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Abstract

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist
probability and the work of R. A. Fisher, genome-wide association studies (GWAS) extract information using averages and varian-
ces from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions
obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated,
the investigative power of such methodologies is limited. Genomic informational field theory (GIFT) is a method specifically
designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Although GWAS determines the extent
to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype
can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts,
a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different
datasets obtained in Ovis aries related to bone growth (dataset 1) and to a series of linked metabolic and epigenetic pathways
(dataset 2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discrimi-
native powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an
adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

NEW & NOTEWORTHY The genetic basis of complex traits remains challenging to investigate using classic genome-wide asso-
ciation studies (GWASs). Given the success of gene editing technologies, this point needs to be addressed urgently since there
can only be useful editing technologies whether precise genotype-phenotype mapping information is available initially. Genomic
informational field theory (GIFT) is a new mapping method designed to increase the investigative power of biological/medical
datasets suggesting, in turn, the need to rethink the conceptual bases of quantitative genetics.

complex traits; GIFT; genotype-phenotype mapping studies; GWAS

INTRODUCTION

Identifying associations between phenotype and geno-
type is the fundamental basis of genetic analysis. The de-
velopment of high-density genotyping and whole genome
sequencing has enabled DNA variants to be directly identi-
fied, and genome-wide association studies (GWASs) have
become the method of choice for mapping genotype to
phenotype in large populations of unrelated individuals.

GWASs have been used in many species, and especially in the
study of human disease (1). By 2021, the National Human
Genome Research Institute-European Bioinformatics Institute
(NHGRI-EBI) GWAS Catalog listed 316,782 associations identi-
fied in 5,149 publications describing GWAS results (2). In addi-
tion, extensive collection of data has been initiated through
efforts such as the UK Biobank (3), Generation Scotland (4),
and National Institutes of Health (NIH) All of Us research pro-
gram (https://allofus.nih.gov/), in the expectation that large-
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scale GWAS will elucidate the basis of human health and dis-
ease and facilitate precisionmedicine.

Although genomic technologies have advanced rapidly,
statistical models used to analyze genetic data are still based
on the models developed by Fisher more than 100 years ago
(5, 6). GWASs essentially use the Fisher method of partition-
ing genotypic values by performing a linear regression of
phenotype on marker allelic dosage (7). Regression coeffi-
cients estimate the average allele effect size, and the regres-
sion variance is the additive genetic variance due to the
locus (8). However, an ongoing debate exists over whether
the present analysis paradigm in quantitative genetics is at
its limits for truly understanding complex traits, namely
traits resulting from many genes, each with a very small
effect size (9). As a result, one may wonder whether alterna-
tive statistical model(s) could be invented and used to deter-
mine genotype-phenotypemappings.

GWASs are fundamentally linked to frequentist probabil-
ities that, defined through relative frequencies, determine
the validity of statistical inferences. In practice, frequentist
probabilities are generated through the grouping of data into
bins or categories to generate a bar chart, which is then inter-
polated to create a distribution density function (DDF) in the
continuum limit. The DDF is, in turn, used to determine sta-
tistical inferences including average, variance, p value, and
so on. However, since the DDF approximates the bar chart
(and not the converse), and because it is not possible to dif-
ferentiate data from within any given group/category, the
DDF is constructed mathematically on the implicit assump-
tion that information is missing to differentiate data from
within any given group/category.

The notion of “missing information” can be legitimate
and defined experimentally. For example, measuring the
phenotype human height with a ruler with centimeter grad-
uations implies that any height can be measured to the near-
est centimeter. Consequently, 1 cm-wide bins/categories
need to be used to generate a frequency table of the range of
phenotype values upon which the phenotype and genotype
DDFs are defined. In this case, all the resulting statistical
inferences are defined with a precision corresponding to the
nearest centimeter. The “missing information” (i.e., that
what cannot be measured by the ruler) corresponds then to
subcentimetric scales (i.e., distances to the nearest milli-
meter for this example). In practice the “missing informa-
tion” is therefore linked to the one of “imprecision” and
deciding to provide more precise statistical inferences
implies that the width of categories be reduced, which can
only be achieved by increasing the sample size. It is not by
chance that the “normal distribution” created bymathemati-
cians and physicists was initially called the “law of errors,”
where the notion of error (misinformation) results from
imprecisions in experimental measurements. As a result,
GWAS is faced with a fundamental issue involving the
extraction of precise information using a method that, con-
ceptually, assumes that information is missing or that data
are mis(in)formed.

In general, the problem concerning the “missing informa-
tion” is never mentioned, since the DDF in the continuum
limit is never considered as an approximation but as some-
thing that has its own reality. Namely, a DDF must exist in-
dependently of the data measured (i.e., data must fit the

DDF and not the converse). The latter remark leads to an
interesting conceptual territory where the notions of average
and variance, and their usage, may be questioned. If one
considers the normal distribution (or any other DDFs) is in-
herent to life and that data must fit it (them), then the
moments of the distribution (e.g., average and variance) are
also essential parameters to describe life, and the variance,
often interpreted as noise in the data, is then a nuisance. If,
on the contrary, data are the important thing, and that the
DDF is considered solely as a tool to interpolate data based
on missing information, then average and variance are pa-
rameters derived from a lack of information and are, as a
result, poorly informative. The latter point should not come
as a surprise, as reducing the huge diversity of populations
to a handful of parameters (i.e., average and variance) is
highly reductionist and likely to be poorly descriptive. Thus,
although the notions of average and variance may help
represent datasets, they are inventions nonetheless, i.e.,
thought constructions akin to the field of frequentist proba-
bility. Thus, using average and variance as a starting point to
map genotype-phenotype (GWAS) is a matter of choice.
Accordingly, different statistical methods can be suggested.

To avoid those conceptual and practical issues, a new
method called genomic informational field theory (GIFT)
has been designed and applied to simulated genotype-phe-
notype data in Wattis et al. (10) and Rauch et al. (11) and is
reviewed in Rauch et al. (12). In short, to associate genotype
to phenotype, GIFT does not presume that the only impor-
tant information concerning the gene effects is found in
averages or variances, nor does it presume that DDFs are
central. On the contrary, GIFT starts with the prerequisite
that phenotypic values, or phenotypic residuals after consid-
ering the environment/fixed effects, may be measured with
sufficient precision to be unique in a population. Then, by
avoiding the grouping of data into bins/categories, which
would otherwise create an artificial imprecision, GIFT con-
siders the entire information contained in the data (i.e., var-
iance is not a nuisance anymore) by making use of the
cumulative sum of microstates. Figure 1 provides the intu-
ition underscoring GIFT as amethod.

The current article extends our previous theoretic studies
using simulated data to analyze for the first time two real
datasets:

1) Dataset 1 is derived from a study concerned with the
genetic background of carcass composition in sheep
(Ovis aries) (13). Using GWAS, this study demonstrated a
strong association between chromosome 6 and the car-
cass composition trait “bone area at the ischium.” We
now apply GIFT to reanalyze this dataset to benchmark
it against GWAS. Since GWAS previously identified a
quantitative trait loci (QTL) in chromosome 6, our hy-
pothesis was that GIFT would at least replicate GWAS
results and identify additional putative QTLs.

