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Abstract—Since their introduction, fuzzy sets and systems
have become an important area of research known for its
versatility in modelling, knowledge representation and reasoning,
and increasingly its potential within the context explainable AI.
While the applications of fuzzy systems are diverse, there has
been comparatively little advancement in their design from a
machine learning perspective. In other words, while represen-
tations such as neural networks have benefited from a boom
in learning capability driven by an increase in computational
performance in combination with advances in their training
mechanisms and available tool, in particular gradient descent,
the impact on fuzzy system design has been limited. In this
paper, we discuss gradient-descent-based optimisation of fuzzy
systems, focussing in particular on automatic differentiation–
crucial to neural network learning–with a view to free fuzzy
system designers from intricate derivative computations, allowing
for more focus on the functional and explainability aspects of
their design. As a starting point, we present a use case in
FuzzyR which demonstrates how current fuzzy inference system
implementations can be adjusted to leverage powerful features
of automatic differentiation tools sets, discussing its potential for
the future of fuzzy system design.

Index Terms—FuzzyR, Fuzzy System Optimisation, Autograd,
Automatic Differentiation

I. INTRODUCTION

Since the introduction of fuzzy sets and systems by Zadeh
in 1965 [1], this domain has gained substantial traction,
evolving into a prominent field of research and a versatile
tool for modelling, control and reasoning across various dis-
ciplines [2, 3, 4, 5, 6]. Over the past few years, a variety
of toolkits have emerged in different programming languages
that significantly aid in the dissemination, accessibility and
practical implementation of theoretical and applied research
in fuzzy systems [7, 8]. For example, there are MATLAB®

toolboxes [9, 10, 11]; GUAJE, FisPro, Juzzy and Juzzy Online
for Java [12, 13, 14, 15], and Fuzzycreator and Scikit-Fuzzy
for Python [16, 17]. In previous work, we introduced FuzzyR
which is an open source toolbox in the R programming
language for modelling different types of fuzzy inference
system, including type-1, interval type-2, hierarchical, and
non-singleton models [18, 19, 20].

Despite significant advancements in the domain of fuzzy
systems, a critical and broader gap is evident in the field:
the limited focus on optimisation within the research area,

while preserving the core attributes of explainability and
interpretability. Various fuzzy models have been proposed that
showcase these intrinsic advantages, but often the performance
optimisation aspect is not as emphasised [19, 20, 21]. This gap
is largely attributable to the lack of integrated optimisation
capabilities within the toolkits. On the other hand, while
the exploration of gradient-based methods has been fairly
extensive since the 1990s, the choices of modelling configu-
rations, including the selection of membership functions, have
normally been limited mainly due to the challenges associated
with derivative computations [22, 23, 24]. Consequently, the
use of gradient-based methods was discouraged, especially for
type-2 modelling, which may require more intricate deriva-
tive calculations [25, 26]. Hence, even in the cases where
optimisation methods are provided, the options are usually
limited to methods such as genetic algorithms, particle swarm
optimisation, and simulated annealing [11, 27, 28, 29, 30].

In contrast, deep learning has achieved remarkable success
with the implementation of gradient-based parameter learning
methods [31, 32, 33]. The effectiveness of state-of-the-art deep
learning models lies in their efficiency in navigating large
parameter spaces based on gradient-based methods, crucial
for complex systems [34]. We note that within machine
learning, tool development has focused strongly on gradient-
based optimisation, as probably most famously represented
by the autograd feature [35], a cornerstone of deep learning
frameworks. The latter significantly eases the differential pro-
cess by automating derivative computations, an integral aspect
of deep learning success in complex model designs.

One of the most commonly used machine learning frame-
works which includes the ‘autograd’ feature is PyTorch [36].
Although PyTorch is a Python library, a Torch for R package
was recently released that allows PyTorch-like functionalities
to be used in the R programming language [37, 38]. This
makes it possible for FuzzyR to benefit from the autograd
feature for easier optimisation. The autograd feature liberates
designers from the intricacies of derivative calculations, allow-
ing them to focus more on the creative aspects of fuzzy system
design, such as architecture innovation and the exploration of
alternative functions and operators. This paper introduces the
integration of automatic differentiation with FuzzyR as a use
case. Such integration provides the potential for more flexible
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and more advanced fuzzy inference system design, including
support for a broader range of membership functions and fuzzy
operators during inference processes such as fuzzification and
deffuzification.

The main aim of this paper is to introduce the autograd-
enabled FuzzyR toolbox with examples to illustrate how it
may be used for optimisation when building a fuzzy model. We
proceed to discuss the potential of leveraging some of the great
advances in deep learning, in order to develop more advanced
fuzzy systems, while preserving their unique potential for
explainability.

II. AUTOMATIC DIFFERENTIATION

This section demonstrates a simple autograd example
adapted from Torch for R [38]. By a simple linear model with
autograd capabilities, this example aims to underscore how the
complexities of derivative calculations, a cornerstone in opti-
misation algorithms like gradient descent, can be efficiently
managed.

require(torch)
x <- torch_tensor(3)
w <- torch_tensor(2, requires_grad = TRUE)
b <- torch_tensor(1, requires_grad = TRUE)
y <- w * x + b
y$backward()
w$grad
#> torch_tensor
#> 3
#> [ CPUFloatType{1} ]
b$grad
#> torch_tensor
#> 1
#> [ CPUFloatType{1} ]

Listing 1. Example code snippet of autograd in R

In the above example, y can be considered as the output of a
linear model where x is the input, w is the weight, and b is the
bias. In machine learning, the values of w and b are usually
learnt from the data. When the gradient descent method is
used, the partial derivatives of y with respect to w and b are
calculated–a challenging process if done manually.

However, with the automatic differentiation feature, as il-
lustrated above, there is no need to perform such calculations
manually. In the context of this example, the key lies in
declaring w and b as tensors that require a gradient. The tensor,
in high-level terms, can be thought of as a multidimensional
data structure, which is fundamental to operations in machine
learning and deep learning frameworks. When a tensor is
declared with the ‘requires grad’ attribute set to true, as in
the case of w and b, it signals to the Torch framework that
every operation applied to these tensors should be tracked for
the automatic differentiation process. Thus, tensors are not
just containers for numerical data, but are dynamic structures
that facilitate the calculation and propagation of gradients in
computational graphs.

In the example, after operations (y = w ∗ x + b) in
the forward pass, the backward() method can be used to
automatically compute the gradient of y with respect to the
tensors w and b. Then, w$grad and b$grad can be used to
access relevant gradients.

As discussed above, to use autograd, the data flow and
operations need to be based on tensors. While many built-
in functions and operators in R have been supported by
Torch for R, customised functions, especially, often require
modifications to be compatible with autograd.

A case in point is the commonly used apply function in R,
which is very useful for applying a function to the margins
of an array or matrix. However, this function is currently not
supported by Torch for R. To illustrate this limitation, consider
the following example where the apply function is used:

require(torch)
x <- torch_tensor(matrix(rnorm(10), nrow=2))
w <- torch_tensor(matrix(rnorm(10), nrow=2),

requires_grad = T)
x * w
#> torch_tensor
#> 1.4192 0.0270 -0.1124 0.2605 0.0537
#> 1.1509 -0.3120 0.0478 -0.5553 0.0104
#> [ CPUFloatType{2,5} ][ grad_fn = <MulBackward0

> ]
y <- apply(x * w, 1, sum)
y
#> [1] 1.6479214 0.3417696
y[1]$backward()
#> Error in y[1]$backward : $ operator is invalid

for atomic vectors

Listing 2. Example code to show that the apply funtion is not supported

In this example, the apply function is used to calculate the
sum of the rows for the matrix x ∗ w. The resulting object
from apply is not a tensor, hence autograd is not supported.
This necessitates an alternative approach to utilise autograd.
An example solution, which achieves a similar outcome but
in a manner compatible with autograd, is provided below:

require(torch)
x <- torch_tensor(matrix(rnorm(10), nrow=2))
w <- torch_tensor(matrix(rnorm(10), nrow=2),

requires_grad = T)
x * w
#> torch_tensor
#> 1.4192 0.0270 -0.1124 0.2605 0.0537
#> 1.1509 -0.3120 0.0478 -0.5553 0.0104
#> [ CPUFloatType{2,5} ][ grad_fn = <MulBackward0

