmarking 2010: Noiseless Functions Definitions. Tech. Rep.485

RR-6829, INRIA.

[33] Neri, F., Cotta, C., 2012. Memetic algorithms and memetic computing optimiza-

tion: A literature review. Swarm and Evolutionary Computation 2, 1–14.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[34] Neri, F., Cotta, C., Moscato, P., 2012. Handbook of Memetic Algorithms. Vol.

379 of Studies in Computational Intelligence. Springer.490

[35] Neri, F., del Toro Garcia, X., Cascella, G. L., Salvatore, N., 2008. Surrogate As-

sisted Local Search on PMSM Drive Design. COMPEL: International Journal for

Computation and Mathematics in Electrical and Electronic Engineering 27 (3),

573–592.

[36] Neri, F., Mininno, E., 2010. Memetic compact differential evolution for cartesian495

robot control. IEEE Comp. Int. Mag. 5 (2), 54–65.

[37] Peng, F., Tang, K., Chen, G., Yao, X., 2010. Population-Based Algorithm Port-

folios for Numerical Optimization. IEEE Transactions on Evolutionary Compu-

tation 14 (5), 782–800.

[38] Piotrowski, A. P., 2013. Adaptive memetic differential evolution with global and500

local neighborhood-based mutation operators. Information Sciences 241, 164 –

194.

[39] Piotrowski, A. P., 2015. Regarding the rankings of optimization heuristics based

on artificially-constructed benchmark functions. Information Sciences 297, 191 –

201.505

[40] Piotrowski, A. P., Napiorkowski, J. J., 2018. Some metaheuristics should be sim-

plified. Information Sciences 427, 32–62.

[41] Rosenbrock, H. H., 1960. An automatic Method for finding the greatest or least

Value of a Function. The Computer Journal 3 (3), 175–184.

[42] Rostami, S., Neri, F., 2016. Covariance matrix adaptation pareto archived510

evolution strategy with hypervolume-sorted adaptive grid algorithm. Integrated

Computer-Aided Engineering 23 (4), 313–329.

[43] Segredo, E., Segura, C., León, C., Apr 2014. Memetic algorithms and hyper-

heuristics applied to a multiobjectivised two-dimensional packing problem. Jour-

nal of Global Optimization 58 (4), 769–794.515

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[44] Thierens, D., 2007. Adaptive strategies for operator allocation. In: Lobo, F. G.,

Lima, C. F., Michalewicz, Z. (Eds.), Parameter Setting in Evolutionary Algo-

rithms. No. 54 in Studies in Computational Intelligence. Springer Berlin Heidel-

berg, pp. 77–90, 00042.

[45] Tseng, L.-Y., Chen, C., 2008. Multiple trajectory search for Large Scale Global520

Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computa-

tion. pp. 3052–3059.

[46] Wang, X., Zhang, G., Neri, F., Jiang, T., Zhao, J., Gheorghe, M., Ipate, F., Lefti-

caru, R., 2016. Design and implementation of membrane controllers for trajectory

tracking of nonholonomic wheeled mobile robots. Integrated Computer-Aided525

Engineering 23 (1), 15–30.

[47] Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bul-

letin 1 (6), 80–83.

[48] Wolpert, D. H., Macready, W. G., 1997. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation 1 (1), 67–82.530

[49] Zeng, Y., Chen, X., Ong, Y., Tang, J., Xiang, Y., 2017. Structured memetic au-

tomation for online human-like social behavior learning. IEEE Trans. Evolution-

ary Computation 21 (1), 102–115.

[50] Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M. J., 2014. An optimization spik-

ing neural P system for approximately solving combinatorial optimization prob-535

lems. Int. J. Neural Syst. 24 (5).

[51] Zhu, X., Li, X., 2016. An enhanced greedy random adaptive search procedure

with path-relinking for no-wait flowshop problem with setup times. Integrated

Computer-Aided Engineering 23 (1), 51–68.

38