2) Dataset 2 comprises biochemical data arising from an
ongoing study in sheep that seeks to identify risk allele
variants in genes whose products direct a series of meta-
bolic pathways, collectively referred to as one-carbon (1C)
metabolism and associated epigenetic regulators. The
gene array was designed to include all single-nucleotide
polymorphisms (SNPs) linked to known biochemical
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enzymes involved in these pathways. Given that dataset 2
preselected genes for a targeted analysis of enzymes
involved in these metabolic/epigenetic pathways, it can be
consideredmore specific.

The present article initially introduces the reader to the
way data may be used and analyzed differently using
GIFT, contrasting to more conventional methods mostly
based on an analysis of averages and variances. More spe-
cifically, in part 1, the null hypothesis defined by GIFT will
be established. Using dataset 1, the concept of genetic path
pertaining to GIFT will be introduced (part 2) out of which
a p value for GIFT will be defined (part 3). Then, dataset 1
(part 4) and dataset 2 (part 5) will be analyzed by compar-
ing the informational/investigative power of GIFT relative
to GWAS using Manhattan plots before performing enrich-
ment analyses.

MATERIALS AND METHODS

Biological Datasets

The first dataset (dataset 1) analyzed 600 pedigree-recorded
Scottish Blackface lambs using CT scans to determine in vivo
carcasses composition (13). The trait selected for the present
study is the bone areas of the ischium (BAI), measured in
mm2 from cross-sectional computed tomography (CT) scans.
The ischium is one of the three bones that make up the pelvis.
It is located beneath the ilium and behind the pubis. The
upper portion of the ischium forms a major part of the con-
cave portion of the pelvis that forms the hip. The BAI crossed
a genome-wide significance threshold on chromosome 6
(OAR6). The precorrected phenotype values were obtained by
fitting fixed effects of the age of dam, year of birth, effect of
management group (as sheep were from different farms), sex

Figure 1. A: for diploid organisms and for a binary (biallelic, A or a) genetic marker, any microstate (genotype) can only take three values that we shall
write as “þ 1,” “0,” and “�1” corresponding to genotypes aa, Aa, and AA, respectively. The genotypes are color coded to facilitate the representation of
GIFT [þ 1: aa (red), 0: aA/Aa (black), and �1: AA (blue)]. GWASs rely on probability density functions formed through the grouping of data into bins/cate-
gories. The phenotype distribution density function (A, top left) is then decomposed onto the distribution density function of genetic microstates (A, top
right) for every single-nucleotide polymorphism (SNP). Using an analysis of averages and variances, such decomposition determines whether the SNP
studied is associated with the phenotype by comparing the average and variance of distributions. Repeating the same operation for every SNP in the ge-
nome permits to map genotype to phenotype. However, as more precise inferences can only come with and are only legitimized by a reduction in the
width of categories, larger sample sizes are needed. To overcome this issue, one way to proceed is to deconstruct density functions and wonder what
would happen if one were able to reduce the width of categories, that is increasing the precision in the measurement of the phenotype or equivalently
getting access to the whole information of datasets, without changing the sample sizes (A from top to bottom). The mathematical object that emerges is
a colored barcode, which is a list of microstates that can be analyzed precisely by GIFT. B: such barcode can be obtained simply at the practical level
through field studies. Assume a flock of sheep has been genotyped and that their phenotype has been measured sufficiently precisely such as to
exclude the possibility that any two phenotypic values are identical. In the figure, the magnitude of the phenotypic value for each sheep is characterized
by the (unique) “size” of the sheep. The barcode is obtained by ranking animals as a function of the magnitude of their phenotypic values (configuration
① in B). The null hypothesis is obtained via the random ranking of sheep that is equivalent to a lack of information on phenotypic values (configuration
② in B). As GWAS works on phenotypic residual values after adjusting for fixed/environmental effects, a similar barcode can be generated considering
the magnitude of residual phenotypic values. C: GIFT proceeds by plotting the cumulative sum of microstates as a function of the position in the list gen-
erating a curve called genetic path that is represented by h(i) and is unique to the SNP considered. Although the curve h(i) does not provide any signifi-
cant information on its own, one may generate, for the same SNP, a curve (genetic path) corresponding to a sort of null hypothesis when ranking the
phenotype does not bring any informational value. This is possible by scrambling (permutating) the string of microstates an infinite number of times. It is
then possible to show that, in the asymptotic limit, the null hypothesis returns a straight line, noted h0(i), from which inferences may be suggested regard-
ing potential association between the genotype and the phenotype by comparing h0(i) to h(i). Note that the simulation shown in A adhering to Fisher
seminal model is based on a constant sample size of 1,000, involving an arbitrary normally distributed phenotype with a mean of 68 and a variance of 4
units, respectively. Each microstate is normally distributed with a gene effect identical to the standard deviation of the phenotype but without domi-
nance. The frequencies of the genotypes aa (red), Aa/aA (gray), and AA (blue) are 64%, 32% and 4%, respectively, and within Hardy-Weinberg ratio.
GIFT, genomic informational field theory; GWAS, genome-wide association studies.
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(males or females), litter size (singles or twins), and as covari-
ate the day of birth. Further information can be found in
Matika et al. (13). Supplemental File S1 provides the raw data
used (dataset 1).

The second dataset (dataset 2) was from previously unpub-
lished data extracted from a large ongoing program of
research to investigate genome regions (QTLs) that determine
metabolic and epigenetic responses to nutritionally induced
deficiencies in 1C metabolism (14, 15). For this study, sheep
were used as an experimental model. All animal procedures
relating to this study adhered to the Animals (Scientific
Procedures) Act, 1986. Associated protocols complied with the
ARRIVE guidelines and were approved by the University
of Nottingham Animal Welfare and Ethical Review Body
(AWERB) with Home-Office project licensed authority (30/
3376; February 10, 2016). Supplemental File S2 provides
the raw data used (dataset 2).

Dataset 2: Sheep Genome Resequencing, Custom Array
Design, and SNP Profiling on Test Subjects

Twenty-four unrelated Texel ewes were sequenced to a
depth of 30� in two pools at Edinburgh Genomics. DNA
samples were prepared using Illumina’s TruSeq PCR-free
kits and sequenced on an Illumina HiSeq 2500 Rapid Mode
(Serial No. D00125) with a read length of 150PE. Reads were
trimmed to remove adapter sequences and low-quality bases
using skewer with the commands (-Q 20, -q 3) (16) and
mapped to the reference sheep genome assembly (Oar_v3.1)
using bwa mem (options -M -t 4) (17). Following deduplica-
tion using Picard-tools v. 1.92, variants were called using the
GATK pipeline (18), including realignment around known
indels and recalibration of bases, as well as FreeBayes (–use-
best-n-alleles 4 –pooled-discrete –min-alternate-count 4).
Annotation of SNPs was performed using the Ensembl vari-
ant effect predictor (VEP) version Ensembl Tools Release 79
(19). A total of 15,347,831 variants were identified. Of these,
�3 million were novel SNPs, and �12 million were already
present in the Ensembl genome database. SNPs within
annotated coding regions (VEP annotated “downstream
gene variant” or “intron variant” removed) and those
within 3Kb upstream of a gene were retained. SNPs with a
minor allele frequency of greater than 0.5 were used to
design an Illumina Infinium iSelect Custom Array consist-
ing of 4,576 probes. This captured SNPs in 115 1C metabo-
lism and related genes, 108 related epigenetic regulators,
and 33 control SNPs (Supplemental File S1).