> ]
y <- torch_stack(

lapply(torch_unbind(x * w, dim = 1), sum))
y
#> torch_tensor
#> 1.6479
#> 0.3418
#> [ CPUFloatType{2} ][ grad_fn = <StackBackward0

> ]
y[1]$backward(retain_graph = T)
y[2]$backward()
w$grad

Listing 3. Example solution using torch operations for autograd compatibility

This solution demonstrates the use of torch stack and
lapply along with torch unbind to perform operations analo-
gous to apply, but in a way that maintains compatibility with
the autograd system.

It should be mentioned that this paper does not aim to pro-
vide an exhaustive list of functions supported or unsupported
by Torch for R in the context of autograd compatibility. The
scope of such an endeavour is vast, and the functionalities



within Torch for R and PyTorch are continually evolving.
Therefore, users are encouraged to refer to the official manual
for the most up-to-date and comprehensive information on
function support and compatibility. In addition, other related
resources, such as community forums, can be accessed for the
latest developments, user experiences, and a wider range of
examples and use cases.

III. MODIFICATIONS IN FUZZYR
FOR AUTOMATIC DIFFERENTIATION

Making FuzzyR fully compatible with autograd requires
significant modifications. This section outlines some initial
changes that have been implemented to adapt FuzzyR for
this purpose. Specifically, we focus on modifications that
render a demonstrative Mamdani-type fuzzy inference system
compatible with autograd.

These initial changes are the groundwork for further inte-
gration and optimisation within FuzzyR, utilising the advanced
capabilities of autograd. Note that modularity and layer-based
structure are emblematic of deep learning architectures. In
deep learning, the ability to construct complex models us-
ing multiple building blocks (such as layers and modules)
has been a paradigm shift, allowing the creation of highly
adaptable and sophisticated systems. Similarly, the integration
of automatic differentiation capabilities into FuzzyR unlocks
a transformative level of flexibility. This advancement may
significantly shift the focus toward more strategic aspects of
fuzzy system development, empowering designers to construct
fuzzy systems in a more modular fashion (e.g., something
like hierarchical fuzzy systems [20]). Designers will be able
to concentrate on the conceptual and architectural design of
these systems, rather than being bogged down by the manual
calculations of derivatives for optimisation. On the other hand,
the adaptations and methodologies described here can serve
as references for extending the autograd compatibilities of
FuzzyR (or other toolkits) in the future.

Specific changes are introduced in the following. Mem-
bership functions are fundamental components of fuzzy logic
systems. The trapezoidal membership function is one of the
commonly used types of membership function. The following
code is the original implementation of this function in FuzzyR.

trapmf <- function(mf.params) {
a <- mf.params[1]
b <- mf.params[2]
c <- mf.params[3]
d <- mf.params[4]

if (length(mf.params) == 5) {
h <- mf.params[5]

} else {
h <- 1

}

trapmf <- function(x) {
y <- pmax(pmin((x - a) / (b - a), h, (d - x

) / (d - c)), 0)
y[is.na(y)] <- h
y

}

}

Listing 4. Original implementation of the trapezoidal membership function

However, this original implementation requires the use of
functions pmax and pmin, which are not supported by Torch
for R. To make the trapezoidal membership function compat-
ible with autograd in Torch for R, an alternative approach
is necessary. The revised implementation, presented below,
addresses compatibility issues, ensuring that the function can
operate with torch tensors and is suitable for autograd pro-
cessing.

