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Abstract
Objective. Graphical networks and network metrics are widely used to understand and characterise
brain networks and brain function. These methods can be applied to a range of electrophysiological
data including electroencephalography, local field potential and single unit recordings. Functional
networks are often constructed using pair-wise correlation between variables. The objective of this
study is to demonstrate that functional networks can be more accurately estimated using partial
correlation than with pair-wise correlation. Approach.We compared network metrics derived from
unconditional and conditional graphical networks, obtained using coherence and multivariate
partial coherence (MVPC), respectively. Graphical networks were constructed using coherence and
MVPC estimates, and binary and weighted network metrics derived from these: node degree, path
length, clustering coefficients and small-world index.Main results. Network metrics were applied
to simulated and experimental single unit spike train data. Simulated data used a 10x10 grid of
simulated cortical neurons with centre-surround connectivity. Conditional network metrics gave a
more accurate representation of the known connectivity: Numbers of excitatory connections had
range 3–11, unconditional binary node degree had range 6–80, conditional node degree had range
2–13. Experimental data used multi-electrode array recording with 19 single-units from left and
right hippocampal brain areas in a rat model for epilepsy. Conditional network analysis showed
similar trends to simulated data, with lower binary node degree and longer binary path lengths
compared to unconditional networks. Significance.We conclude that conditional networks, where
common dependencies are removed through partial coherence analysis, give a more accurate
representation of the interactions in a graphical network model. These results have important
implications for graphical network analyses of brain networks and suggest that functional
networks should be derived using partial correlation, based on MVPC estimates, as opposed to the
common approach of pair-wise correlation.

1. Introduction

The ability to infer and characterize interactions
between individual neurons and groups of neurons is

6 Current address: Department of Electrical and Electronic Engin-
eering, National Defense University of Malaysia, Malaysia.
7 Current address: Department of Neurosciences, Universiti Sains
Malaysia, Malaysia.

fundamental to understanding brain function [1].
Interactions can be described using graphical
networks combined with network theoretic measures
to quantify these interactions. Graphical networks
and network metrics provide a unified framework
for both illustrating and quantifying interactions
between multivariate time series. They have been
applied to a range of problems including physical net-
works [2, 3] and biological networks [4, 5]. Their use
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in characterising the interactions within brain net-
works is becoming well established [6–9].

Graphical brain networks can be derived from
different modalities, these include anatomical,
functional and effective connectivity [1]. Functional
connectivity, used here, is concerned with charac-
terising functional interactions between nodes, or
signals, in a graphical network representation. Func-
tional connections, or interactions, can be quantified
using a range of measures. One common approach
to determining functional connectivity is through
correlation analysis. This can use time domain or
frequency domain measures of correlation. In the
frequency domain a common measure of functional
interaction between two neuronal signals, is provided
by the coherence function [10].

Our approach is exclusively frequency domain
based on estimates of coherence and partial coher-
ence functions. These provide a normative measure
of correlation or partial correlation between neuronal
signals on a scale [0, 1] as a function of frequency.
They can be applied to time series and spike train
data, and have well established methods for estim-
ation and setting confidence limits [10, 11]. Ordin-
ary coherence provides a pair-wise measure of func-
tional interaction. In large networks this approach
may be confounded by the presence of common influ-
ences. Ordinary coherence cannot distinguish dir-
ect connections from common inputs. For example
neurons A and B which receive common input from
neuron C will exhibit a pair-wise coherence between
A−B. Multivariate partial coherence (MVPC), ana-
logous to partial correlation in multiple regression,
can be used to assess whether an observed correlation
is due to a direct connection or due to common influ-
ences. In situations where putative common inputs
are available as additional signals, an MVPC estimate
will distinguish between direct connections and com-
mon inputs [10, 12]. There are a number of advant-
ages to working in the frequency domain as discussed
in [10], the estimation of parameters and setting of
confidence limits is more straightforward, and the
characterisation of neural data is often according to
well-established frequency bands [9]. If required, par-
tial correlation measures in the time domain can be
derived using partial spectra [13].

A number of approaches are available for con-
structing graphical networks that describe functional
interactions between multivariate neuronal signals.
Coherence and partial coherence, as used here, are
based on the concept of correlation and partial cor-
relation [6, 8, 9, 14]. Approaches based on correlation
and partial correlation construct graphical networks
based on linear interactions, the absence of an edge is
based on the null hypothesis that a pair of nodes are
uncorrelated when the linear effects of any predictors
are taken into account [12].

Information theoretic measures have been used
to construct graphical networks using mutual

information (MI) [15]. Graphical networks using MI
are constructed against a null hypothesis of statistical
independence, a more rigorous condition than zero
correlation [16]. However, reliable MI estimators are
typically more challenging to construct and to test
for statistical significance [17]. In the linear Gaussian
case MI can be derived from coherence [18].

Graphical networks can also be constructed by
identifying functional subgraphs in larger networks,
using the concept of motifs [19, 20]. Functional sub-
graphs can be identified using information theoretic
measures [20] or coherence and partial coherence
[21]. The focus here is on identifying a single graph
to describe the functional relationships between all
available signals.

Novelty in the present study is the use of net-
work metrics derived from MVPC. When compared
against known network structure using simulated
data, network metrics derived from MVPC give a
more accurate representation than those derived from
ordinary coherence. Validation is through applica-
tion to 100 simulated spike trains from a 10× 10 grid
of simulated cortical neurons with centre-surround
connectivity. Application to experimental data uses a
19 channel multi-electrode array (MEA) recording in
two subregions from left and right hippocampus in
the rat.