Liver samples were next collected postmortem from 360
male and female Texel lambs (6 to 11 mo of age) representing
11 farms dispersed regionally across the UK. Collections took
place at regional abattoirs, and samples were immediately
snap-frozen in liquid nitrogen and stored at �80�C until
analyses. DNA was then extracted using AllPrep DNA/RNA
Mini kit (QIAGEN, Manchester, UK). In brief, �20mg of liver
were mechanically disrupted using a TissueLyser (QIAGEN,
Manchester, UK) in 600 RLT plus buffer containing b-mer-
captoethanol. Tissue lysates were then used to extract RNA
and DNA according to the manufacturer’s instructions. The
custom-designed array was then used to SNP-profile DNA
from these Texel sheep. For this purpose, liver samples
were collected postmortem from lambs (aged 6 to 11 mo)

representing 11 farms dispersed regionally across the UK.
Collections took place at regional abattoirs, and samples
were immediately snap-frozen in liquid nitrogen and stored
at �80�C until analyses. DNA was then extracted using
AllPrep DNA/RNA Mini kit (QIAGEN, Manchester, UK). In
brief, �20 mg of liver were mechanically disrupted using a
TissueLyser (QIAGEN, Manchester, UK) in 600 RLT plus
buffer containing b-mercaptoethanol. Tissue lysates were
then used to extract RNA and DNA according to the manu-
facturer’s instructions.

Dataset 2: Metabolic Profiling

For the purposes of the current study, the following seven
livermetabolites were selected from a larger pool of 1Cmetabo-
lites: S-adenosyl methionine (SAM), methylcobalamin (mB12),
adenosylcobalamin (aB12), trimethylglycine (TMG), dimethyl-
glycine (DMG), propionate (PPA), and methylmalonic acid
(MMA). The first four metabolites were selected as representa-
tive intermediates of the methionine cycle, whereas the latter
two are intermediates in the hepatic synthesis of succinate (15)
(Fig. 2 and Supplemental File S1).

Hepatic concentrations of four metabolites (i.e., mB12,
aB12, TMG, and DMG) were determined by hydrophilic inter-
action chromatography (HILIC) coupled with electrospray
ionization tandem mass spectrometry (MS/MS) as reported
previously (20). For the analysis of SAM (determined sepa-
rately by HILIC), the standard was purchased from Sigma-
Aldrich (Poole, Dorset, UK). Stock solutions of this standard
were prepared in potassium phosphate extraction buffer
(KH2PO4 and K2HPO4; 40 mmol/L) containing 0.1% L-ascor-
bic acid, 0.15% citric acid, and 0.1% MCE (adjusted to pH 7
with NaOH), each at a final concentration of 100 μmol/L.
Also, for SAM, the mobile phase was modified from that
used for the three other reported metabolites by adjusting
the pH of the aqueous ammonium carbonate buffer solution
from 3.5 to 9.1. Mass spectrometer parameters for SAM were
as follows: retention time ¼ 7.69 min; Q1mass ¼ 399.1 amu;
Q3 mass ¼ 250.1 amu; declustering potential ¼ 56; collision
energy¼ 25; and collision cell exit potential¼ 16.

Hepatic concentrations of PPA andMMAwere determined
by gas chromatography coupled to mass spectroscopic-
detection (GC-MS). In brief, for PPA, 750 μL 5-sulfosalicylic
acid (SSA, 0.04mg/mL) was added to 150mg frozen liver, ho-
mogenized for 2 min, and cooled on ice for 10 min. The sam-
ple was centrifuged for 15 min at 14,500 g, and 200 μL liver
homogenate was transferred to a 2.5 mL screw-capped
glass vial. To this, 20 μL internal standard (MBA, 400 μM),
3.5 μL HCl (37%), and 1 mL diethylether were added, vor-
texed for 2 min, and centrifuged for 10 min at 14,500 g.
The upper layer (600 μL) was transferred to a screw-
capped glass vial containing 3.5 μL 1-(tert-butyldimethyl-
silyl)imidazole (TMDMSIM, 97%), vortexed for 2 min, and
heated at 60�C for 30 min. GC-MS analysis proceeded after
cooling. The method used a DB-5MS column (J&W Scientific
Agilent technology, 30 m � 0.25 mm; 0.25 μm film thick-
ness). The carrier gas (He) was set at a constant flow rate of
1.3 mL/min. The injection volume was 5 μL for SCAN mode
(for qualification) and SIM (selected ion monitoring) mode
(for quantification), both using splitless mode. The injection
port and MS selective detector interference temperatures
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were 260�C and 250�C, respectively. The chromatograph
was programmed for an initial temperature of 40�C for 1
min, increased to 60�C at 70�C min�1, then to 110�C at 15�C
min�1, and finally 250�C at 70�C min�1. The MS was tuned
regularly and operated in electron impact (EI) ionization
mode with an ionization energy of 70 eV. SCAN mode
measured at m/z: 30–300, and SIM ions were set at 159 (for
MBA) and 131 (for PPA). The same method was used to pro-
duce a calibration curve for PPA using standards at con-
centrations ranging from 19.5 nmol/g to 5 μmol/g. The
limit of detection was 19.5 nmol/g. CVs for low, medium,
and high QCs were 10.4, 6.3, and 6.5%, and the interassay
CV was 4.7%.

For MMA, 250 μL of 80%MeOHwas added to 50mg of fro-
zen liver, homogenized for 2 min, and cooled on ice for 10
min. The sample was then centrifuged for 15 min at 14,500 g,
and 200 μL liver homogenate was transferred to a 2.5 mL
screw-capped glass vial. To this, 4 μL of internal standard [1
mM 4-chlorobutyric acid (CBA) in 1 mM HCl] followed by

250 μL 12% BF3-methanol were added, vortexed for 1 min,
and heated at 95�C for 15 min. After cooling, 250 μL of cold
distilled water and 250 μL of cold dichloromethane (CH2Cl2)
were added to the vial, vortexed for 30 s, and centrifuged for
10 min at 14,500 g. The lower dichloromethane layer was
transferred to a screw-capped glass auto-sampler vial with
an insert for GC-MS analysis. The method used a DB-WAX
column (cross-linked polyethylene glycol; J&W Scientific
Agilent technology) (30 mm � 0.25 mm; 0.15 μm film thick-
ness). The carrier gas (He) was set at a constant flow rate of
1.0 mL/min. The injection volume was 1 μL for SCAN mode
(for qualification) and SIM mode (for quantification), both
using splitless mode. The injection port and MS selective
detector interference temperatures were 260�C and 280�C,
respectively. The chromatograph was programmed for an
initial temperature of 50�C for 2 min, increasing to 150�C
at 8�C min�1, then to 220�C at 100�C min�1, and held for 5
min at the final temperature. MS was tuned regularly and
operated in EI ionization mode with an ionization energy
of 70 eV. The limit of detection was 0.75 nmol/g for both
MMA and SA, and the inter-assay CVs were 8.4% for MMA
and 11.0% for SA.

Dataset 2: Determination of GWAS for 1C Metabolites

Preliminary data analysis indicated the need to log-trans-
form using the natural logarithm (Supplemental File S3) to
approximate normality. The transformed data were then
precorrected for the fixed effects of farm (F) and sex (S) in
ASReml using the following model, yij ¼ μ þ Fi þ Sj þ Eij,
where yij is the log-transformed phenotype, that is the log-
transformed metabolite concentration studied; μ is the over-
all mean for the log-transformed metabolite concentration;
Fi is the effect of the i

th farm (i¼ 1, . . ., 11); Sj is the effect of j
th

sex (male vs. female), and eij is the residual. The genotype
dataset was filtered using PLINK (HWE p value threshold
of 10�6, call rate for genotypes of 10%, and a MAF of 5%),
the number of independent SNPs was determined using
BCFTOOLS (r2 threshold ¼ 0.1), and the GWAS Manhattan
plots, linked to the determination of pGWAS, were obtained
using GEMMA. The same genotype and residual pheno-
types as filtered by GWAS were used by GIFT.

Data Representation Using GIFT

Adjusted phenotypic data (i.e., residuals, from dataset 1
and dataset 2) were used for this study. Regarding the repre-
sentation of GIFT, upon selecting a SNP for all individuals,
the different corresponding genotypes, aa, aA/Aa and AA,
were assigned arbitrary values of þ 1, 0, and�1, respectively.
With this convention, any barcode can be represented by a
string of numbers from which a GIFT analysis can be
inferred. More specifically, the assignment of values þ 1, 0,
and �1 were done as a function of the base pairs as follows:
AA¼TT¼þ 1, GG¼CC¼�1, and 0 otherwise. As shown sche-
matically in Fig. 1, the residuals obtained were ranked by
order of magnitude, and the cumulative sum of their corre-
sponding genotypic values was performed to obtain the
“genetic path” for the SNP considered. The genetic path of
an SNP is noted h(i) in the text (Fig. 1). The null hypothesis
for GIFT, as well as the notion of significance when GIFT is
used, will be introduced and fully explained in RESULTS.
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Figure 2. Linked methionine and propionate metabolism adapted from
Clare et al. (15) where all metabolites studied for this study are in red. The
methionine cycle facilitates the remethylation of homocysteine (Hcy) to
methionine (Met) and ultimately S-adenosylmethionine (SAM) with methyl
(CH3) groups donated either from folate (5-mTHF) or betaine [trimethylgly-
cine (TMG)], thus leading to the formation of dimethylglycine (DMG).
Methylcobalamin (mB12) serves as a cofactor for the reduction of the inac-
tive form of methionine synthase to its active state (MTR), which then
transfers a methyl group from 5-mTHF to Hcy. The linked metabolism of
propionate (PPA) to succinate (an intermediary metabolite in the tricarbox-
ylic acid cycle) requires adenosylcobalamin (aB12), which serves as a
cofactor for methylmalonyl-CoA-mutase (MUT), leading to the generation
of succinyl-CoA and methylmalonic acid (MMA) in this pathway. Other
intermediary metabolites and enzymes listed: a-KB, a-ketobutyrate;
AHCY, adenosyl-homocysteinase; BHMT, betaine homocysteine methyl-
transferase; CBS, cystathionine b-synthase; Cth, cystathionine c-lyase;
Cth, cystathionine; Cys, cysteine; Gly, glycine; GNMT, glycine methyl-
transferase; MAT, methionine adenosyl-transferase; MMA, methylma-
lonic acid; SAH, S-adenosylhomocysteine; Sar, sarcosine; Ser, serine;
THF, tetrahydrofolate.
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RESULTS

Analysis of the Null Hypothesis h0(i) for GIFT

Although h(i) is obtained using phenotypic information
(configuration ① in Fig. 1 and Data Representation Using
GIFT in MATERIALS AND METHODS), it is also possible to plot
the cumulative sum of microstates when no phenotypic in-
formation is present that is equivalent to “scrambling” or
permutating the string of microstates in Fig. 1A, which corre-
sponds to configuration ② in Fig. 1B. Recall that since our
focus is on a given SNP, the number of microstates, Nþ , N0,
and N�, are identical between the configurations ① and
②. This new cumulative sum noted h0(i) is expected to be
a sort of null hypothesis solely dependent on the bulk
microstate frequencies Nþ /N, N0/N, and N�/N, where
Nq q 2 fþ ;0;�g is the number of microstates of type
q. This is so because there is no further information that could
inform on the positioning of microstates in their list when
the scrambled state is considered. However, although h(i) is
unique since phenotypic information is used to generate it,
h0(i) is not as each time the string of microstates from Fig. 1A
is scrambled, a new h0(i) appears. Accordingly, one needs to
consider the set of possible h0(i)s generated bounded to the
microstate frequencies Nþ /N, N0/N, and N�/N.

Using a selection of theoretic SNPs defined by different
microstate frequencies (Table 1), Fig. 3A illustrates the
global shape resulting from simulating 1,000 h0(i)s. The
results demonstrate that the global shape of the h0(i)s plot-
ted as a function of the position in the string is ellipsoidal
with short and long axes changing as a function of micro-
state frequencies involved, and where the different aver-
ages of h0(i)s represented by black lines in Fig. 3A are
straight lines with slopes linked to the difference, DN/N ¼
(Nþ � N�). The fact that the averages of h0(i)s for a given
set of microstates, Nþ , N0 and N�, is always a straight line
linked to microstate frequencies, Nþ /N, N0/N, and N�/N,
can be understood intuitively by the fact that scrambling or
permutating an infinite number of times the string of
microstates is equivalent to determining, for any position i,
the presence probability, Nq/N, of each microstate in the
string. Accordingly, for a given set of microstates, Nþ , N0,
and N�, the average of h0(i)s, noted h0(i), is h0 ið Þ ¼ Nþ �N�ð Þ

N i.

Further theoretic details can be found in Wattis et al. (10)
and Rauch et al. (11). Using h0(i) as a reference for the null
hypothesis, Fig. 3B shows the sur-imposition of the differ-
ences, Dh0(i) ¼ h0(i) � hh0(i)i, obtained from simulations
using SNPs from Table 1.

Finally, to assess the impact of the sample size (population
size) on the null hypothesis, the initial size (N ¼ 565, Table 1)
was divided (N ¼ 280) and multiplied (N ¼ 1,130) by a fac-
tor �2, while keeping constant the microstate frequencies
Nþ /N, N0/N, and N�/N from Table 1. The simulations in
Fig. 3A show that the appearance of ellipsoids is affected
when the sample size changes, becoming thinner as the
population size increases. Plotting the standard deviation,
r(i/N), as a function of the position once normalized by the

sample size, r i=Nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 i=Nð Þ2 � h0 i=Nð Þ2
h i

=N

r
, resulting

from the different simulations in Fig. 3C demonstrates that
the standard deviation from GIFT is quadratic and independ-
ent of the sample size, as expected from a random allocation
of differentmicrostates in the string of positions.

At first sight and with this primary analysis, one could
suggest that any genetic path departing from the cloud of
genetic paths formed by the set of h0(i)s upon the permuta-
tion of microstates (gray surface in Fig. 3A or black surface in
Fig. 3B) would likely result in an association between the ge-
notype and the phenotype. Although this assumption is
true, it needs to be handed out carefully, as it is not exhaus-
tive. Indeed, some genetic paths may be highly structured
and of relatively small amplitude. Examples of genetic paths
using real data from dataset 1will demonstrate this point.

Examples of Genetic Path Using the Bone Area of the
Ischium as Phenotype (Dataset 1)

The resulting average, h0(i), and variance, r(i), can be used
to inform the null hypothesis of a particular SNP from “real”
datasets. However, since there are as many different sets of
h0(i)s as number of SNPs, each SNP will return its own h0(i)
(null hypothesis) upon scrambling. A comparison between
SNPs using GIFT/genetic paths requires then to concentrate
on the differences, Dh0(i) ¼ h0(i) � hh0(i)i. In the remaining
text, one shall rewrite hh0(i)i as h0(i) to simplify notations.

Concentrating now on “real” dataset, the genetic paths
were obtained further to ranking BAI residual values (dataset
1), using an incremental rank from small to large values. As
an example, Fig. 4 shows the two genetic paths h(i) and h0(i)
for six SNPs, renamed SNP1-6 (see Table 2 for accurate
genetic information), enabling us to appreciate the qualita-
tive difference between the genetic paths. Although the null
hypothesis, i.e., h0(i), resulting from the scrambling of phe-
notypic values many times, always returns a straight line
with a different slope for each SNP, similar to what was seen
in Fig. 3, the h(i)s for SNP1-6 in Fig. 4 have different shapes.
To represent the set of h(i)s in relation to the different micro-
states involved, each datapoint of the h(i)s is color coded as
in Fig. 1C.

Since h0(i) is linked to the difference between the genetic
microstate frequencies of homozygotes, DN ¼ Nþ � N�, in
Fig. 4, we represent this difference by the angle a . Since tan
(a) ¼ þNþ /N � N�/N, where N is the total number of posi-
tions (i ¼ 1, 2, . . ., N), h0(i) can be rewritten as h0(i) ¼ tan(a)i.

Table 1. Theoretic SNPs used to capture the null hypothesis
associated with GIFT upon 1,000 simulations of microstate
permutation

SNP Name N1 N0 N2 N

SNP1 25 25 515 565
SNP2 25 125 415 565
SNP3 25 225 315 565
SNP4 25 325 215 565
SNP5 25 425 115 565
SNP6 25 525 15 565

The difference between consecutive SNPs in the table is linked
to the transfer of 100 microstates from the microstates “�1” to the
microstate “0” leaving the number of microstates “þ ” invariant.
By permutating the microstates “þ ” and “�” in the table, similar
plots as those obtained in Fig. 3A could have been obtained; the
only difference would have been the slopes of the average h0 ið Þ
changing sign. GIFT, genomic informational field theory; SNP, sin-
gle-nucleotide polymorphism.
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As any analysis must concentrate on the difference, Dh(i) ¼
h(i) � h0(i), such as to cancel the apparent variability in the
null hypothesis across SNPs, we represent the plots of the
different Dh(i) s obtained in the right panels of Fig. 4,A–F:

Figure 4, A and B, displays two distinct genetic paths that
are globally similar. Although they have different number of
microstates of each type (see Table 2), the Dh(i)s of SNP1 and
SNP2 are characterized by their small amplitudes and the
fact that they are erratic crossing several times the axis of
position corresponding to the null hypothesis. In those
cases, using the information contained in the phenotypic
residuals, namely ranking the phenotypic residuals from
small to large values, does not permit to fully differentiate
h(i) from h0(i). On the other hand, the right panels in Fig. 4, C
andD, for SNP3 and SNP4 demonstrate, in a more noticeable
way, a paraboloid shape for the Dh(i)s resulting from a segre-
gation of microstates upon ordering the phenotypic resid-
uals. The segregation of microstates þ 1 and �1 in opposite
direction is reminiscent of Fisher theoretic works (Fig. 1). As

it turns out, Fig. 4, C and D, shows some similarities with
Fig. 1C based on a simulation inspired by Fisher’s seminal
works. Importantly the DN values of SNP1 and SNP4, while
of opposite signs, are similar in absolute value, as those of
SNP2 and SNP3, suggesting, in turn, the DN values do not
impact on the ability to differentiate h(i) from h0(i). Namely,
that a segregation of microstates can also be inferred with
relatively large and opposed DN values.

Envisaging the migration of microstates þ 1 and �1 in
opposite directions, as initially postulated by Fisher, as
the sole framework to associate genotype and phenotype
is not always valid. This is demonstrated by SNP5 and
SNP6 and the appearance of structured genetic paths dis-
playing clear sigmoidal shapes for the Dh(i)s as shown in
Fig. 4, E and F. Theoretically, this phenomenon can be
understood and explained by the presence of nonlinear
phenotypic fields, see Rauch et al. (11) and also reviewed in
Rauch et al. (12), in turn breaking the symmetry postulated
by Fisher, assuming the sole presence of linear phenotypic

Figure 3. A, left: simulations of genetic paths corre-
sponding to null hypotheses using GIFT as a method.
The data used for the simulation are given in Table 1. A,
right: simulations of genetic paths corresponding to null
hypotheses when the sample size is divided or multiplied
by a factor of two. B: representation of Dh0(i) ¼ h0(i) �
<h0(i)> for themicrostate data as given in Table 1.C: plots
of the standard deviation normalized by the square root
of the sample size and where the position is also normal-
ized by the sample size. The code for the simulations is
given in Supplemental File S4. GIFT, genomic informa-
tional field theory.
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fields. This type of sigmoidal shapes is of interest since
they inform on potential regulation mechanisms involving
very probably “regulatory variants” (21). Indeed, the right
panels in Fig. 4, E and F, can be envisioned as representing
the genetic organization of two distinct subpopulations of
phenotypic residual values, one above the dashed line and
the other one underneath it. Taken separately, those two
subpopulations draw curves like Fig. 4, C and D, or Fig. 1C.
In this context, it is tempting to suggest that sigmoid
genetic paths reveal a type of genotype-phenotype associa-
tion that is inherently “scale dependent,” namely function
of the magnitude of phenotypic residuals. Because tradi-
tional GWAS concentrates on averages and variances,

these sigmoid paths would be remarkably difficult to char-
acterize with traditional methods. This is so because there
is no clear antisymmetric segregation of microstates. As an
example, using SNPs1-6 (from Fig. 4) we have plotted, in
Fig. 5, the average values of phenotypic residuals for each
microstate, and in Table 2 we provide the resulting gene/
size effects and the dominances associated with those.
Figure 5 and Table 2 demonstrate that sigmoid genetic
paths (SNP5 and SNP6) are much less detectable with tra-
ditional methods, whereas paraboloid genetic paths (SNP3
and SNP4) are. Note that the numerical determination of
“Log10(pGIFT)” in Table 2, that is the significance for GIFT,
is explained in the next part below.

Figure 4. A sample of genetic paths selected from dataset 1. The details of the different SNPs displayed in A–F are given in Table 2. SNPs, single-nucleo-
tide polymorphisms.

Table 2. Determination of gene/size effect (a) and dominance (d) for SNP1-6 from dataset 1

CHR Name Position 2Log10(pGIFT) 2Log10(pGWAS) N1 N0 N2 a* d**

9 OAR9_58767921 (SNP1) 56039025 2.7895 0.2735 391 160 16 N/A N/A
3 s02120 (SNP2) 213625709 2.8893 0.0018 198 291 78 N/A N/A
6 OAR6_40855809 (SNP3) 36655091 28.5105 9.8639 229 262 76 96.85 �13.01
6 OAR6_38315830 (SNP4) 34256151 20.7541 3.7366 24 222 321 �70.02 �0.05
23 OAR23_35510473 (SNP5) 33556377 19.7239 0.2301 254 260 53 N/A N/A
25 OAR25_30372586 (SNP6) 29046746 18.5806 1.0692 90 266 211 N/A N/A

The level of significance for GIFT and GWAS is indicated as follows: normal font, not significant; and bold font, significant. a�: the
gene/size effect is calculated considering the middistance between the average values of phenotypic residuals of microstates “�1” and
“þ 1.” d��: the dominance is calculated considering the difference between the gene/size effect (a) and the position of the average value
of phenotypic residuals for the microstate “0.”
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To conclude, based on Fisher’s theoretic works, the
traditional GWAS method has been optimized to map
SNPs that, using GIFT, would draw paraboloid genetic
paths (see Fig. 1C). The potential novelty using GIFT
resides in its ability to provide new information and
detect relatively regular/structured sigmoid genetic
paths that would otherwise not be detected by tradi-
tional methods.

pGIFT: p Value for GIFT

GIFT and GWAS extract information on genotype-pheno-
type associations in totally different ways. Although GIFT
concentrates on the significance of curves drawn using
Dh(i) ¼ h(i) – h0(i), GWAS focuses solely on the significance
of difference of averages. However, to compare GIFT to
GWAS, it is essential to determine a p value for GIFT that is
exhaustive enough such as to also capture the information
that GWAS provides. To this end, a p value was derived that
concentrates on the maximal amplitude difference of genetic
paths (see Fig. 6,A and B).

The p value for GIFT can be understood as follows.
Since the number of possible paths is linked to the num-
ber of configuration possible resulting from lodging Nþ ,
N0, and N� microstates into a list composed of N ¼ Nþ þ
N0 þ N� components, the total number of possible paths
is N0

path ¼ N!
Nþ !N0 !N�!

. Let us now divide the genetic paths

into regions Di1, Di2, and Di3 as shown in Fig. 6, A and B.
As the number of microstates of each sort can be deter-
mined in each region using an adequate algorithm, the
total number of possible genetic paths in this first, sec-
ond, and third regions are, respectively, N1 ¼ Di1!

nþð Þ1! n0ð Þ1! n�ð Þ1!,

N2 ¼ Di2!
nþð Þ2 ! n0ð Þ2 ! n�ð Þ2 ! and N3 ¼ Di3!

nþð Þ3 ! n0ð Þ3 ! n�ð Þ3 !, where nqð Þp is the

number of microstate of type q in the pth region,
q 2 fþ ;0;�g and p 2 f1; 2; 3g. Consequently, the probability
of a genetic path in this context is, p̂GIFT ¼ N1N2N3=N

0
path.

Using the null hypothesis simulations shown in Fig. 3, based
on the theoretic SNPs given in Table 1, p̂GIFT may be deter-
mined for each simulated genetic path. Its statistic plotted in
Fig. 6C for each SNP demonstrates very little variations across
SNPs or when the sample size changes by a factor of two.
Based on this observation, confidence intervals were deter-
mined for all SNPs by averaging the p̂GIFT values obtained.
The upper and lower red dashed lines represent the 99% and
95% confidence intervals. To consider the false discovery rate
(FDR) and adjust p values to remove type I errors, p̂GIFT values
in Fig. 6C were corrected using the Benjamini–Hochberg pro-
cedure leading to a new set of adjusted, i.e., reduced, p values,
noted pGIFT (see Fig. 6D), that may be used to determine the
true significance of DNA variants (SNPs). Returning to Table
2, the numerical value of pGIFT was determined for the genetic
paths shown in Fig. 4, demonstrating that GIFT can extract in-
formation when sigmoid genetic paths are involved, whereas
traditional GWAS is unable to do so.

Armed with pGIFT, an analysis of datasets can now be
performed.

Comparison Between GWAS and GIFT Considering the
Bone Area of the Ischium as Phenotype (Dataset 1)

The first dataset (dataset 1) analyzed 567 pedigree-recorded
Scottish Blackface lambs, concentrating on the bone areas of
the ischium measured in mm2 from cross-sectional CT scans
(13). After adjusting the phenotypic values, the work demon-
strated a clear involvement of chromosome 6 as shown in
Fig. 7A. The genome-wide significant thresholds applied for
GWAS in Fig. 7A correspond to Bonferroni corrections at
1% (upper red dashed line) and 5% (lower dashed red
line), determined by using independent SNPs only.
Formally a 1% (resp. 5%) Bonferroni correction is given
by �log10(0.01/Nind�SNPs) [resp. �log10(0.05/Nind�SNPs)],
where Nind�SNPs ¼ 10433 is the number of independent
SNPs. Using its own thresholds (Fig. 6D), GIFT was applied

Figure 5. Analysis of averages (GWAS) for SNP1-6 (see
Fig. 4 and Table 2). Values for the size/gene effects (a)
and dominances (d) are given in Table 2. GWAS, ge-
nome-wide association studies.
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using the same set of phenotypic residuals. Figure 7, A and
B, demonstrates the results obtained by GWAS and GIFT
using Manhattan plots.

The significance threshold by GIFT was defined by a
null hypothesis using theoretic SNPs. To demonstrate
that the theoretic results obtained from Fig. 6D are trans-
ferrable to “real” SNPs (Fig. 7B), namely that the signifi-
cant SNPs obtained in Fig. 7B have null hypotheses with
similar properties like those shown in Fig. 6D, each sig-
nificant SNP (Fig. 7B) had its genetic path randomly per-
mutated a thousand times to determine the distribution
of �log10(pGIFT) values corresponding to their null hy-
pothesis. Results show that the null hypotheses are
remarkably similar across SNPs, and that the threshold
determined using theoretic SNPs (Fig. 6D) holds when
“real” SNPs are used (Supplemental File S5).

Overall, Fig. 7, A and B, demonstrates that there is an
agreement between GWAS and GIFT that chromosome 6 is
involved. However, differences exist that are shown through
the involvement of several chromosomes when GIFT is
used. Considering the thresholds involved, for GWAS, the
phenotype studied may be considered as a sort of “single
gene trait,” whereas for GIFT, the phenotype looks very
much like a “complex trait,” involving more chromosomes
than chromosome 6. Detailed information of all signifi-
cant SNPs by GWAS or GIFT is given in Supplemental
File S6.

Concentrating on chromosome 6 to address the overlap
of information provided by GIFT and GWAS, a Venn dia-
gram including highly significant SNPs only, namely SNPs
beyond the top red dashed line in Fig. 7, A and B, was plot-
ted. The Venn diagram (Fig. 7C) reveals that most SNPs

Figure 6. To provide a p value extracting genotype-phenotype associations in an exhaustive manner for both GWAS and GIFT, a method concentrating
on the largest and smallest extreme values of the genetic path was focused upon. This method can be applied to paraboloid (GWAS-like or GIFT-like) (A)
and sigmoid (GIFT-like) (B) genetic paths. The overall idea consists in determining how many paths N1, N2, and N3 can be generated from the respective
interval of positions Di1, Di2, and Di3 given that the constraints for the extrema are U1 and U2. Then a p value (p̂GIFT) can be determined as seen in the
text. C: using simulations (K ¼ 1,000 replicates), a statistic of p̂GIFT for the null hypothesis can be generated using theoretic SNPs (Table 1). Simulations
demonstrate that p̂GIFT is relatively independent of the microstate’s frequencies upon which a 99% (top dashed line) and 95% (bottom dashed line) inter-
val confidences can be generated. D: p̂GIFT values were adjusted to consider FDR using Benjamini–Hochberg procedure, leading to a new set of pGIFT

values. The code for the simulations is given in Supplemental File S4. FDR, false discovery rate; GIFT, genomic informational field theory; GWAS, ge-
nome-wide association studies; SNPs, single-nucleotide polymorphisms.
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deemed significant by GWAS were also deemed significant
by GIFT. Curiously, only one SNP seemed highly signifi-
cant by GWAS but irrelevant for GIFT. As pGIFT was
designed to collect exhaustive information from GWAS,
the SNP was identified (OAR6_40311379) and its genetic
path, i.e., its Dh(i), plotted (Fig. 7D, left) together with its
GWAS representations (Fig. 7D, right). The genetic path,
being erratic of relatively small amplitude and crossing
several times the axis of positions, did not display any
obvious “parabolic or sigmoidal” associations at first sight,
in turn justifying its small pGIFT value. The GWAS repre-
sentation of OAR6_40311379, however, demonstrated the
absence of microstate “�1” as well as a near overlap of
microstates “0” and “þ 1” further demonstrated by the
similarities between their boxplots, suggesting the occur-
rence of a false positive. To confirm this, a comparison of
phenotypic means for the microstates “0” and “þ 1” was
performed returning a t test value of 1.1485 (p value of
0.2512), confirming the presence of a false positive.

To assess the overlap of information between GWAS and
GIFT, we plotted the first 100more significant SNPs detected
by GIFT and GWAS in Fig. 7E. Results confirm an overlap of
GWAS and GIFT results for highly significant SNPs associ-
ated with the phenotypic residuals (see purple dots in Q2 in
Fig. 7E). Interestingly, two SNPs considered as significant by
GWAS (two blue dots in Q2) were not by GIFT. That is
because the significance determined by GIFT for these dots
were less than other SNPs detected by GIFT. As already
stated earlier, many SNPs from other chromosomes were
considered significant by GIFT that were not by GWAS (see
red dots in Q2). Finally, quadrant Q2 in Fig. 7E confirms that
OAR6_40311379, i.e., the false positive detected by GWAS, is
a standalone SNP among the 100 SNPs. Finally, the biotype
of significant SNPs on chromosome 6 for GIFT and GWAS is
also presented in Fig. 7F.

The primary conclusion provided by Fig. 7, A–F, is that,
when compared with GWAS, GIFT returns substantially
more genetic information.

However, a central question concerns the genetic perti-
nence of the significant SNPs obtained by GIFT. As GIFT has
been designed with the aim to increase the investigative
power of biological datasets, we may assume that the signifi-
cant SNPs obtained by GIFT once translated into gene names
should underline some level of nonrandom gene-gene inter-
actions. The latter point is particularly relevant since GIFT is
expected to detect regulatory variants (cf. sigmoidal genetic
paths). To assess this point, we performed an enrichment
analysis based on gene names using the String database,
which helps determine known and predicted protein-protein
interactions. To apply String, the significant SNPs obtained
using GWAS and GIFT were mapped to the reference sheep
genome assembly from Ensembl (Oar_v3.1) to obtain the
gene names. Using those gene names, String analyses were
performed for GWAS and GIFT, using a minimum required
interaction score of 0.4. Figure 7, G and H, shows the net-
works obtained. With enrichment p values for GWAS and
GIFT of 0.176 and 0.00008, respectively, these results con-
firm that the set of genes determined by GIFT have more
interactions among themselves than what would be
expected for a random set of genes of the same size
and degree distribution drawn from the genome. Namely

that GIFT increases the investigative power of biological
datasets.

At present, we do not know how the whole information
provided by GIFT may inform on the putative biology of
the phenotype studied (BAI). As it turns out, a full valida-
tion of the information provided by GIFT on dataset 1
would require an in-depth mutational/deletion/insertion/
gene-editing analyses in live animals, extending beyond
the scope of this present article.

To demonstrate the relevance of the information provided
by GIFT, we decided to challenge GIFT using a different
dataset (dataset 2) concentrating on a complex trait related
to 1Cmetabolism.

Comparison Between GWAS and GIFT Considering 1C
Metabolites as Phenotype (Dataset 2)

Dataset 2 concerns biochemical data, which seeks to
identify risk allele variants in genes whose products direct
a specific series of metabolic pathways, known as one-car-
bon (1C) metabolism (Fig. 2). The significance of 1C metab-
olism is that it is a complex trait involving a series of
interlinking metabolic pathways that provide 1C units
(methyl groups) for the synthesis and methylation of bio-
logical molecules. After 1% and 5% Bonferroni corrections
for GWAS and the Benjamini-Hochberg procedure applied
to GIFT, the Manhattan plots were obtained (Fig. 8A). Note
that the number of independent SNPs in this case is 624
(out of 3,923 SNPs from the gene array). Figure 8A demon-
strates clearly that the informational power of GWAS is
less than that of GIFT. Finally, in Fig. 8B, we provide the
biotypes of the most significant SNPs shown by the upper
red dashed lines obtained using GIFT. Detailed genetic in-
formation of the most significant SNPs obtained using
GIFT is provided in Supplemental File S8.

Since the gene array was synthesized using SNPs from
known genes involved in 1C metabolism, the relevance of
string analyses (i.e., enrichment p values) would be minimal
and of little interest.

Besides validating that GIFT may extract more infor-
mation from genotype-phenotype datasets, it is worth
underlying the biological importance and novelty of
results obtained. 1C metabolism in sheep is comparable
with that in humans. The significance of 1C metabolism is
that it is a complex trait involving a series of interlinking
metabolic pathways that provide 1C units (methyl groups)
for the synthesis and methylation of chromatin among
other molecules (15). S-adenosylmethionine (SAM) is a
potent methyl donor within these cycles and serves as the
principal substrate for methylation of DNA, associated
proteins, and RNA. It was previously demonstrated in
sheep, cattle, rodent, and human studies that disrupting
these cycles during early pregnancy, by either dietary
means (i.e., reducing dietary vitamin B12, folate, choline
and/or methionine), or through exposure to environmen-
tal chemicals such as cigarette smoking, can lead to epige-
netic dysregulation and impaired fetal development with
long-term consequences for offspring cardiometabolic
health (22–25). It was also advocated that interindividual
and ethnic variability in epigenetic gene regulation arises
because of SNPs within 1C genes, associated epigenetic
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regulators, and differentially methylated target DNA
sequences (15). However, information concerning the na-
ture and extent of interactions between parental genotype,
diet and EC exposure was, until now, limited to just a few
1C genes in humans (15). Consequently, data obtained by

the current study provide new evidence concerning signif-
icant genetic variants in 1C metabolism and directly asso-
ciated metabolic genes and epigenetic regulators that rely
on SAM as the methyl donor, potentially applicable to the
human species.
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DISCUSSION

Although statistical association methods should not favor
any biases when analyzing datasets, the way they are built
mathematically is often indicative of a particular way of
thinking. For example, with GWAS, the phenotype is decom-
posed onto more fundamental subdistributions character-
ized by the distribution of microstates (see Fig. 1A). This
approach underlines a sort of bottom-up approach that,
within a reductionist framework, defines genes as biological
agents controlling the phenotype aligned with the “Neo-
Darwinian synthesis.” However, nothing prevents consider-
ing the opposite as far as statistical association methods are
involved, and GIFT uses this degree of freedom. By using the
full range of phenotypic information, GIFT transforms a ran-
dom or disordered string ofmicrostates (the straight line in the
asymptotic limit seen in Fig. 1C or Fig. 3A) into an “ordered”
configuration of microstates (see Fig. 1C or Fig. 4, C–F), in turn
providing the signature of a genotype-phenotype association.
Accordingly, since the phenotypic information controls the
configuration of microstates, it is a top-down approach, which
turns out to be remarkably sensitive. GIFT has been estimated
to be�1,000more sensitive than GWAS (11).

There are three main reasons as to why GIFT is more sen-
sitive. The first is that GIFT determines the significance of
curves composed of an entire population of datapoints. As
curves provide a greater level of significance than consider-
ing differences between microstate/phenotypic averages/
variances as advocated by GWAS, GIFT is statistically more
powerful. The second reason is that the null hypothesis for
GIFT, namely h0(i), is contained in the definition of Dh(i)
and is therefore specific to the genome position, or SNP,
studied. With GIFT, there are as many null hypotheses as
SNPs. This contrasts with GWAS, defining a null hypothesis
valid for all SNPs at the population level when the average
of microstate distributions overlaps. Consequently, the dis-
criminative power of GIFT is amplified. The third reason is
that GIFT is simpler than GWAS. Indeed, based on R. A.
Fisher’s seminal work, GWAS is based on a complex theory
that seeks to determine genotype-phenotype associations
on one hand (aim 1) and the heritability of phenotypes/
traits studied on the other (aim 2). To achieve those two
aims, the GWAS approach relies on frequentist probability
to determine the validity of statistical inferences giving the
notions of average and variance fundamental meanings
related to aims 1 and 2, respectively. However, because av-
erage and variance are antinomic, it is nearly impossible to
have a clear picture of associations (size effects) since the
noise (variance/heredity) blurs the average(s). On the other
hand, by concentrating on genetic paths (curves), GIFT

determines a global association. This does not mean that
GIFT rules out the notions of size effect, dominance, and
heritability; on the contrary, it encapsulates them under
the generic notion of phenotypic field, i. e., size effect, dom-
inance, and heritability can be rederived from the pheno-
typic field. The term “field” in the acronym GIFT is used to
explain the disorder-order transition in the string of micro-
states using an analogy related to physics field theory; see
Rauch et al. (11, 12) for more details.

Finally, it is important to reframe GIFT within current
debates in the field of biology. With GIFT, it is the (information
on the) phenotype that selects which SNP is required for its
subsistence, and it is interesting to note that, at the conceptual
level and as a top-down approach, GIFT has some familiarity
with the notion of phenotypic plasticity. Phenotypic plasticity
refers to the ability of phenotypes to respond to a change in the
environment favoring a divergence from the ancestor pheno-
type. As the phenotype relies on traits (modules), the respon-
siveness to any new input(s) must involve a reorganization of
the phenotype architecture by allowing phenotypic subcompo-
nents (modular traits) to adapt the changes (26). Namely that
genetic accommodation linked to a standing pool of genetic
variations characterizing any trait is central to phenotypic plas-
ticity that, through persistence, may genetically assimilate the
new architecture (selection) (26, 27). In this context, the top-
downmethod GIFT, which is essentially a phenotype-genotype
(and not genotype-phenotype) association method, can pull
out any standing genes awaiting to be used by phenotypes.

To conclude, we provide evidence that GIFT enhances the
investigative power of biological datasets. In addition, we
provide evidence also for the need to rethink the conceptual
bases of genotype-phenotype association methods, such as
use more information from the whole biodiversity of data.

DATA AVAILABILITY

Data including Supplemental Material are available using the
following link: https://doi.org/10.1101/2024.04.16.589524.

SUPPLEMENTAL MATERIAL

Supplemental File S1 provides the raw data for dataset 1;
Supplemental File S2 provides the raw data for dataset 2.
Supplemental File S3 provides the statistical summary for the
phenotypic adjustment before running GWAS on dataset 2;
Supplemental File S4 provides the code to obtain Fig. 3 and
Fig. 6C. Supplemental File S5 represents the permutation anal-
ysis of significant SNPs obtained by GIFT from dataset 1.
Supplemental File S6 represents the list of significant SNPs
obtained by GWAS and GIFT when applied on dataset 1;
Supplemental File S7 provides the code to obtain Fig. 4, Fig. 5,

Figure 7. A and B: Manhattan plots based on p values obtained from GWAS (A) and GIFT (B) demonstrating significant differences between the methods
concerning potential genotype-phenotype associations. Note that the presence of a chromosome “0” results from the fact that some SNPs identified by
Matika et al. (13) were not allocated to specific chromosomes/genomic positions due to a lack of information at the time. A fathom chromosome (chromo-
some 0) was created to allocate those SNPs. C: Venn diagram representing the most significant SNPs by GWAS and GIFT. One SNP (OAR6_40311379)
demonstrated a large p value for GWAS and a small p value for GIFT. A representation of its genetic path (D, left) did not underscore any “parabolic” or
“sigmoidal” associations. As it turned out, this SNP was a false positive by GWAS, since the difference between the phenotypic means was not significant
(D, right). E: the 100 most significant SNPs by GWAS and GIFT were extracted, and their p values were plotted against each other. The dashed lines repre-
sent the thresholds applied for GWAS (blue dashed line) and GIFT (red dashed line). The SNP OAR6_40311379 pointed by the black arrow is the single one
standing out in Q1 confirming its false positive status. F: biotypes of the most significant SNPs by GIFT and GWAS.G: string analysis was performed to deter-
mine gene networks using significant SNPs by GWAS. H: string analysis was performed to determine gene networks using significant SNPs by GIFT. Note
that the dashed square underlines mTOR and FOXO3, which were determined by GWAS. The code for obtaining B, C, D, and F is given in Supplemental
File S7. GIFT, genomic informational field theory; GWAS, genome-wide association studies; SNPs, single-nucleotide polymorphisms.
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Figure 8. A: comparison of the information extracted by GWAS and GIFT shown using Manhattan plots for the metabolites presented in red in Fig. 2. We recall
the acronyms S-adenosyl methionine (SAM), methylcobalamin (mB12), adenosylcobalamin (aB12), trimethylglycine (TMG), dimethylglycine (DMG), propionate
(PPA), and methylmalonic acid (MMA). It should be noted that due to inherent difficulty linked to the measure of metabolite, the sample sizes were not similar
across metabolites, that is, the values for N differ between the Manhattan plots (SAM: N¼ 344; mB12: N¼ 183; aB12: N¼ 338; DMG: N¼ 338; TMG: N¼ 340;
MMA: N¼ 348; and PPA: n¼ 345). B: biotypes corresponding to the most significant SNPs for each metabolite determined by GIFT (a detailed list of informa-
tion concerning those SNPs in given in Supplemental File S8). The code for the Manhattan plots and the determination of biotypes is given in Supplemental
File S9. GIFT, genomic informational field theory; GWAS, genome-wide association studies.
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and Fig. 7. Supplemental File S8 provides the list of significant
SNPs by GIFT for dataset 2. Supplemental File S9 provides the
code to obtain Fig. 8. Supplemental Material is available using
the following link: https://doi.org/10.1101/2024.04.16.589524.
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