trapmf.torch <- function(mf.params) {
a <- mf.params[1]
b <- mf.params[2]
c <- mf.params[3]
d <- mf.params[4]

if (length(mf.params) == 5) {
h <- mf.params[5]

} else {
h <- 1

}

trapmf.torch <- function(x) {
x <- torch_tensor(x)
y <- torch_zeros(length(x))

# Check conditions and calculate values
accordingly

mask1 <- (x > a) & (x < b)
mask2 <- (x >= b) & (x <= c)
mask3 <- (x > c) & (x < d)
y[mask1] <- torch_minimum((x[mask1] - a) /

(b - a), h)
y[mask2] <- h
y[mask3] <- torch_minimum((d - x[mask3]) /

(d - c), h)

y
}

}

Listing 5. Autograd compatible implementation of the trapezoidal
membership function

The evalmf function plays a crucial role in evaluating
membership grades for given crisp inputs x. In its original
form, this function may have been limited to returning crisp
values only. To fully leverage the capabilities of autograd
in Torch for R, modifications are necessary to ensure that
evalmf returns torch tensors instead. The code below presents
the autograd-compatible implementation of the evalmf func-
tion. This revised implementation ensures that the function
can handle torch tensors, which is a critical requirement for
autograd processing. However, it should be noted that further
modifications may be required for the evalmf function to
fully support all types of membership functions, including non-
singleton types.

evalmf <- function(...) {
params <- list(...)
params.len <- length(params)

x <- params[[1]]

if (params.len == 3) {
MF <- genmf(mf.type = params[[2]], mf.

params = params[[3]])



} else if (params.len == 2) {
MF <- params[[2]]

} else if (params.len == 6 || params.len == 7)
{

# TODO: autograd for non-singleton.
return(evalmf.ns(...))

} else {
stop("incorrect parameters")

}

y <- sapply(c(MF), function(F) F(x))
if (is.list(y)) {

y <- y[[1]]
}
if (!is(y, "torch_tensor")) {

y <- torch_tensor(y)
}
if (length(dim(y)) > 1) {

y <- torch_squeeze(y, 2)
}
y

}

Listing 6. Autograd compatible implementation of the evalmf function

In addition to the modifications made to the evalmf function,
several other key functions within FuzzyR have been updated
to enhance compatibility with autograd. These functions in-
clude gensurf , plotvar, evalfis, defuzz, among others.
Each of these functions plays a crucial role in fuzzy infer-
ence system modelling, and their adaptation is essential for
leveraging the full capabilities of autograd in Torch for R.
The details of these changes are not extensively covered in
this paper, but can be found in the source files of the FuzzyR
package on CRAN [39].

IV. EXPERIMENTAL DEMONSTRATION

In this section, the focus is on demonstrating the practical
application of automatic differentiation in the context of an
enhanced FuzzyR framework. Specifically, we optimise a
Mamdani-type fuzzy inference model, using the well-known
IRIS classification problem as a test case. This serves as
a tangible example of how the integration of autograd into
FuzzyR can be utilised in real-world scenarios.

This demonstration is primarily aimed at showcasing the
ease with which gradient-based optimisation can be imple-
mented once a fuzzy system is built, particularly when en-
hanced with autograd capabilities as in FuzzyR. Although
this experiment does not directly illustrate the development
of more flexible or complex module-based fuzzy system
modelling, it sets the groundwork for such advancements.
By integrating autograd, it opens up opportunities for experi-
menting with different components of fuzzy systems, such as
various types of membership function and operators, without
the daunting task of manual differentiation for optimisation
purposes. For example, current ANFIS modelling in FuzzyR
only supports generalised bell-shaped membership functions
and singleton fuzzification. This is mainly due to the complex-
ity of manual derivative calculations. However, with automatic
differentiation, it would be much easier to extend the support
of other types of membership function and non-singleton
fuzzification.

A. Dataset

The Iris dataset, consisting of 150 instances, is a classic
dataset in the field of machine learning [40]. This dataset
is renowned for its clarity and simplicity, making it an ideal
choice for testing and validating machine learning models. As
illustrated in Table I, the Iris dataset comprises four attributes:
sepal length, sepal width, petal length, and petal width. It
classifies instances into three species of iris flowers, which
are Setosa, Versicolor, and Virginica. For the purposes of this
demonstration, all 150 instances will be utilised both as the
training and the testing sets.

TABLE I
DATA SAMPLES OF THE IRIS FLOWER DATA SET.

Sepal Length Sepal Width Petal Length Petal width Species

5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.3 3.3 6.0 2.5 virginica

B. Membership Function and The Rule Set

When constructing the fuzzy rule base, only Petal Length
(x1) and Petal Width (x2) were used as input. Species (y) is
the output. There are three trapezoidal membership functions
(Low, Mid, High) for each input and output. Note that for the
output, Low, Mid, High are used to represent species setosa,
versicolor, and viginica, respectively. The five rules used are
presented below.

IF x1 is Low AND x2 is Low, THEN y is Low

IF x1 is Mid AND x2 is Mid, THEN y is Mid

IF x1 is High AND x2 is High, THEN y is High

IF x1 is Mid AND x2 is High, THEN y is High

IF x1 is High AND x2 is Mid, THEN y is High

C. Code Demo

In the following section, we delve into the main implemen-
tation details of building a Mamdani-type inference model
using FuzzyR, with an emphasis on ensuring compatibility
with autograd. The code snippet below illustrates the process
of building the fuzzy inference system, specifically tailored for
the Iris classification task.

fis_iris <- function(theta1, theta2) {
fis <- newfis("Iris Classification", andMethod

= "prod")
fis <- addvar(fis, "input", "Petal.Length", c

(0, 1))
fis <- addvar(fis, "input", "Petal.Width", c

(0, 1))
fis <- addvar(fis, "output", "Species", c(0.5,

3.5))

fis <- addmf(fis, "input", 1, "Low",
"trapmf.torch", torch_cat(list(0, 0,

theta1[1:2]), dim = 1))
fis <- addmf(fis, "input", 1, "Mid",

"trapmf.torch", theta1[3:6])
fis <- addmf(fis, "input", 1, "High",



"trapmf.torch", torch_cat(list(theta1
[7:8], 1, 1), dim = 1))

fis <- addmf(fis, "input", 2, "Low",
"trapmf.torch", torch_cat(list(0, 0,

theta2[1:2]), dim = 1))
fis <- addmf(fis, "input", 2, "Mid",

"trapmf.torch", theta2[3:6])
fis <- addmf(fis, "input", 2, "High",

"trapmf.torch", torch_cat(list(theta2
[7:8], 1, 1), dim = 1))

fis <- addmf(fis, "output", 1, "setosa", "
trapmf.torch", c(0.5, 0.5, 0.5, 2, 1))

fis <- addmf(fis, "output", 1, "versicolor", "
trapmf.torch", c(0.5, 2, 2, 3.5, 1))

fis <- addmf(fis, "output", 1, "virginica", "
trapmf.torch", c(2, 3.5, 3.5, 3.5, 1))

# IF Petal.Length is Low and Petal.Width is
Low THEN Species is setosa

# IF Petal.Length is Mid and Petal.Width is
Mid THEN Species is versicolor

# IF Petal.Length is High and Petal.Width is
High THEN Species is virginica

# IF Petal.Length is Mid and Petal.Width is
High THEN Species is virginica

# IF Petal.Length is High and Petal.Width is
Mid THEN Species is virginica

rl <- rbind(c(1, 1, 1, 1, 1), c(2, 2, 2, 2, 1)
, c(3, 3, 3, 3, 1), c(2, 3, 3, 3, 1), c(3,
2, 3, 3, 1))

fis <- addrule(fis, rl)
}

Listing 7. Code snippet for building the Mamdani-type inference model

The above code snippet demonstrates the use of autograd
compatible membership functions, specifically trapmf.torch,
in the construction of a fuzzy inference system. Notably,
the syntax remains consistent with the use of FuzzyR in
non-autograd contexts. The primary requirement for auto-
grad compatibility is ensuring that membership functions are
compatible with autograd and that the parameters for these
functions are specified as tensors. This is essential if automatic
differentiation is needed for the optimisation process.

The following code snippets detail the steps involved in
data manipulation, parameter initialisation, and optimisation
for the fuzzy inference model, highlighting the application of
automatic differentiation in the process.

First, we focus on data preprocessing and model initialisa-
tion:

## Data Preprocessing
data.all <- iris[, 3:5]
species <- as.factor(data.all[, 3])
data.all[, 3] <- as.numeric(species)
data.all <- as.matrix(data.all)
require(caret)
data.all[, 1:2] <- predict(preProcess(data.all[,

1:2], method = c("range")), data.all[, 1:2])
input_stack <- data.all[, 1:2]

## Parameter Initialisation
theta1 <- c(0.1, 0.39, 0.11, 0.4, 0.6, 0.89,

0.61, 0.9)
theta2 <- c(0.1, 0.39, 0.11, 0.4, 0.6, 0.89,

0.61, 0.9)

psi1 <- torch_tensor(getPSI(theta1), requires_
grad = T)

psi2 <- torch_tensor(getPSI(theta2), requires_
grad = T)

theta1 <- getTheta(psi1)
theta2 <- getTheta(psi2)

fis.init <- fis_iris(theta1, theta2)
fis <- fis.init

Listing 8. Code snippet for data preprocessing and model initialisation

Next, we proceed to the optimisation process. Parameters
theta1 and theta2 were used to define input trapezoidal
membership functions. However, during training epochs, up-
dates to these parameters are mediated through intermediate
parameters psi1 and psi2. This approach ensures that the
membership functions adhere to specific constraints, which are
essential to maintain the validity of the model, but are not the
focus of this paper. Hence, details about the constraints will
not be discussed here, but will be thoroughly investigated in
another work. The following code illustrates the optimisation
process, leveraging automatic differentiation:

epochs <- 100
stepsize <- 0.3
err.min <- Inf
err.all <- NULL
theta1.all <- t(as.matrix(theta1))
theta2.all <- t(as.matrix(theta2))

for (i in 1:epochs) {
y <- evalfis(input_stack, fis)
y <- torch_squeeze(y, 2)
err <- rmse(data.all[, 3], y)
cat(as.numeric(err), ",")
if (i %% 5 == 0) {

cat("\n")
}

err.all <- c(err.all, as.numeric(err))
if (err.min > as.numeric(err)) {

err.min <- as.numeric(err)
fis.final <- fis

}

if (i == epochs) {
break

}

err$backward()
psi1 <- torch_tensor(psi1 - stepsize * psi1$

grad, requires_grad = T)
psi2 <- torch_tensor(psi2 - stepsize * psi2$

grad, requires_grad = T)
theta1 <- getTheta(psi1)
theta2 <- getTheta(psi2)
fis <- fis_iris(theta1, theta2)

theta1.all <- rbind(theta1.all, t(as.matrix(
theta1)))

theta2.all <- rbind(theta2.all, t(as.matrix(
theta2)))

}

Listing 9. Code snippet for the optimisation process based on automatic
differentiation

D. Results

The results obtained are similar to the previous work [41].
During 100 training epochs, we observed a marked decrease
in root mean square error (RMSE), from 0.2872 to 0.1421,
along with a reduction in misclassified cases from 22 to 4.



The membership functions of the inputs before and after
optimisation are presented in Figures 1 and 2 respectively.
Initially, the membership functions (‘Low’, ‘Mid’, and ‘High’)
are uniformly distributed across the input range for both the
petal length and the petal width, as depicted in Fig. 1. This
evenly spaced initialisation is a standard practice in the pre-
liminary design of fuzzy systems, serving as a neutral starting
point that does not presume any data-specific biases. However,
such uniform distributions may not accurately capture the
nuances of the actual data distributions present in the Iris
dataset. The optimisation process, as illustrated in Fig. 2,
fine-tunes these membership functions, resulting in a more
data-centric alignment. Consequently, the final membership
functions retain their interpretability–a quintessential feature
of fuzzy systems–while also demonstrating a significant boost
in performance. This balance between data representation fi-
delity and model interpretability underscores the effectiveness
of employing autograd-driven optimisation in fuzzy system de-
sign.

0 Petal.Length 1

0

µ

1 Low
Mid

High

0 Petal.Width 1

0

µ

1 Low
Mid

High

Fig. 1. Initial membership functions of the inputs

0 Petal.Length 1

0

µ

1 Low
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High

0 Petal.Width 1

0

µ

1 Low
Mid

High

Fig. 2. Final membership functions of the inputs after optimisation

The learning curves of parameters theta1 and RMSE can be
seen in Figure 3. The consistency of these improvements over
multiple training iterations not only validates the effectiveness
of incorporating autograd into FuzzyR, but also highlights its
practical applicability in optimising fuzzy inference models.

V. CONCLUSION

In this study, we have explored the use of automatic dif-
ferentiation to simplify gradient-based optimisation processes
of fuzzy systems. Through a practical example in FuzzyR, we
showcased how existing fuzzy inference system frameworks
may be modified to incorporate the capabilities of an automatic
differentiation tool, specifically Torch for R. Although our
demonstration only used a relatively simple Mamdani-type
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Fig. 3. The learning curves of Parameters theta1 and RMSE

model on a small dataset, it effectively illustrated the potential
of automatic differentiation to simplify the optimisation pro-
cess, eliminating the need for intricate derivative computations.
More importantly, this automatic differentiation methodology
is versatile and can be adapted for various forms of fuzzy
system modelling, including type-2 or even more advanced
systems, provided the inference mechanisms are mathemati-
cally differentiable.

Additionally, while this paper did not propose a new design
paradigm for fuzzy systems, it highlights the transformative
potential of automatic differentiation in the evolution of fuzzy
system modelling. By simplifying the complexity involved
in computing derivatives, automatic differentiation may en-
able system designers to focus more on the innovation of
system architectures. It could lead to a more straightforward
exploration of a broader range of modelling configurations,
such as a variety of membership functions and operators.
This advancement could facilitate a shift toward more flexible
and efficient design methodologies in the development of
fuzzy systems.

However, it is important to note that this study serves pri-
marily as a demonstration purpose. There remains substantial
scope for further research and development to fully exploit
the capabilities of automatic differentiation in the design and
optimisation of fuzzy systems. For example, considerable work
may be needed to ensure that toolkits, such as FuzzyR, are
fully compatible with automatic differentiation features. The
ideal aim is to enhance fuzzy systems not only to retain their
acclaimed advantages in explainability and interpretability
but also to achieve or potentially exceed the performance
benchmarks established by deep learning models. We hope that
our work could inspire continued innovation and advancement
in the field of fuzzy system modelling.
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Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

[37] S. Keydana, “Posit AI Blog: Please allow me to introduce
myself: Torch for R,” 2020.

[38] D. Falbel and J. Luraschi, torch: Tensors and Neural
Networks with ’GPU’ Acceleration, 2023.

[39] C. Chen, J. M. Garibaldi, and T. Razak, “FuzzyR:
Fuzzy Logic Toolkit for R,” https://CRAN.R-
project.org/package=FuzzyR, 2019.

[40] R. A. Fisher, “Iris,” UCI Machine Learning Repository,
1988.

[41] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “An
extended ANFIS architecture and its learning properties
for type-1 and interval type-2 models,” in Proceedings
IEEE International Conference on Fuzzy Systems, 2016,
pp. 602–609.


	Introduction
	Automatic Differentiation
	Modifications in FuzzyR for Automatic Differentiation
	Experimental Demonstration
	Dataset
	Membership Function and The Rule Set
	Code Demo
	Results

	Conclusion