Section 2 describes the calculation of network
metrics from coherence and partial coherence estim-
ates. Section 3.1 considers scalability of the approach
and section 3.2 compares network metrics derived
from coherence and partial coherence for simulated
data with known connectivity. Section 3.3 describes
graphical network analysis of the MEA data set using
simple and compound network metrics. Section 4
provides discussion and conclusions.

2. Methods

Our framework uses a two stage approach that com-
bines multivariate spectral analysis with network
theoretic measures. The spectral analysis is used to
generate the adjacencymatrix that describes the inter-
actions between the signals. The adjacencymatrix can
be either binary or weighted, and is determined from
the magnitude of coherence estimates or the mag-
nitude of MVPC estimates. Network measures are
derived directly from the adjacency matrix. In this
section we describe the calculation of coherence and
MVPC estimates used to generate the adjacency mat-
rix, then describe the construction of network meas-
ures.

2.1. Coherence estimation
Coherence is a widely used measure of association,
which has been applied to time series data [22],
point-process or spike train data [10, 23] and hybrids
of the two [11]. Here we are considering neuronal
spike trains represented as stochastic point processes.
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The modelling of spike trains as point processes is
described in [10]. For two point-processesN1 andN2,
the coherence at frequency λ, |R21(λ)|2, is defined as

|R21(λ)|2 =
|f21(λ)|2

f11(λ) f22(λ)
, (1)

where f 21(λ) is the cross-spectrum between processes
N1 andN2, and f 11(λ), f 22(λ) are the individual auto-
spectra. Estimation is achieved by direct substitution
of spectral estimates into equation (1). Estimates of
the individual spectra can be achieved using a range
of approaches. Here we use Welch Overlapping Seg-
ment Average (WOSA) spectral estimates, a widely
used non-parametric approach, which breaks long
records down into segments and spectra are estim-
ated by averaging over segments [24]. We use non-
overlapping segments where a record with R samples
is sectioned into L segments of length T, R= LT.
Denoting the discrete Fourier transform of section l
from process N1 as dTN1

(λ, l), with a similar notation
for dTN2

(λ, l), the cross-spectrum f 21(λ) is estimated as

f̂21(λ) =
1

2πLT

L∑
l=1

dTN2
(λ, l)dTN1

(λ, l), (2)

where the hat symbol ,ˆ, denotes an estimate and
the overbar indicates a complex conjugate. Estim-
ates of auto-spectra, f̂11(λ), f̂22(λ) are obtained by
using the appropriate discrete Fourier transforms in
equation (2).

2.2. Partial coherence estimation
First order partial coherence estimates are used to test
the hypothesis that the correlation between two spike
trains, N1 and N2 can be attributed to the common
influence of a third spike train N3. In this scenario
estimates of the partial coherence, |R21/3(λ)|2, should
show no significant features compared to the estim-
ated ordinary coherence |R21(λ)|2. Partial coherence
with a single predictor can be defined and estim-
ated using manipulation of auto- and cross-spectra
between the three spike trains N1, N2 and N3. This
approach is described in [12].

Higher order partial coherence estimates, using a
number of spike trains as predictors, are defined using
amatrix formulation. Here we follow the approach of
[25] which relies on inversion of the spectral matrix.
For a set of r point processes, N1, . . . ,Nr, the spectral
matrix fN(λ) is constructed as

fN(λ) =


f11(λ) f12(λ) . . . f1r(λ)
f21(λ) f22(λ) . . . f2r(λ)

...
...

. . .
...

fr1(λ) fr2(λ) . . . frr(λ)

 , (3)

where the diagonal entries are auto spectra and the
off-diagonal entries are the cross-spectra between
pairs of point-processes. This spectral matrix has

Hermitian symmetry and can be inverted provided
the matrix is not ill-conditioned, i.e. that sufficient
degrees of freedom have been used in constructing
the auto- and cross-spectral estimates used to con-
struct fN(λ) [26]. For the estimate in equation (2) this
implies L> r. In practice it is usual to haveL≫ r, if L is
only slightly larger than r then additional techniques
can be applied to improve the reliability of MVPC
estimates [27].

The inverse spectral matrix, f−1
N (λ), provides the

components necessary to estimate higher order par-
tial coherence functions. Denoting the inverse spec-
tral matrix as g(λ) = f−1

N (λ), the diagonal entries of
this, g ii(λ), can be manipulated to form a diagonal
matrix d(λ) as

d(λ) =

g11(λ)
−1/2 . . . 0
...

. . .
...

0 . . . grr(λ)−1/2

 . (4)

An r× r matrix of partial coherence functions,
|RN(λ)|2, is defined as [25]

|RN(λ)|2 = |d(λ)g(λ)d(λ)|2 . (5)

The partial coherence between point processes i and
j with the other (r− 2) processes as predictors,
|Rij/N(ij)

(λ)|2, where N(ij) refers to all entries in N
apart from i and j, is obtained from entry (i, j) of mat-
rix |RN(λ)|2, i ̸= j. Other approaches are possible to
define and calculate partial coherence [12, 22] but
the matrix inversion method is more efficient for
large data sets [26]. A number of potential pitfalls are
present in using conditional networks derived from
MVPC estimates. One of these is divergent effects, as
illustrated by a three node network where nodes A
and B connect to node C, and not to each other. A
bivariate coherence analysis will show no significant
interaction betweenA−B, in contrast a partial coher-
ence estimate conditioned on nodeCmay be signific-
ant depending on the strength of connections from A
and B ontoC. This confounding effect can be avoided
by only considering interactions where there is signi-
ficant bivariate (ordinary) coherence between pairs of
nodes. If there is no bivariate coherence, there is no
pairwise correlation for the predictor(s) to explain, in
this case no edge is included in the network.

2.3. Edge detection using statistical filtering of
coherence or partial coherence
The approach in this study is to construct functional
graphical networks that are consistent with the pat-
tern of linear dependencies seen between the signals,
and use network metrics to quantify the character-
istics of these functional networks. Linear dependen-
cies are estimated using coherence andMVPC, which
provide normative measures of correlation or partial
correlation on a scale [0, 1] as a function of frequency.
Statistical filtering of coherence or MVPC estimated
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between two nodes is required to determine if an edge
is present in a graphical network. This is equivalent
to determining if a coherence or MVPC estimate is
statistically significant at a specific frequency or over a
specified range of frequencies using confidence limits.

The setting of confidence limits for coherence and
MVPC estimates is discussed in [10], using a WOSA
estimate with L non-overlapping segments gives a
confidence limit at significance level α for a null
hypothesis of zero coherence of 1−α1/(L−1). We use
α= 0.05 to set 95% confidence levels. For an MVPC
estimate constructed from L segments using k pre-
dictors, the 95% confidence limit is estimated as

1−α1/(L−k−1), (6)

the increased value compared to the ordinary coher-
ence takes into account the loss of degrees of free-
dom in the MVPC estimate compared to the coher-
ence estimate [10].

We refer to networks derived from coherence
as unconditional networks, and those derived from
MVPC as conditional networks, since MVPC estim-
ates are conditioned on a set of common predict-
ors. Adjacency matrices are determined from coher-
ence estimates for unconditional networks and from
MVPC estimates for conditional networks. In both
cases, the average coherence or MVPC in a pre-
determined frequency range is compared against a
95% confidence limit. If the average exceeds the con-
fidence limit then aij = 1 and wij is set equal to this
average, otherwise aij = wij = 0. The quantities aij and
wij are defined in section 2.4. The frequency ranges
used are defined in section 3.1 for simulated data and
in section 3.3 for the experimental data.

This approach to determining aij andwij draws on
the extensive theory for time series analysis and avoids
the need for surrogate data. Similar approaches and
further discussion are in [6, 9, 10, 26, 29].

2.4. Network metrics
Network science provides important insight into
complex systems that are composed of individual
components linked together. Networks can be visu-
alised using a graphical representation and network
properties can be quantified through application of
network metrics [1, 3, 8, 28]. We use the approach in
[1] as the framework within which to estimate net-
work metrics, which describes the use of anatomical,
functional and effective networks. Functional net-
works, used here, are based on the concept of func-
tional interactions between signals, which treats each
signal as a node and seeks to establish a set of edges
that describe the pattern of correlation or partial cor-
relation between the variables. Our approach determ-
ines the number of edges for each node through the
significance of coherence, or partial coherence, estim-
ates. Statistical filtering determines if an edge should
be included, as described in section 2.3. If coher-
ence or partial coherence estimates are statistically

significant then an edge is included in the graph, and
the weight of the edge is determined from the mean
coherence or mean partial coherence over the spe-
cified frequency range.

Network theory metrics start from the adjacency
matrix,A, a 2Dmatrixwhich describes any edges link-
ing theN nodes. The adjacency matrix can be binary,
Ab, containing the values 0 or 1, or weighted, Aw,
where each edge is given a weight. The individual ele-
ments are denoted as aij for Ab, and as wij for Aw.
Adjacency matrices are symmetrical for undirected
networks: aij = aji, wij = wji. Here aij represents the
presence or absence of an edge between nodes i and j,
wij represents the strength of interaction, 0≤wij≤ 1.

Adjacency matrices are determined from coher-
ence estimates for unconditional networks and
from MVPC estimates for conditional networks as
described in section 2.3. In both cases the aver-
age coherence or MVPC in a pre-determined fre-
quency range is compared against a 95% confidence
limit. If the average exceeds the confidence limit then
aij = 1 and wij is set equal to this average, otherwise
aij = wij = 0. This approach to determining aij and
wij is considered in [29].

We consider two simple metrics and two com-
pound metrics in this study. The two simple metrics
are node degree and path length. The compoundmet-
rics are clustering coefficient and small-world-ness.
These metrics are estimated for binary and weighted
network representations.

Node degree is the most important measure in
network theory, all network measures are derived
from node degree or node weight. Node degree
in binary networks is defined as ki =

∑
j∈N aij,

0≤ ki≤(N − 1), which counts the number of edges
that connect a node to the rest of the network. The
weighted degree, or node strength, is the sum of all
weighted connections to a node: kwi =

∑
j∈Nwij [1].

The path between two nodes is an ordered
sequence of all possible routes through the network
connecting two nodes. The shortest path in a bin-
ary network, dij, is calculated as the sum of aij in the
shortest pathway. In a weighted network the shortest
path dwij is calculated as the sum of f

(
wij

)
in the

shortest path, where f(·) maps weight to length, here
we use the inverse function [1] applied to the mean
coherence or meanMVPC in the pre-determined fre-
quency range. The average dij between a node and all
other nodes in a binary network is denoted as Li, the
average of these, L, is the characteristic path length
for the network [1, 30]. For weighted networks the
characteristic path length Lw is based on the aver-
age dwij . Characteristic path lengths provide an indica-
tion of global integration between nodes. Regular net-
works typically have longer path lengths compared
to random networks, where long range connections
decrease the characteristic path length [30].

Clustering coefficients are an example of a
compound network metric which measures local
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network properties, in this case the fraction of nodes
connected to node i that are themselves connected.
For a binary network the clustering coefficient, C, is
defined as the mean Ci across all N nodes. Ci is the
clustering coefficient for node i,Ci =

2ti
ki(ki−1) , where ti

is the number of triangles around node i, determined
from aij. For node degree ki < 2, Ci = 0. A weighted
clustering coefficient Cw

i can be calculated from wij,
the weighted network clustering coefficient Cw is the
mean of these [31].

A small-world network is one that exhibits both
functional integration and functional segregation.
This is achieved with many local connections and a
few long distance connections [30]. In terms of net-
work measures, a small-world network should have a
similar characteristic path length and a larger cluster-
ing coefficient when compared to a random network.
This leads to the definition of a small-world metric
for binary, S, and weighted networks, Sw, as [30, 32]

S=
C/Crand

L/Lrand
, Sw =

Cw/Cw
rand

Lw/Lwrand
, (7)

where the subscript ‘rand’ indicates a measure cal-
culated from a random graph. Small-world networks
should have S> 1, Sw > 1 [32]. The detection of small-
world network topology is an important aspect of
understanding brain function [7], we investigate cal-
culation of small-world metrics from MVPC estim-
ates in section 3.

We use Erdös Rényi random networks with the
same number of nodes and edges as the network
under analysis. These are generated by randomly
assigning an edge between a pair of nodes with equal
probability, which creates random networks with a
uniform node degree distribution [32]. Weighted
random networks are constructed by random per-
mutation of weighted edges from the original net-
work [33]. Separate random networks are construc-
ted each time the small world metric, equation (7),
is calculated using a single random network. Erdös
Rényi networks have been used in calculation of
small-world metrics with bivariate and multivariate
correlation measures [34].

3. Results

We consider application of coherence and MVPC
based networkmetrics to simulated and experimental
data. Our hypothesis is that network metrics derived
from MVPC should give a more accurate representa-
tion of network interactions than those derived from
ordinary coherence estimates. Section 3.1 demon-
strates calculation of the adjacency matrix from
MVPC estimates and considers scalability of MVPC
estimates. Simulated data allows the approach to be
validated by comparison of network metrics with the
known network connectivity, section 3.2. Application
to experimental data is demonstrated on a MEA data

Figure 1. Simulated cortical neuron network layout and
node numbering scheme. Excitatory neurons are circled in
blue, inhibitory neurons are circled in red. The network has
centre-surround connectivity, excitatory neurons have 12
excitatory synaptic connections with nearest neighbours,
inhibitory neurons have 12 inhibitory connections with a
ring outside nearest neighbours.

set with 19 single unit spike trains recorded in two
subregions from left and right hippocampus in the
rat, section 3.3.

The simulated data is generated using a cortical
neuronal network simulation. One hundred neur-
ons are arranged in a 10× 10, 2D sheet, with 75%
excitatory and 25% inhibitory neurons, with loca-
tion determined randomly. Individual neurons are
modelled using a conductance based cortical neuron
model [35]. Each neuron is activated by independ-
ent populations of excitatory and inhibitory inputs.
In addition, each excitatory neuron makes 12 excit-
atory synaptic connections with its nearest neigh-
bours, each inhibitory neuron makes 12 inhibitory
connections with a ring of neurons just outside its
nearest neighbours. The synaptic connections do not
wrap around at the edges of the network. This centre-
surround connectivity is designed to promote extens-
ive interactions in the network, many neurons have
reciprocal connections, and receive amixture of excit-
atory and inhibitory input, making it challenging to
estimate network degree. Figure 1 shows a schematic
of the 10× 10 cortical neuron network simulation
with excitatory neurons in blue and inhibitory neur-
ons in red. A full description of the network simula-
tion is reported elsewhere [35]. We first use the sim-
ulated spike trains to demonstrate calculation of the
adjacency matrix from MVPC and consider scalabil-
ity of MVPC estimates.

3.1. Detection of network edges and scalability
of partial coherence estimates
This section considers how edges are determined
from coherence and partial coherence estimates using
confidence limits. It also considers the scalability of
partial coherence estimates as the number of predict-
ors is systematically increased.
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Figure 2. Coherence and partial coherence estimates between (a) neurons 45–55, and (b) neurons 45–95. Each panel shows
ordinary coherence estimate (black line) with MVPC of varying order from 1 (blue) to 10 (red). Parameters are L= 292, T= 1024
and the frequency resolution is 0.98 Hz. The horizontal dashed line shows the upper 95% confidence limit for the 10th order
partial coherence estimate, L= 292 and k= 10 in equation (6).

Figure 2 illustrates the coherence and partial
coherence estimates between two pairs of neurons in
the simulated network, neurons 45–55 in figure 2(a),
and neurons 45–95 in figure 2(b). These include ten
MVPC estimates using the spike trains of between
1 and 10 neighbouring neurons as predictors. For
neuron pair 45–55 the ten predictors (in order of
inclusion) are 34, 35, 36, 46, 56, 66, 65, 64, 54 and 44.
For neuron pair 45–95 the ten predictors (in order of
inclusion) are 44, 46, 54, 55, 56, 84, 85, 86, 94 and 96.

For neuron pair 44–55, figure 2(a), nine of the
10 predictor neurons are excitatory with connections
to neurons 45 and 55, we expect to see a system-
atic reduction in MVPC magnitude as more neur-
ons which supply common input are included as
predictors. The ordinary coherence estimate has a
peak value of 0.57, the magnitude ofMVPC estimates
decreases systematically from a peak value of 0.4 for
a single predictor to around 0.033 for the 10th order
MVPC estimate. A coherence of 0.57 suggests that
57% of the variability in neuron 55 can be predicted
from a knowledge of the firing times of neuron 45
(and vice-versa). Given the independent background
synaptic inputs and the extensive synaptic connec-
tions present, this is likely to represent an overes-
timate of the effects of the direct synaptic connec-
tions between these two neurons. Inclusion of the
10 immediate neighbour neurons as predictors res-
ults in an MVPC estimate which fluctuates around
0.02 (figure 2(a) red line). This may be a more accur-
ate estimate of the effects of the reciprocal synaptic
interactions between the two neurons once common

influences from neighbouring neurons are removed.
For an MVPC estimate with k= 10 predictors and
L= 292 segments the upper 95% confidence limit is
0.010 6, equation (6). The averageMVPC up to 30 Hz
is used to determine the presence of an edge in the
network, this represents the frequency range where
coherence is strongest. The average coherence up to
30 Hz for this example is 0.36 and the average par-
tial coherence is 0.015 3. Since these both exceed their
respective confidence limits an edge is included in
the adjacency matrix between neurons 44 and 55 in
unconditional and conditional networks.

Figure 2(b) considers a more distant pair of neur-
ons, 45–95. There is no direct connection between
these two neurons in the simulated network, thus
we would not expect an edge to be present between
this pairing. The coherence estimate (black line) has
a peak value of 0.051 and the average up to 30 Hz
is 0.013 1, which is above the 95% confidence limit
(dashed line) so an edge is included in the uncondi-
tional network. All partial coherence estimates show a
clear reduction inmagnitude, the average up to 30 Hz
for the estimate with ten predictors is 0.003, thus no
edge is included in the conditional network.

The examples in figure 2 demonstrate scalability
of MVPC estimates with up to k= 10 predictors. In
section 3.2 MVPC estimates with k= 98 predictors
are used to establish the presence of edges in the net-
work using the same approach.

As an alternative to the frequency domain
approach, figure 3 illustrates time domain correlation
and partial correlation estimated using covariance
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Figure 3. Correlation and partial correlation analysis of the data used in figure 2. Unconditional correlation between (a) neurons
44–55, and (b) neurons 45–95 estimated using second order cumulant densities. Conditional correlation between (c) neurons
45–55, and (d) neurons 45–95 estimated using 10th order partial cumulant densities. In all cases horizontal dashed lines show the
null value, zero, and horizontal solid lines show upper and lower 95% confidence limits based on the assumption of uncorrelated
spike timings.

andpartial covariance functions calculated fromcross
spectra and partial cross spectra [13].

The time domain analysis in figure 3 leads to sim-
ilar conclusions regarding the presence of uncondi-
tional and conditional links between the two pairs of
nodes in the graphical network. In particular there
is no evidence for a conditional link between nodes
45–95, figure 3(d), in contrast to the conditional
estimate for nodes 45–55 (figure 3(c)). This is as
expected from the known network connectivity. One
advantage of a frequency domain approach, based
on coherence and partial coherence, is that weighted
estimates are more straightforward to derive from
these normative measures compared to the unboun-
ded time domainmeasures in figure 3. Normalisation
of time domain measures is discussed in [13].

3.2. Unconditional and conditional network
metrics - simulated cortical neuron network data
In this section we compare estimated node degree
and path length for unconditional and conditional
networks against our expectations based on the con-
nectivity in the simulated cortical neuron network.

3.2.1. Simulated data - Node degree
Figure 4 shows heat maps of binary node-degree, aij,
derived from coherence and MVPC estimates. Node
degree was estimated using the average coherence or

averageMVPCat frequencies up to 30Hz as explained
in section 3.1. Unconditional node degree estimates
range from 6 to 80, conditional node degree from 2
to 13, determined from estimates with L= 292 seg-
ments, with segment length T= 1024 and a sampling
interval of 1 ms.

The mean(SD) of aij across the 100 nodes
are 48.8(22.3) for the unconditional network and
7.7(2.8) for the conditional network. This reduction
is a consequence of the reduction in magnitude of
MVPC compared to ordinary coherence estimates,
figure 2, where common influences across neuronal
firing are removed prior to estimating conditional
node degree.

Inhibitory connections in the simulated network
use shunting inhibition to counteract simultaneous
excitatory inputs [35]. Therefore, to obtain a bench-
mark for assessing the accuracy of node degree estim-
ates we consider the number of excitatory connec-
tions to each neuron as a target, aij(T). These aij(T)
depend on the proximity of each neuron to the net-
work edge and the location of inhibitory neurons, and
vary from 3 to 12 across the 100 neurons. To quantify
the improved performance of conditional (multivari-
ate) estimates of binary node degree compared to
unconditional (bivariate) estimates we use the abso-
lute difference between the target and estimated
node degree, |aij(T) − aij(E)|. Table 1 shows the range,
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Figure 4.Heat maps of (upper) unconditional binary node degree calculated from coherence and (lower) conditional binary node
degree calculated fromMVPC. Colour bars indicate unconditional and conditional node degree, respectively, and are scaled to
the range of values for each network. Individual node numbers (1− 100, see figure 1) are given by the row, r, and column, c,
numbers as: 10r + c.

Table 1. Statistical comparison of difference between target and
estimated node degree for simulated data.

Node degree error: |aij(T) − aij(E)| Range Mean SD

Unconditional node degree error [4, 69] 41.2 20.6
Conditional node degree error [0, 5] 1.32 1.08

mean and SD of this statistic for unconditional and
conditional networks. A two-sided Wilcoxon rank
sum test suggests the reduction in magnitude error
for the multivariate estimates of node degree com-
pared to the bivariate estimates is highly significant:
p < 0.001. A more detailed graphical presentation of
this data is in supplementary figure 1 (stacks.iop.org/
JNE/17/026013/mmedia).

3.2.2. Simulated data - Path length
Path length is a useful network metric for quantifying
pathways between nodes. Here we consider shortest
path length between two nodes, dij.We can exploit the
symmetry in functional networks where dij = dji to
combine shortest path lengths in a single figure using
i < j for unconditional path length and i> j for con-
ditional path length. This combined representation is
shown in figure 5 for all connections in the 10× 10
network.

Considering binary path lengths allows compar-
ison with the known path length in the centre sur-
round network, where excitatory connections extend
1 node in the diagonal directions and 2 nodes in
the horizontal and vertical directions [35]. Thus

8
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Figure 5. Combined graphic showing heat map of shortest binary path length, dij, for unconditional network (above diagonal,
i< j) and conditional networks (below diagonal, i> j) between all pairs of nodes. This representation takes advantage of the
symmetry in functional networks where dij = dji. The position of individual nodes is shown in figure 1. Colour bar indicates
integer values for shortest path length dij. The path length for a node onto itself (main diagonal) is zero, dii = 0.

Table 2. Statistical comparison of difference between target and
estimated shortest path length for simulated data.

Path length error: |dij(T) − dij(E)| Range Mean SD

Unconditional node degree error [0, 6] 2.00 1.29
Conditional node degree error [0, 2] 0.14 0.36

we would expect to see a maximum path length of
5 in the horizontal/vertical direction within a single
row/column, traversing the 10 nodes in steps of
two, and a maximum path length of 9 in the diag-
onal direction, traversing from node to node in
single steps.

The range of estimated shortest path lengths for
the unconditional network is [0, 4]. The majority
of connections have dij of 1 (49.3%), 2 (42%) or 3
(8.4%). This is too small to account accurately for
the centre-surround connection structure in the net-
work. The conditional network has a range of [0, 8]
for the estimated dij. Table 2 shows the range, mean
and SD of the absolute difference between the tar-
get and estimated shortest path length, |dij(T) − dij(E)|,
for unconditional and conditional networks between
the 75 excitatory neurons in the network. A two-sided
Wilcoxon rank sum test suggests the reduction in this
error for the multivariate estimates of path length
compared to the bivariate estimates is highly signific-
ant: p< 0.001.

In summary, node degree and binary path length
estimated for conditional networks using MVPC
agreemore closely with our expectations based on the

known connectivity in the simulated cortical neuron
network. This is in contrast to the unconditional
network metrics estimated from ordinary coherence
which overestimate degree and underestimate path
length using the same data.

3.3. Unconditional and conditional network
metrics - experimental multielectrode array data
In this section we apply the unconditional and
conditional network metrics to single unit exper-
imental MEA recordings from a study investigat-
ing intra-and inter-hippocampal connectivity in a
model of kainic acid (KA) induced mesial temporal
lobe epilepsy (mTLE) in rat [36]. These experi-
ments explore the changes in neuronal firing and
brain connectivity during seizure. Our hypothesis
for the experimental data is that the differences
seen between unconditional and conditional net-
work metrics for the simulated data should also be
present in experimental data. Based on the results
from simulated data, we expect conditional met-
rics to give a more accurate view of functional
interactions in the experimental data compared to
unconditional metrics. Application to the experi-
mental data set investigates whether conditional and
unconditional metrics are sensitive to alternations
in brain state and whether network metrics can
discriminate between epileptic and baseline brain
states.

Multiple single-units were recorded simultan-
eously using a Plexon Multichannel Acquisition
Processor system, neural activity was processed using

9
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Figure 6. Heat maps of unconditional (upper) and conditional (lower) node degree calculated for 19 channel MEA recording
from left and right hippocampus in anaesthetised rat. Saline was injected after 10 min and Kainic acid injected after 30 min. Node
degrees are estimated for 5 min blocks of data. Colour bars indicate value of binary node degree aij for unconditional (upper) and
conditional (lower) networks.

Offline-Sorter and Neuroexplorer to extract single
unit spike train activity in the CA1 and CA3 regions
of left and right hippocampus [36, 37]. All proced-
ures had ethical approval and were carried out in
accordance with the Animals (Scientific Procedures)
Act 1986, UK. The recording protocol consisted of (1)
a 10 min baseline recording; (2) local saline injection
after 10 min; and 3) local injection of KA after 30 min
(1 mM, 1µL). Local injections were to left hippocam-
pus. The duration of the recording is 215 min.

A total of 19 single units were recorded, with
spike times defined using a sampling interval of 1
ms. Channel locations are 1–5: CA3 Left, 6–10: CA1
Left, 11–14: CA3 Right, 15–19: CA1 Right. For net-
work analysis the 215 min was split into 5 min blocks
with spectra, equation (2), coherence, equation (1),
and MVPC, equation (5), estimated for each 5 min
block using T= 1024, L= 292 and k= 17 predict-
ors for MVPC estimates. Network metrics are cal-
culated from these coherence and MVPC estimates,
using the procedure described in section 2.4. For this
data coherence and partial coherence estimates are
significant up to 70 Hz, network metrics are based
on the average over the frequency range 0–70 Hz. The
95% confidence limits for coherence with L= 292 is
0.010 2 and for MVPC with L= 292 and k= 17 is
0.010 9.

3.3.1. Experimental data - Node degree
Figure 6 shows unconditional and conditional aij for
the 19 channels, using 43 blocks of 5 min. Table 3

Table 3. Node degree mean and SD for unconditional and
conditional networks over different time periods for MEA data.

Time (mins) 0–215 0–30 30–60 90–120

Unconditional Mean 5.4 6.0 7.1 4.8
Conditional Mean 2.2 2.8 2.3 1.9
Unconditional SD 3.6 3.7 4.2 3.5
Conditional SD 1.6 2.0 1.6 1.6

shows the mean and SD of aij estimates over differ-
ent time periods in min: 0–215 (complete record),
0–30 (baseline), 30–60 (after KA injection), and 90–
120 min (60 min after KA injection). Mean and SD in
table 3 are averages across all 19 channels using values
from the relevant 5 min blocks.

Like the simulated data, conditional node degrees
are lower for the MEA data. The maximum node
degree for the unconditional network is 13, that for
the conditional network is 10. Table 3 shows that
node degree is, on average, 2–3 times smaller for the
conditional network compared to the unconditional
network. Two-sided Wilcoxon rank sum tests suggest
this reduction in node degree is highly significant,
with p< 0.001 for all 4 time periods. Considering the
node degree estimates in the individual five min time
blocks, two sided Wilcoxon rank sum tests on indi-
vidual time blocks show a significant difference in 42
of the 43 time blocks (98%), with 42% having p<
0.05, 47% having p< 0.01, and 9% having p< 0.001.
Thus, for this data, there are significant reductions
in conditional estimates of node degree compared to
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unconditional estimates across the entire recording.
There is a higher level of variation in unconditional
degree, both across channels (vertical) and over time
(horizontal). Table 3 shows that the SD of conditional
network node degree is around half that seen for the
unconditional network.

Mean and SD of node degree before (0–30 min)
and immediately afterKA injection (30–60min) show
opposite trends, increasing for the unconditional net-
work and decreasing for the conditional network
(table 3). The reason for this is unclear, however it
might reflect an increase in collective activity in the
network during the epileptic state at the expense of
individual interactions, a scenario that would cre-
ate increased coherence between units and decreased
partial coherence when effects of this common col-
lective activity are removed.

One node that has a consistently higher degree in
the conditional network is channel 13, a CA3 Right
unit, which has a maximum degree of 9, and is con-
nected to single units in all 4 recording areas. This
node could be considered as a network hub. Channel
13 has no specific features that mark it out as unusual
in terms of spike train statistics. The mean firing rate
across the 19 units is 3.7 spikes/sec, range [0.07, 22]
spikes/sec. Channel 13 has the second highest firing
rate, 12.7 spikes/sec. Channel 5 has the highest rate
22 spikes/sec and channel 10 has a similar firing rate
of 11.9 spikes/s, neither of these are identified as a
hub node. The point-process spectral estimate [11] of
channel 13 does not differ from the spectra of other
channels (data not shown). The identification of this
hub node appears to reflect its different connectivity
rather than firing properties. This functional role for
channel 13 is hidden in the unconditional network
wheremost nodes have connections to all subregions.

3.3.2. Experimental data - Path length
Box plots of weighted, dwij , and binary, dij, path lengths
in unconditional and conditional networks for each 5
min block up to 120 min are shown in figure 7. We
consider behaviour over 120 min as this includes a 90
min period after KA injection to study how network
measures respond to the transition from baseline to a
pathological state. Characteristic path lengths, Lw and
L are shown as black dotted lines in figure 7. The over-
all averages for Lw are 58 and 97 for the unconditional
and conditional networks, respectively, an increase of
60% for conditional compared to unconditional Lw.
For the binary networks the overall averages for L are
1.68 and 2.2 for the unconditional and conditional
networks, respectively, an increase of 31% for condi-
tional compared to unconditional L. Considering the
binary path length estimates in the individual fivemin
time blocks, two sided Wilcoxon rank sum tests on
individual time blocks show a significant difference
in 35 of the 43 time blocks (81%), with 9% of time
blocks having p< 0.05, 9%having p< 0.01, and 63%

having p< 0.001. Thus, for this data, there are sig-
nificant increases in conditional estimates of binary
path length compared to unconditional estimates.

3.3.3. Experimental data - Clustering coefficient
Box plots of binary, C, and weighted, Cw, clustering
coefficients for each 5 min block are shown in fig-
ure 8 for conditional and unconditional networks.
These measure local connectedness of the network,
by estimating the fraction of triangles around each
nodewhich have three edges in the binary case [30] or
using an intensity based measure in the weighted case
[31]. For unconditional binary networks the range
across time blocks for the median of C is [0.5, 0.82],
the range for the median of Cw is [0.019, 0.042].
Conditional networks show reduced levels of cluster-
ing compared to unconditional networks. Binary and
weighted networks both have 17 time blocks with a
median of zero, indicating more than 50% of nodes
have no clustering.

Considering binary clustering coefficient estim-
ates in the individual five min time blocks, two sided
Wilcoxon rank sum tests on individual time blocks
show a significant difference in 17 of the 43 time
blocks (40%), with 28% of time blocks having p<
0.05 and 12% having p< 0.01. In all cases the mean
conditional clustering coefficient in each time block is
smaller than the mean unconditional clustering coef-
ficient.

3.3.4. Experimental data - Small-world-ness
An estimate of network small-world-ness can be con-
structed using path length and clustering coefficient
values according to equation (7). The characterist-
ics of a small-world network are higher C or Cw and
similar L or Lw when compared to random networks.
These reflect an optimum connection strategy where
segregation and integration properties coexist across
channels [30]. We use the weighted definition com-
paringCw and Lw derived from coherence andMVPC
for the MEA data against random networks. A net-
work is said to be a small-world if Cw ≫ Cw

rand, L
w ≳

Lwrand and Sw > 1 [32].
Figure 9 shows plots of the two normalized net-

work measures Cw/Cw
rand and Lw/Lwrand along with Sw

for each 5 min block for unconditional (upper) and
conditional (lower) networks. The path length ratio,
Lw/Lwrand, has a mean of 1.85 for the unconditional
network and a mean of 1.1 for the conditional net-
work, a decrease of 40%. The mean value for the con-
ditional network is closer to the expected of 1 for a
small-world network. The clustering coefficient ratio,
Cw/Cw

rand, has amean of 2.0 for the unconditional net-
work and a mean of 4.8 for the conditional network,
an increase of 140%. The larger values for the con-
ditional network are more indicative of small-world
behaviour, Cw/Cw

rand ≫ 1.
The small-world index in figure 9 has a mean of

1.3 for the unconditional network and a mean of 5.0
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Figure 7. Box plots of network path lengths in each 5 min block for 19 channel MEA data. (a) dwij , unconditional network, (b) dij,
unconditional network, (c) dwij , conditional network, and (d) dij, conditional network. Box plots show median (red line),
interquartile range (IQR, blue rectangle), whiskers showing extent of data outside IQR (black dashed lines), and individual data
points outside whisker limits (red cross). Maximum whisker length: 1.5 IQR. Black dotted lines cutting across box plots show
characteristic path lengths, L (binary) or Lw (weighted), for each 5 min block.
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Figure 8. Box plots of clustering coefficients in each 5 min block for 19 channel MEA data. (a) Cw
i , unconditional network, (b) Ci,

unconditional network, (c) Cw
i , conditional network, and (d) Ci, conditional network. Layout of box plots as in figure 7.

for the conditional network. A borderline condition
for Sw is proposed in [32], 1≤ Sw≤ 3. For the uncon-
ditional network, figure 9 (upper), 10 time blocks
have Sw < 1, 13 time block are marginal, 1≤ Sw≤ 3,
and 1 time block has Sw > 3 (115 min). The condi-
tional network has 1 time block with Sw < 1, 11 time
blocks with 1≤ Sw≤ 3 and 12 time blocks with Sw > 3.
Eleven of the time blocks where Sw > 3 in the con-
ditional network are after KA injection at 30 min,
suggesting an increased tendency for small-world
organisation in the pathological condition. A func-
tional magnetic resonance imaging study of mTLE in
humans [38] found a tendency for increased C/Crand,

decreased L/Lrand and increased small-world index S
in patients compared to control subjects, and sug-
gested altered small-world properties in mTLE as a
potential bio-marker. The present results suggest that
it is important to consider conditional networkswhen
estimating small-world properties.

3.3.5. Distinguishing epileptic and non-epileptic brain
states using network metrics
Sections 3.3.1–3.3.4 consider differences between
conditional and unconditional network metrics over
the same time periods. This section compares net-
work metrics between non-epileptic and epileptic
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Figure 9. Graphs of weighted small-world index, Sw (black lines), normalized measures for clustering coefficient, Cw/Cw
rand (blue

lines) and normalized measure of shortest path length, Lw/Lwrand (red lines) for weighted unconditional (upper) and weighted
conditional networks (lower). Measures calculated for each 5 min time-block up to 120 min. Black dotted line at 1.0 indicates
threshold for Sw , a network exhibits small-world-ness if Sw > 1 [32].

Table 4. Comparison of unconditional and conditional binary
network metrics for non-epileptic (0–30 mins) and epileptic
(30–60 mins) brain states, with numbers of values in brackets.

Measure
Mean 0–30
mins (n)

Mean 30–60
mins (n)

Rank Sum
p-value

Unconditional ki 6.0 (114) 7.1 (114) 0.010
Conditional ki 2.8 (114) 2.3 (114) 0.064
Unconditional dij 1.99 (880) 1.81 (846) <0.001
Conditional dij 2.60 (577) 2.62 (673) 0.086
Unconditional Ci 0.59 (114) 0.67 (114) 0.010
Conditional Ci 0.38 (114) 0.24 (114) 0.014

brain states. Binary node degrees, path lengths and
clustering coefficients aggregated over 0–30 min
(using six 5-min time blocks) for the non-epileptic
state are compared to those for 30–60 min for the
epileptic state. The comparison is done for uncondi-
tional and conditional network metrics, and is sum-
marised in table 4.

The final column in table 4 shows results from
pair-wise two sided Wilcoxon rank sum tests com-
paring the non-epileptic and epileptic states. Node
degree, ki, and path length, dij, both exhibit a

significant change in unconditional metrics in con-
trast to conditional metrics, where differences are not
significant. Binary clustering coefficients, Ci, exhibit
significant changes in unconditional and conditional
metrics between the two states. However, the changes
have different signs, with clustering increasing in the
unconditional network and decreasing in the condi-
tional network during the epileptic brain state. Inter-
estingly, although differences in conditional network
binary node degree and conditional path length are
not significant between states, they have the oppos-
ite sign to the significant differences in the uncon-
ditional networks. