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Abstract
Despite ongoing improvements and optimisation efforts, the powder bed fusion (PBF) process
continues to face challenges related to repeatability, robustness, and stability. These challenges
can lead to the formation of microscale surface impurities on each layer, such as balling, spatter
and surface pores, which can adversely affect the overall quality of the final part. The
layer-by-layer fabrication approach in PBF offers an opportunity to assess fabrication quality in
real-time by detecting these impurities at each layer during the manufacturing process through
in-situ sensing methods. With advancements in sensing and computing technologies, there has
been a significant increase in studies focused on developing in-situ methods for the real-time
detection of surface impurities and feedback mechanisms. However, it is necessary to
understand the effectiveness and capability of these in-situ methods in detecting microscale
surface impurities, as well as to evaluate their potential advantages, drawbacks, and the existing
gaps in the literature. This study first summarises the common microscale surface impurities and
their potential impacts on part quality, including mechanical properties and surface finish. It
then reviews the existing in-situ methods capable of detecting these microscale impurities,
providing insights into the strengths and limitations of current techniques, and identifying gaps
in the literature while suggesting directions for future research.
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1. Introduction

Additive manufacturing (AM) is a rapidly growing fabrication
method that can produce complex geometries by adding/fus-
ing material layer-by-layer according to the three-dimensional
(3D) models of the parts [1]. Although the origins of AM date
back to the 1860s, the first commercial AMmachine was intro-
duced by 3D Systems in 1987 [2]. The pace of development
significantly accelerated with advancements in computer tech-
nology and the introduction of powerful graphical interfaces.
According to the Wohlers Report 2024 [3], sales of metal AM
systems have steadily increased since 2002 (figure 1), growing
by more than 700% over the past decade.

AM offers a significant advantage over traditional fab-
rication methods in terms of design freedom. AM parts
can be designed without considering the tools and fixtures
required for conventional manufacturing. This feature allows
for parts with complex geometries and features that are dif-
ficult or impossible to fabricate using traditional methods [4].
Additionally, time and cost savings can be achieved by minim-
ising the need for various fabrication processes and the accom-
panying fixturing requirements. However, in order to fabric-
ate an AM part with the desired quality, an understanding of
the underlying processes, materials, and their limitations is
required. Despite improvements and optimisation studies in
AM, defects still occur due to the lack of fabrication stability,
robustness and repeatability of the manufacturing processes
[5–7]. As such, it is essential to detect and analyse defects to
inspect and monitor the fabrication quality of components.

Powder bed fusion (PBF) is the most widely used mature
metal AM technique [8]. It uses a laser (laser-based PBF, PBF-
LB) or electron beam (electron-based PBF, PBF-EB) to melt
and fuse powder layers to fabricate 3D parts. During the fab-
rication process, microscale surface impurities (smaller than
1 mm), such as balling [9], spatter [10] and surface pores [11],
may form on layer surfaces. These impurities can signific-
antly compromise the integrity of the part by diminishing its
quality. In this paper, ‘part quality’ refers to the properties of
the fabricated parts, including their mechanical, thermal, and
dynamic characteristics, as well as the quality of their surface
finish. Several studies have demonstrated that surface impur-
ities can reduce mechanical properties such as strength [12],
microhardness [13] and fatigue life [14]. Moreover, they play
a critical role in crack initiation [15].

Surface impurities can be the source of other defects
and further negatively impact the part quality [16, 17]. For
instance, Gu and Shen [9] investigated that the amount of
partially melted particles increases the formation of lack of
fusion (LOF). Zhang et al [18] presented a positive cor-
relation between surface impurities and internal porosities.
Sanviemvongsak et al [19] suggested that surface impurities
can cause oxidation. Romano et al [20] observed that sur-
face cracks, exacerbated by impurities, decrease fatigue resist-
ance and Zhu et al [21] explored a correlation between surface
texture and porosity. In other words, the presence of surface
impurities not only indicates poor surface quality but can also
be a sign of overall poor part quality [16–20]. As a result, the

Figure 1. Metal AM sales between 2002–2023, Wohlers Report
2024 [3].

scope of this paper focuses on microscale surface impurities
in PBF.

Microscale surface impurities in PBF can bemeasured after
the fabrication using high-resolution ex-situ methods such as
x-ray computed tomography (XCT) [22, 23], optical methods,
such as coherence scanning interferometry [24, 25], confocal
microscopy (CM) [24–27] and focus variation [25, 28]. In ex-
situmethods, the part may need to be transported from a man-
ufacturing site to a metrology site, which involves significant
delays and potential harm by sample degradation or contamin-
ation. It should be noted that most of these surface topography
measuring techniques, though having high resolution, can be
relatively costly.

On the other hand, the layer-by-layer fabrication method
enables in-situ monitoring of surface impurities on each layer
during the fabrication process [29–31], which is valuable
because it allows for real-time data collection and analysis to
help identify defects. It can also enable closed-loop feedback
control to correct defects during their formation.

Some of the earliest research on in-situmonitoringwas con-
ducted in 1994 by Melvin et al [32] and Benda [33]. Melvin
et al [32] utilised video microscopy to gain insights into the
behaviour of powder during fabrication, while Benda [33]
was the first to measure melt pool temperature using an in-
situ infrared (IR) sensor. These pioneering studies marked
the beginning of using in-situ sensors for analysing PBF fab-
rication. Following these initial studies, researchers increas-
ingly focused on in-situ methods, primarily based on vis-
ible and thermal sensing [34]. Particularly after 2010, there
was a growing interest in the defect detection capabilities
of in-situ methods. One of the first defect detection meth-
ods using in-situ sensing was proposed by Berument et al
[35], who concentrated on detecting issues related to powder
coating, such as insufficient or excessive powder layering.
With advancements in sensor technology and machine learn-
ing (ML) algorithms, research in defect detection has expan-
ded significantly. Figure 2 shows the number of papers pub-
lished on in-situ measurement and monitoring methods for
PBF since 1994 according to the Scopus database, highlight-
ing the rapid growth of interest in this area.
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Figure 2. The number of published papers about in-situ methods on
PBF based on the Scopus database.

Microscale surface impurities need to be detected in real-
time using in-situmethods to evaluate fabrication quality or to
correct these impurities during fabrication through real-time
feedback control. Several recent review papers have examined
in-situ measurement and monitoring methods in PBF [5, 30,
36]. However, our review paper offers a unique contribution
by focusing on the most recent in-situ methods specifically
designed to detect microscale surface impurities. The paper
also critically evaluates the capabilities and limitations of
each method, emphasising detection accuracy and the range
of detectable impurity sizes. It begins by introducing common
microscale surface impurities, discussing their potential form-
ationmechanisms, and assessing their impact on the final qual-
ity of manufactured parts. Finally, the paper summarizes key
findings related to these methods, highlighting their advant-
ages and limitations, and identifies gaps in the current literat-
ure, offering suggestions for future research directions.

2. Microscale surface impurities

The surface quality of each layer in PBF fabrication can play a
crucial role in determining a part’s overall performance [21],
which is due to the layerwise fabrication process, where the
quality of each layer can influence the subsequent layers’
quality. Microscale surface impurities refer to protrusions or
recesses, such as balling, spatter and pores found on a surface.
These impurities can decrease the quality of the fabricated
parts. In the literature, several studies have demonstrated a dir-
ect correlation between these impurities and part quality [11,
37–41]. Furthermore, other studies have indicated an indirect
correlation, as these impurities can contribute to forming other
defects such as internal pores, LOF and cracks, further impact-
ing the overall part quality [10, 42–47].

This section focuses on commonmicroscale surface impur-
ities, protrusions and recesses that can arise during fabric-
ation, their influence on part quality, and the correlations
between these impurities and other defects. Understanding and

managing these impurities is vital to ensuring the overall per-
formance and reliability of PBF-fabricated parts.

2.1. Balling

Balling is one typical fabrication defect encountered in PBF,
which is formed by breaking the molten metal into droplets
in the shape of separate beads (see figure 3(a)) [48]. This phe-
nomenon arises during the process of powdermelting, wherein
the weld track experiences a reduction in surface energy due
to surface tension often resulting from inadequate wettability
and non-optimal process parameters [49, 50]. Balling has been
categorised based on its shape and dimensions into ellipsoidal
and spherical forms, with reported dimensions ranging from
approximately 3–500 µm [9, 50, 51].

The balling phenomenon causes the interaction between the
laser beam and the surface to become unstable, leading to the
formation of irregular weld tracks. These irregular weld tracks
lead to insufficient bonding between layers, resulting in phe-
nomena such as rough surfaces [53–57], porosity [42–44] and
reduced part density [51, 58, 59].

2.2. Spatter

Spatter, a common occurrence in PBF (see figure 3(b)), is
generally undesirable in many applications due to its adverse
effects on part quality [10, 39, 60, 61]. It is a by-product of the
PBF process, resulting from material ejection from the melt
pool due to a combination of physical phenomena, includ-
ing vapour pressure, laser-induced plasma and gas flow [62–
64]. Notably, spatter particles typically exhibit larger sizes
compared to virgin powder particles, consequently requiring
higher energy to melt [39].

The size of spatters depends on the powder used in the
fabrication process. The smallest spatters can be as small as
the smallest powder particles, while the largest spatters can
be up to ten times larger than the average powder size. Ali
et al [45] observed that the size of spatters in D10 and D50
was similar to that of virgin powder, approximately 30 µm
and 45 µm, respectively. Additionally, Liu et al [38] reported
spatters measuring around 400 µm, which is about ten times
larger than the average powder size of 42.83 µm.

Spatters can induce high surface irregularities [65], lead-
ing to incomplete fusion between layers [37, 38]. As a con-
sequence, defects such as internal pores [10, 45, 46] and LOF
[47] can form. Spatters and other potential defects caused by
spatters can lead to fatigue strength degradation, reduced part
density and poor tensile strength [37–39]. Furthermore, large
spatter particles attached to the layer surface can be removed
by the recoater during subsequent layering, leaving pits behind
and potentially compromising the recoating mechanism [46].

2.3. Surface pores

The surface pore is another type of impurity that occurs as
dents, craters or cave-like open pores (see figure 3(b)) on the
surface of PBF parts [40, 66]. Several hypotheses have been
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Figure 3. (a) SEM image showing balling characteristics [9], (b) surface impurities [52].

proposed regarding the formation mechanism of the surface
pores, focusing on the emergence of pores on the layer surface
and insufficient liquid feeding [40, 67, 68]. Empirical stud-
ies indicate that non-optimal process parameters, such as high
scanning speeds and large hatch distances, contribute to the
increased occurrence of surface pores [40, 69–72].

Surface pores have a notable association with internal
pores, leading to diminished part density and compromising
the mechanical performance of the parts [11, 40, 41, 73].
Furthermore, the presence of surface pores escalates surface
roughness and can act as initiation points for crack defects [11,
69, 72, 74]. Some studies have noted the presence of pores
on the fractured surfaces or within product sizes ranging from
2 µm to 10 µm. These studies have proposed that these pores
may be possible sources of reduced part quality [42, 43].

Overall, microscale surface impurities in PBF could impact
the overall fabrication quality, necessitating their measure-
ment and assessment in the context of fabrication quality
control.

3. In-situ measurement methods

Layerwise fabrication in PBF enables the implementation
of in-situ measurement techniques during the manufactur-
ing process [36]. In-situ measurement methods involve using
sensors to collect data about process stability and product qual-
ity directly from where the process is taking place. Employing
in-situ measurement techniques in PBF makes it feasible to
detect and analyse surface impurities that may form on each
layer.

The occurrence of impurities at any layer can significantly
impact the quality of subsequent layers, consequently affect-
ing the final part’s overall quality [41, 60]. In-situ measure-
ment methods can provide the means to identify impurities
formed on each layer. Although certain defects, such as shrink-
age and distortion, may not be directly observable through
in-situmeasurements, anomalies associated with these defects
can be detected. By enabling real-time defect detection, it

becomes possible to prevent/decrease the formation of sub-
sequent defects through active control of process parameters
[75].

In certain instances, in-situmeasurements may not provide
a straightforward depiction of surface impurities, particularly
when dealing with data that could be more intuitively inter-
pretable, such as acoustic signals [76]. In such scenarios, sur-
face impurities can still be detected using correlations between
the non-interpretable in-situ data and interpretable ex-situ data
[76–78].

In the following section, we present and examine various
in-situmeasurement methods that specifically target the detec-
tion and characterisation of microscale surface impurities.

3.1. Visible sensing

Visible range sensors can capture images of the powder bed
or melt tracks continuously during the fabrication or a small
number of times after melting and/or after the deposition of
a new layer [79, 80]. In order to enable in-situ measurement,
the camera vision system must have sufficient speed so as not
to disrupt the ongoing fabrication process. Seminal studies
have shown that visible imaging systems have the potential
to detect powder bed irregularities [81, 82]. Currently, visible
imaging systems find applications in industrial PBFmachinery
for in-situ process qualitymeasurement [30]. Table 1 shows in-
situ measurement methods using visible range imaging with
their specifications.

In visible images, surface impurities exhibit a distinctive
contrast compared to the regular surface. In order to accurately
identify surface impurities from the images recorded by visible
range cameras, accurate segmentation and contour identifica-
tion are essential [79, 86, 89]. The accuracy of detection and
the minimum detectable size of surface impurities depend not
only on the spatial resolution but also on the illumination of
the vision system, as the interaction between the layer surface
and lighting may give rise to undesirable reflections [90, 91].
The effect of different lighting on the images can be seen in
figure 4.
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Table 1. In-situ measurement methods using visible range imaging for PBF.

References Sensor Resolution

Detectable
features/Size
range

Detection method/al-
gorithm

Detection
Accuracy

[83] Monochrome
CCD Camera

Spatial
resolution:
∼30 µm/pixel

>90 µm Image processing Not specified

[84] DSLR Camera Spatial
resolution:
10–13 µm/pixel

∼500 µm Image processing Not specified

[85] DSLR Camera Spatial
resolution:
∼62.5 µm/pixel

⩾40 µm Convolutional neural
network

Depends on the
size: less than
50% for
∼40 µm,
around 90% for
∼200 µm, and
100% for larger
than 475 µm

[86] DSLR Camera Pixel size range:
45 × 47 µm–
67 × 88 µm

50–750 µm Image processing ∼87%

[87] Monochrome
CCD Camera

Not specified ⩾10 µ Particle analysis Not specified

[88] Line Camera Spatial
resolution:
5.97 µm/pixel

⩾12.4 µm Feature-based
analysis

Not specified

Figure 4. (a) Powder bed images using different lighting conditions [90].

Micro-scale protrusions on the PBF surface can be detected
using the contrast between the elevated area and raw powder in
surface images taken after the powder deposition process [92].
Zur Jacobsmuhlen et al investigated [83] the detection of the
elevated areas on PBF surfaces by using a monochrome CCD
camera to record surface images having a spatial resolution of
approximately 30 µm/pixel. While disregarding small regions
measuring 90 µm in diameter, it has been indicated that their
method yields a minimum resolvable detail of approximately
50 µm in size for a field of view measuring 180 × 120 mm.

In some studies, XCT is used as ‘ground truth’ data to val-
idate their findings or correlate them with in-situ data. Lu et al
[84] designed a vision setup with a digital single-lens reflex
(DSLR) camera and LED light sources, in which intensity
values were employed for detecting surface irregularities (see
figures 5(a) and (b)), and the results were validated using XCT
data. This method can detect holes with a minimum diameter
of 500 µm and squares with a minimum length of 500 µm.

Snow et al [85] employed a ML algorithm to detect
defects from in-situ layer images, utilising ex-situ XCT data
as labelled defects for training. They attained more than
85% accuracy in defect detection for defects larger than
200 µm, both within the same dataset and with unseen data.
Additionally, the study compared spatters detected through
in-situmeasurements and LOF identified via ex-situXCT ana-
lysis. Notably, they presented a significant correlation between
spatters and LOF defects smaller than 500 µm.

Designing synthetic defects has been proposed as a way
of evaluating the system’s defect detection performance.
Abdelrahman et al [86] developed a defect detection algorithm
using surface images of parts with intentional defects. They
demonstrated around 87% detection accuracy with the tar-
geted defect size ranging from 50 µm to 750 µm.

Modaresialam et al [87] showed that in-situ visible imaging
can be used for real-time defect detection. They developed an
algorithm using LabView software to halt fabrication when
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Figure 5. (a) Optical image captured during printing, (b) binarized image after processing [84], and (c) dynamic monitoring system [88].

Table 2. In-situ measurement methods using thermal sensing for PBF.

References Sensor
Detectable features/
Size range

Detection method/
algorithm

Detection
Accuracy

[104] NIR range imaging >∼200 µm Image processing 79%
[102] IR range imaging 0.1 × 106–

2.0 × 106 µm2
Image analysis
software (MIPAR)

Not specified

[99] NIR range imaging >100 µm Image processing Not specified
[103] IR range imaging 600–900 µm Image processing 100%
[96] IR range imaging >∼300 µm Manual analysis (by

looking at the graphs)
Not specified

[105] NIR range imaging 150 µm (can detect
smaller features with
low accuracy)

A specific algorithm to
correlate the OT and
x-ray tomography data

90/95%
(probability
of detection)

[101] IR range imaging 50–500 µm Image processing Depends on
the size: less
than 50% for
<50 µm,
100% for
>500 µm

[100] IR range imaging 750 µm Image processing Not specified

critical defects were detected. The method includes a visible
range camera with a resolution of 1696× 1710 pixels and can
detect microcracks and porosities as small as 10 µm.

The above imaging systems were all in fixed positions.
Fischer et al [88] implemented a dynamic image-capturing
approach to address the limitation of fixed positioning.
They mounted a line camera on the recoater of a PBF
machine (see figure 5(c)) to capture powder bed images
during powder deposition, obtaining images with a width
of 97.67 mm and a lateral resolution of 5.97 µm/pixel.
This setup allowed them to identify features such as spat-
ter, balling and unmelted powder with a minimum size
of 12.4 µm.

3.2. Thermal sensing

In the manufacturing process, defects may arise due to thermal
inhomogeneity [93] or, conversely, may lead to thermal
inhomogeneity [94]. Consequently, thermal data can be har-
nessed to detect defects by identifying thermal inhomo-
geneities, offering valuable insights into process quality.
Furthermore, thermal data has been previously utilised to pre-
dict the internal microstructure of parts [95].

During the PBF process, in-situ thermal information about
layer surfaces or melt tracks can be collected using sensors
operating in the IR or near-IR (NIR) range (see an example
implementation in figure 6(a)) [96–105], which can be
achieved through continuously recording images of layers
using high-frame-rate sensors [100]. However, continuous
recording presents challenges, such as generating substantial
amounts of data and being sensitive to metallisation when
employing sensors [95]. One approach to mitigate the impact
of these challenges is to opt for single-image recording for
each layer using a mechanical shutter or placing the sensor
outside the building chamber [98]. However, capturing a single
image delays temperature information, as the scanning process
takes time, and recording data from outside the chamber neces-
sitates coordinate transformation. Table 2 summarises in-situ
measurement methods using thermal sensing along with their
specifications.

Some in-situ thermal sensing methods focused on detect-
ing spatters and demonstrated their impact on process qual-
ity. For instance, Schwerz et al [98] focused on the detec-
tion of spatters using long-exposure NIR range imaging of the
layer surface (see figure 6(b)). The spatters were examined
using scanning electron microscopy (SEM) and exhibited a
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Figure 6. (a) In-situ temperature measurement setup [96], (b) spatter detection from a thermal image in [98], (c) and in [104].

bimodal size distribution, with peaks at 30 µm and 90 µm,
and the largest size measured approximately 200 µm. They
conducted an ex-situ ultrasonic inspection to validate the find-
ings and observed LOF in areas where the spatters were rede-
posited. Afterwards, Schwerz et al [104] used an embedded
in-situ monitoring system (EOSTATE exposure optical tomo-
graphy) which included a three-megapixel sCMOS camera
with a 900 nm bandpass filter for spatter detection. An image
processing algorithm was employed to detect bright regions
indicative of spatter defects (see figure 6(c)). A correlation was
observed between the spatters detected using the OT system
and LOF defects detected through XCT. However, a slight off-
set between the two detection systems was noted, potentially
attributed to spatters causing LOF in subsequent layers.

Yakout et al [102] also investigated spatter detection using
an in-situ high-speed IR thermography system. In this study,
the size, shape and distribution of the spatters were analysed,
and the correlation between these features and the processing
conditions was investigated. The sensor was positioned out-
side the chamber, and data was recorded through a protected
window to ensure the sensor’s safety in the harsh environment.

Another focus in in-situ thermal sensing is detecting poros-
ity defects. Nandwana et al [99] studied porosity detection
from NIR images captured immediately after the melting pro-
cess using image processing techniques. They used variations
in surface emissivity to detect pores larger than 100 µm.
Furthermore, a correlation was established between the out-
comes of fatigue performance testing and the results of pore
detection. Notably, failures were observed to coincide with the
regions where themost prominent pores were identified. Yoder
et al [97] utilised the same experimental setup to explore the
connection between in-situ thermal data and the mechanical
performance of topology-optimised parts. The study demon-
strated a correlation between pores detected from in-situ data
and premature failure in a sample.

Real-time defect detection makes controlled fabrication
possible by changing process parameters or stopping the fab-
rication. Mireles et al [103] presented a closed-loop automatic
feedback control for PBF-EB by integrating an IR camera into
a PBF-EB machine. An algorithm was developed to automat-
ically detect porosity by processing the IR images recorded
during the process. The algorithm achieved a 100% detec-
tion rate of the artificially made porosity defects ranging from

600 µm to 900 µm in size on the cylindrical parts. Krauss et al
[96] designed artificial defects in parts by creating holes of
different sizes to simulate gas pores and cracks. An IR cam-
era with a lateral resolution of 250 µm/pixel was employed for
in-situ thermal sensing of the powder bed. The thermal diffus-
ivity data showed that the minimum detectable defect size is
approximately 300 µm. Additionally, the correlation between
the formation of ejected particles and the thermal distribution
was investigated.

Several studies have explored the detection of LOF defects
using in-situ thermal sensing methods. For instance, Bamberg
et al [105] utilised an sCMOS camera with a NIR filter.
Their system was capable of capturing images with exten-
ded exposure times. This approach demonstrated the capa-
city to detect LOF as small as 150 µm in size, yielding a
probability of detection (POD) of 90/95%. The system’s cap-
ability to detect smaller defects was enhanced, albeit with a
slightly reduced POD. In another investigation conducted by
Bartlett et al [101], an IR camera sensitive to long-wave IR
wavelengths was positioned externally to the PBF machine.
This setup facilitated the capture of relative temperature dis-
tributions across the printed layer. Through the analysis of IR
images, LOF with diameters below 50 µm were detected with
a success rate of 50%. Additionally, defects exceeding 500 µm
exhibited a 100% detection success rate.

Mahmoudi et al [100] investigated the detection of cav-
ity defects from in-situ thermal data of the melt pool. They
used high-speed sensors to collect in-situ thermal information.
Their study demonstrated that their method successfully detec-
ted defects of 750 µm in size.

3.3. Electronic imaging

Electronic imaging, also called electron optical (ELO) ima-
ging, operates on the same fundamental principle as tradi-
tional SEM [106]. In this technique (see an example of an
integrated system in figure 7(a)), a detector captures backs-
cattered or secondary electrons resulting from the interaction
between the process beam and the powder material [107].
The intensity of the collected signal is influenced by both
the current of the electron beam and the atomic number of
the material [106–108]. Notably, the surface topography is
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Table 3. In-situ measurement methods based on ELO for PBF.

References Sensor
Detectable features/
Size range Detection method/algorithn

[109] BSE sensor ∼300 µm Based on the correlation between ELO
images, optical images, and surface
topography data

[110] BSE sensor 100–200 µm Based on the correlation between ELO
images and optical images

[111] BSE sensor >∼100 µm Image processing (contour identification,
edge detection)

Figure 7. (a) Schematic diagram of a PBF-EB with a BSE detector installed [106], (b) Surfaces of powder-bed samples taken by the in-situ
ELO method (left), confocal laser scanning microscopy (centre), and laser scanning microscopy (right) [109].

determined by the scattering angle of the electrons, allow-
ing for the reconstruction of surface topography through elec-
tronic images [106]. Compared to other sensor types, such as
visible or thermal-based sensors, backscattered electron (BSE)
detectors demonstrate robustness, particularly in the fabrica-
tion environment characterised by high process temperatures,
x-ray radiation and contamination. Furthermore, BSE detect-
ors are unaffected by metallisation, enhancing the overall dur-
ability of the method [106]. Table 3 summarises in-situ meas-
urement methods based on ELO.

Arnold et al [109] implemented in-situ ELO imaging
on a custom-built PBF-EB machine equipped with a BSE
sensor, offering a lateral resolution range from 50 µm/pixel to
100 µ/pixel. The study exhibited the detection of micrometre-
scale surface porosities using in-situ ELO imaging (see
figure 7(b). Similarly, Franke et al [110] focused on detect-
ing porosities using ELO images. They utilised a BSE detector
with a lateral resolution of 60 µm/pixel, which was installed
in a PBF-EBmachine to capture ELO images after the melting
process. Areas with low intensities on the images were detec-
ted as porosities, with a minimum range of 100–200 µm.

Gardfjell et al [111] used an in-situ ELO system, util-
ising a BSE detector with a resolution of 1500 × 1500 pixels
and a pixel size of 80 × 80 µm, covering a field of view of
120× 120 mm. By employing image processing methods, the
ELO images were analysed to detect surface impurities. The
method achieved a minimum detectable feature size of around
100 µm.

3.4. Height mapping

As apparent from the imaging methods discussed in earlier
sections, 2D imaging techniques offer significant information
about the layer surface. Nevertheless, obtaining height inform-
ation can provide extra insights into process quality in addition
to the 2D data. To achieve 3D information about layer surfaces,
researchers have documented various in-situ techniques in the
literature, including fringe projection and the use of specific
blade-mounted sensors.

3.4.1. Fringe projection. The fringe projection method
involves the integration of a projector and one or more cam-
eras (see figure 8(a)). In this technique, the projector emits
structured light onto the layer surface of interest, typically
in a one-dimensional sinusoidal fringe pattern distribution.
Subsequently, the camera or cameras capture the deformed
fringe pattern resulting from the interaction of light with the
layer surface. Surface height values are determined by decod-
ing the deformed fringe pattern. The computational complex-
ity in the fringe projection method is higher than that of the
other methods based on cameras, which can make this method
slower [112]. Table 4 presents the in-situ measurement meth-
ods for PBF, employing the fringe projection technique, along
with their specifications.

Land et al [113] used a fringe projection system con-
sisting of an SLR camera and a digital light processing
(DLP) projector for in-situ surface topography measurements.
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Figure 8. (a) Schematic of fringe projection integration into a PBF machine [113], (b) A portion of the imaged build area is shown as a
height map in greyscale with vertical and horizontal line profiles in the right and bottom, respectively [113].

Table 4. In-situ measurement methods for PBF using the fringe projection technique.

References Sensor Resolution Detectable features/Size range

[113] DSLR camera and DLP
projector

Noise level in vertical
measurements: ∼18 µm

Not specified

[114] Two CCD cameras and an
LCD projector

Vertical resolution: <10 µm Unfused powder particles
larger than 100 µmLateral resolution: 100 µm

[115] DSLR camera and DLP projector Vertical resolution: 20 µm Not specified
Lateral resolution: 60 µm

[116] CMOS camera and DLP
projector

Lateral resolution: 6.8 µm Not specified

[117] NUB3D SIDIO XR Point spacing: 75 µm Height variations of around
50 µm

[118] Four CMOS cameras and a
DLP projector

Point spacing: 73.4 µm Not specified

[119] Four CMOS cameras and a
DLP projector

Lateral resolution: 57.62 µm Can detect defects smaller
than 125 µm

Figure 9. (a) 3D visualisation of a small section of the measurement result [114], (b) Measurement result of the in-situ fringe projection
method [116].

This approach can detect micro-scale surface impurities (see
figure 8(b)) with a noise level of approximately 18 µm in the
vertical measurements.

Kalms et al [114] developed a fringe projection systemwith
a vertical resolution of less than 10 µm and an approximate
lateral resolution of 100 µm. The fringe projection setup con-
sisted of two 6-megapixel CCD cameras and a programmable
LCD projector. Data collection was performed after both the
powder deposition and melting processes. They stated that

the method can detect unfused powder particles larger than
100 µm in size (see figure 9(a)).

The fringe projection system described by Zhang et al
[115] consists of a commercial camera with a resolution
of 5184 × 3456 pixels positioned about 70 cm above the
powder bed, along with a DLP projector with a resolution of
1280 × 800 pixels positioned 56 cm above the powder bed.
This setup enables a lateral resolution of 60 µm and a ver-
tical resolution of 20 µm. Moreover, in a subsequent study,

9
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Figure 10. (a) An example of implementation of CI as in-situ measurement [122], (b) PBF-LB surface, (c) resulting profile scans of the
structure [120].

Zhang et al [116] enhanced the resolution using different cam-
era and positioning techniques. In this case, a camera with a
resolution of 4096 × 2160 pixels was placed 20 cm above
the powder bed, while a DLP projector with a resolution of
1280 × 800 pixels was positioned 60 cm above the powder
bed. The improved arrangement achieves a lateral resolution
of 6.8 µm/pixel (an example of measurement in figure 9(b)).
As a result, the proposed in-situ surface topography measure-
ments can be used to detect microscale surface impurities.

Southon et al [117] used a commercial fringe projection
system (NUB3D SIDIO XR) for in-process measurement of
the PBF of polymer. The fringe projection system was posi-
tioned outside the PBF machine to perform measurements,
with the capability to detect height variations of around 50µm.

Dickins et al [118] built a multi-view fringe projection sys-
tem including four cameras and a projector. A physical rep-
lica representing the build space of the Renishaw AM250 sys-
tem was constructed, and the components were positioned
within it. The transition from a single-camera to a multi-
camera approach resulted in a reduction of the mean point spa-
cing from 136.7 µm to 73.4 µm, which indicates the poten-
tial applicability of the system in defect detection, particu-
larly for defects larger than 100 µm. Following this [118],
Remani et al [119] improved the fringe projection method
described in [118]. They reported a lateral resolution of
57.62µm/pixel with the capability of detecting defects smaller
than 125 µm.

3.4.2. Coherent imaging (CI). CI, also known as low-
coherence interferometry, has been applied for in-situ surface
topography construction in PBF, as demonstrated in [120–
122]. This method can be coaxially integrated into a PBF
machine (see figure 10(a)), thereby eliminating the need for
coordinate transformation, as required in off-axis approaches.
Nevertheless, it is important to note that the integration cost
can be high [31]. By employing CI, surface height values
are obtained through raster scanning of the layer surface with
light. The interference between the backscattered imaging and
a reference light beam, caused by the optical path difference,
can be encoded to calculate layer surface heights. Detailed

information about the working principle of CI can be found
elsewhere [123].

Neef et al [120] used a CI method for in-situ measurement
with a broadband light source utilising the same optical path
as the processing beam of PBF. The CI sensor in this study
can scan a 3 × 3 mm area with a sampling distance of 4 µm
(see figures 10(b) and (c)). The resulting height map detec-
ted single powder particles as small as 20–40 µm. Similarly,
DePond et al [121] implemented CI to a larger area, specific-
ally a 4.4 × 4.4 cm area. The scanning was performed after
switching off the processing laser, which reduces the overall
fabrication speed. The system in this study demonstrated an
axial resolution of 25 µm and a lateral resolution of 100 µm,
with a scan speed of 1 m s−1. The study highlights that the
method can detect spatters within the size range from 200 µm
to 700 µm.

Fleming et al [122] developed a manual closed-loop con-
trol system utilising a CI method. This system could detect
microscale protrusions and recesses using a CI system with
vertical and lateral resolution of 7 µm and 30 µm, respectively.
Subsequently, the system compensated for detected impurities
manually by applying additional processes.

3.4.3. Blade-mounted sensing. Another method for meas-
uring surface height values involves mounting a sensor on
the PBF machine’s recoater blade. These sensors utilise the
motion of the blade as the scanning direction of the surface.
Table 5 shows the in-situ measurement methods for PBF,
employing CI and blade-mounted sensors, with their respect-
ive specifications. Barrett et al [124] used this approach by
mounting a laser line scan profilometer, employing the trian-
gulation method, on the recoater blade to obtain powder bed
height measurements after melting. The scanner’s spanning
width was 15 mm, and the lateral profile data interval was
20 µm. This study shows that blade-mounted sensing has the
potential to detect LOF and spatters.

Phuc et al [125] introduced a practical blade-mounted sens-
ing system which employed a contact image sensor. The
sensor was detached from a flatbed document scanner and
mounted onto a recoater blade (see figure 11(a)). The study
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Table 5. In-situ measurement methods for PBF using coherent and blade-mounted sensors.

References Sensor Resolution
Detectable features/
Size range

[120] Coherent imaging Sampling distance: 4 µm 20–40 µm
[121] Coherent imaging Vertical resolution: 25 µm

lateral resolution: 100 µm
200–700 µm

[122] Coherent imaging Vertical resolution: 7 µm
lateral resolution: 30 µm

Not specified

[124] Blade-mounted laser
scan profilometry

Lateral profile data interval:
20 µm

An ellipse with a size of
1.00 × 0.25 mm

[125] Blade-mounted contact
image sensor

Spatial Resolution: ∼5 µm ∼14 µm

Figure 11. (a) Computer-aided design of the experimental setup used for the powder bed scanner, (b) schematic cross-section view of a
layer and its corresponding top-view scan [125].

Table 6. In-situ measurement methods for PBF using acoustic sensors.

References Sensor
Detectable features/Size
range

Detection method/
algorithm

[78] Microphone Balling and overheating on
single weld tracks

Deep belief network
model

[126] Microphone Balling on single weld
tracks

Signal processing
algorithms on LabView

[127] Spatially resolved
acoustic
spectroscopy

Pores and cracks Image processing

explored the impact of varying scanning speeds on spa-
tial resolution. The highest spatial resolution achieved was
approximately 5 µm, with the ability to resolve features of
approximately 14 µm in size. This study’s height data was
derived from the degree of blurriness observed in the acquired
images (see figure 11(b)).

3.5. Acoustic sensing

Acoustic sensors are applicable for in-situ measurements in
PBF. However, the data provided by these sensors might
be challenging to interpret due to the absence of visual
information, in contrast to sensors such as visible or thermal
imaging sensors. Unlike imaging sensors, acoustic sensors
do not require direct observation of the layer surface, so

they offer more flexible positioning. Yet, factors such as
acoustic reflection and resonance must be considered when
designing these sensors’ positions [126]. Table 6 presents
the in-situ measurement methods for PBF, employing acous-
tic sensors, along with the features of interest and detection
algorithms.

Ye et al [78] installed amicrophone into a PBF-LBmachine
to collect in-situ acoustic signals. Weld tracks with different
morphologies, including tracks with balling and overheating
defects, as well as a defect-freeweld track, were produced. The
acoustic signals of five different weld tracks were classified
using a deep belief network model, achieving classification
rates of approximately 70% for the original data and 95% for
the data after applying the fast Fourier transform and denoising
algorithms.
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Table 7. In-situ measurement methods for PBF using a combination of sensing methods.

References Sensor Resolution
Detectable features/
Size range

Detection method/
algorithm

[128] Combination of
visible, infrared, and
polarisation imaging

Pixel size on visible range
imaging: 1.1 µm

∼40 µm Image processing

Pixel size on infrared range
imaging: 30 µm
Pixel size on polarisation
imaging: 3.45 µm

[129] Combination of
visible range
imaging, acoustic
sensing,
multi-spectral
emission sensing, and
laser scan vector data

Spatial resolution on visible
range imaging: 10 µm/pixel

∼30 µm Neural network

[130] Combination of
visible range
imaging,
multi-spectral
emission sensing, and
laser scan vector data

Spatial resolution of visible
range imaging:
62.5 × 62.5 µm

>∼200 µm Convolutional
neural network

Figure 12. (a) Schematic diagram of the multi-sensor system: PL: polarization channel imaging system; IL: infrared channel imaging
system; VL: visible channel imaging system; DM1: beamsplitter 1; DM2: beamsplitter 2; FT: filters; ID: infrared channel image sensor; PD:
polarization channel image sensor; VD: visible channel image sensor; PR: polarizer; PC: computer [128], (b) neural network prediction of
defects on a layer (10 µm per pixel) [129].

Similarly, Kouprianoff et al [126] focused on analysing
the acoustic signals of weld tracks with various qualities. The
anomalies, such as balling and irregular weld tracks, were
detected from acoustic signals using the signal processing
algorithms in LabView.

In a study conducted by Pieris et al [127], the capability
of spatially resolved acoustic spectroscopy (SRAS), a laser
ultrasonic technique, in the online measurement of PBF-LB
was investigated. They utilised PBF-LB parts with polished
surfaces and manufactured them using various laser power
and hatching strategies. The findings indicated that SRAS is
capable of identifying not only microscale surface impurities
(such as cracking and unfused powders) but also sub-surface
anomalies (such as pores).

3.6. Combination of methods
In addition to employing individual sensing methods,
researchers have proposed integrating multiple sensing tech-
niques to enhance defect detection accuracy. Combining dif-
ferent sensing methods, each with unique strengths, can over-
come the limitations inherent in each technique. Table 7 out-
lines the in-situ measurement techniques for PBF discussed
in this section, along with their specifications. Peng and Kong
[128] developed a coaxial multi-sensor defect detection sys-
tem, integrating visible, IR and polarisation imaging systems
(see figure 12(a)). It has been demonstrated that multi-sensor
systems exhibit superior results in extracting micro-scale
defects, such as cracking, scratches and porosity, compared to
individual sensor systems.
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Petrich et al [129] integrated visible range, acoustic and
multi-spectral emission sensors to collect in-situ layer images,
acoustic and laser emission data. Following data prepro-
cessing, a ML algorithm was trained for defect detection
using the in-situ data, scanning vector data and ex-situ XCT
data as ‘ground truth’. It has achieved more than 98% accur-
acy for the binary classification of the surface status. A
prediction result of the algorithm of a layer with a clas-
sification threshold of 0.9 can be seen in figure 12(b).
This study also presented the contributions of each sensing
method to the performance of the defect detection algorithm
and concluded that visible imaging demonstrates the highest
contribution.

Snow et al [130] used a combination of in-situ data, includ-
ing visible range images, multi-spectral emissions, and laser
scan vector data, and established correlations between these
data and fatigue performance. The convolutional neural net-
work has been used as a classifier to detect defects. The min-
imum detectable defect size was limited to 200 µm by the
camera resolution. The best classifier they trained exhibited
a 100% accurate prediction for defects of 380 µm and above.

Lastly, Remani et al [29] combined three in-situ meas-
urement methods: fringe projection and thermal imaging for
measuring layers and visible imaging for measuring melt
pools. Their preliminary findings indicated that the system can
be used to detect surface impurities such as protrusions and
recesses.

4. Discussion and conclusion

This paper summarises the microscale surface impurities
generated during the PBF process, along with their forma-
tion mechanisms and influence on the quality of the fabric-
ated parts. In-situmeasurement methodologies, which provide
detection of these microscale surface impurities, are reviewed,
along with their capabilities and limitations, and summarised
in table 8. Visible and thermal sensing methods are the most
used in-situmeasurement methods as they can produce a large
amount of data when using high-resolution and high-speed
sensors. It is essential to mention that the arrangement of cam-
eras and lighting significantly influences detection accuracy
in imaging. Variations in these configurations across differ-
ent machines can affect brightness and contrast, resulting in
varying detection quality from one machine to another. BSE
sensors show robustness in harsh environments; however, it
should be noted that these sensors can occasionally overestim-
ate the dimensions of porosities, and beam current and voltage
can influence the BSE-acquired data, leading to unstable res-
ults. Acoustic sensing, which benefits from positioning flex-
ibility, offers a cost-effective method for detecting impurit-
ies. Nevertheless, current research involving acoustic sensors
for detecting microscale impurities is limited to single weld
tracks, potentially needing to capture real-world construction
conditions.

Unlike 2D imaging techniques, 3D height mapping of the
surface provides additional information by revealing vari-
ations in surface elevation, which is particularly important for
detecting impurities as they often lead to changes in surface
height. Various methods for measuring surface topography in
PBF, including CI, fringe projection and blade-mounted sys-
tems, are discussed in detail. Among these methods, CI, as
a coaxial approach, can be costlier to integrate. The fringe
projection system might entail longer computation times than
other methods, and installing projectors and cameras into a
PBF machine can also be challenging. Blade-mounted sys-
tems, however, have resolution tied to the recoater’s speed.
In-situ measurement and monitoring methods for detect-

ing microscale impurities have been presented, each with its
own advantages and limitations. However, there are signific-
ant gaps in general in the applicability of thesemethods in real-
world industrial fabrication settings. While most methods col-
lect data in real-time, the actual detection often occurs after-
wards due to the high computational costs involved.Moreover,
many studies do not specify the time required for detection,
making it impractical to implement these methods as real-time
feedback control systems.

Additionally, variations in materials, process parameters,
sensor positioning, and machine types can impact the sensor’s
efficiency and the detection accuracy of the algorithms. The
installation of sensors may also be challenging or impossible
on certain machines. For methods employing ML algorithms
to detect impurities, generating datasets for training super-
vised ML algorithms presents an additional challenge. This
process often relies on manual input from human operators,
making it time-consuming and subjective. Even with unsuper-
vised learning, a significant amount of data is still required to
effectively train ML algorithms effectively.

In section 2, certain microscale surface impurities, along
with their influences on part quality, have been presented.
It has been reported some impurities are even smaller than
10 µm. However, the accuracy of most detection methods
diminishes as the size of the impurity decreases, especially
when it falls below 100 µm mostly due to their resolution
limits. In order to provide a robust evaluation system, detec-
tion accuracy needs to be stable. On the other hand, real-time
detection is also desired to meet the industry criteria. However,
instead of detecting only some specific defects, the detection
method needs to target all microscale impurities (even smaller
than 100 µm in size) to be a general quality evaluation system.
In order to meet the demands from industry, further research is
necessary to develop ameasurement system capable of provid-
ing surface topography information, detecting small features
with consistently high accuracy, and doing so efficiently and
cost-effectively.

Our future work will focus on employing a light scattering
model combined with unsupervised ML algorithms trained on
simulated data from synthetically generated surfaces to detect
microscale impurities even as small as 10 µm. This approach
aims to overcome several challenges, including the need for
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Table 8. Overview of in-situ measurement methods’ principal benefits and drawbacks.

Sensing Method Benefits Drawbacks

Visible imaging Straightforward implementation High-resolution and high-speed sensors generate
large datasets
Detection efficiency varies due to the arrangement
of cameras and lighting, resulting in varying
detection qualities among machines

Thermal imaging Identification of thermal
signatures

High-resolution and high-speed sensors generate
large datasets

Electronic imaging BSE sensors demonstrate
robustness in harsh
environments

BSE-acquired data can be influenced by beam
current and voltage

Fringe projection Generation of height maps Installation of projectors and cameras into a PBF
machine can be challenging
Longer computation times

Coherent imaging Generation of height maps Integration of this coaxial method may incur
higher costs

Blade mounted sensing Generation of height maps Resolution is dependent on the movement and
speed of the recoater

Acoustic sensing Offers positioning flexibility Limited applicability to single weld track experiments
Cost-effective method

Combined sensing Overcomes limitations of
individual sensing methods

Registration of different types of data is required
Large amount of data from different sensors

experimental datasets to train ML algorithms while offering a
fast, cost-effective, and computationally efficient solution.
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Appendix

The specification of in-situ methods

References Sensor Resolution
Detectable features/Size
range

Detection
method/algorithm

Detection
Accuracy

[83] Monochrome CCD
Camera

Spatial resolution:
∼30 µm/pixel

>90 µm Image processing Not specified

[84] Single-Lens Reflex
Camera

Spatial resolution:
10–13 µm/pixel

∼500 µm Image processing Not specified

[85] DSLR Camera Spatial resolution:
∼62.5 µm/pixel

⩾40 µm CNN Depends on the
size: for ∼40 µm
less than 50%, for
∼200 µm around
90%, for larger
than 475 µm 100%

[86] DSLR Camera Pixel size range:
45 × 47 µm–
67 × 88 µm

50–750 µm Image processing Around 87%
detection accuracy

[87] Monochrome CCD
Camera

Not specified ⩾10 µm Particle analysis Not specified

[88] Line Camera Spatial resolution:
5.97 µm/pixel

⩾12.4 µm Feature-based analysis Not specified

[104] NIR range imaging Not specified >∼200 µm Image processing 79% of detection
[102] IR range imaging Not specified Spatters from

0.1 × 106 µm2 to
2.0 × 106 µm2

Image analysis software
(MIPAR)

Not specified

[99] NIR range imaging Not specified >100 µm Image processing Not specified
[103] IR range imaging Not specified 600–900 µm Image processing 100%
[96] IR range imaging Not specified >∼300 µm Manual analysis (by

looking at the graphs)
Not specified

[105] NIR range imaging Not specified 150 µm (can detect smaller
features with low accuracy)

A specific algorithm was
developed to correlate the
OT and x-ray tomography
data

90/95% probability
of detection

[101] IR range imaging Not specified 50–500 µm Image processing Depends on the
size: for <50 µm,
less than 50%; for
>500 µm, 100%

[100] IR range imaging Not specified 750 µm Image processing Not specified
[109] BSE sensor Not specified ∼300 µm Based on the correlation

between ELO images,
optical images, and surface
topography data

Not specified

[110] BSE sensor Not specified 100–200 µm Based on the correlation
between ELO images and
optical images

Not specified

[111] BSE sensor Not specified >∼100 µm Image processing (contour
identification, edge
detection)

Not specified

[113] 1 DSLR camera, 1
DLP projector

Noise level of
approximately
18 µm in vertical
measurements

Not specified Not specified Not specified

[114] 2 CCD cameras, 1
LCD projector

Vertical resolution
of less than 10 µm
and lateral
resolution of
100 µm

Unfused powder particles
larger than 100 µm in size

Not specified Not specified

(Continued.)
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(Continued.)

References Sensor Resolution
Detectable features/Size
range

Detection
method/algorithm

Detection
Accuracy

[115] 1 DSLR camera, 1
DLP projector

Vertical resolution
of 20 µm and lateral
resolution of 60 µm

Not specified Not specified Not specified

[116] 1 CMOS camera, 1
DLP projector

Lateral resolution of
6.8 µm/pixel

Not specified Not specified Not specified

[117] NUB3D SIDIO
XR

Point spacing of
75 µm

Height variations of around
50 µm

Not specified Not specified

[118] 4 CMOS cameras,
1 DLP projector

Point spacing of
73.4 µm

Not specified Not specified Not specified

[119] 4 CMOS cameras,
1 DLP projector

Lateral resolution of
57.62 µm/pixel

Can detect defects smaller
than 125 µm

Not specified Not specified

[120] Coherent Imaging Sampling Distance:
4 µm

20–40 µm Not specified Not specified

[121] Coherent Imaging Vertical Resolution:
25 µm Lateral
Resolution: 100 µm

200–700 µm Not specified Not specified

[122] Coherent Imaging Vertical Resolution:
7 µm Lateral
Resolution: 30 µm

Not specified Not specified Not specified

[124] Blade-Mounted
Laser Scan
Profilometry

Lateral Profile Data
Interval: 20 µm

An ellipse with the size of
1.0 × 0.25 mm can be
detected

Not specified Not specified

[125] Blade-Mounted
Contact Image
Sensor

Spatial Resolution:
∼5 µm

∼14 µm Not specified Not specified

[78] Microphone Balling and overheating on
single weld tracks

Deep belief network model Not specified

[126] Microphone Balling on single weld
tracks

Signal processing
algorithms on LabView

Not specified

[127] Spatially resolved
acoustic
spectroscopy

Pores and cracks Image processing Not specified

[128] Combination of
visible, infrared,
and polarization
imaging

Pixel size on visible
range imaging:
1.1 µm, pixel size
on infrared range
imaging: 30 µm,
pixel size on
polarization
imaging: 3.45 µm

∼40 µm Image processing Not specified

[129] Combination of
visible range
imaging, acoustic
sensing,
multi-spectral
emission sensing,
and laser scan
vector data

Spatial resolution on
visible range
imaging:
10 µm/pixel

∼30 µm NN Not specified

[130] Combination of
visible range
imaging,
multi-spectral
emission sensing,
and laser scan
vector data

Spatial resolution of
visible range
imaging:
62.5 × 62.5 µm

>∼200 µm CNN Not specified
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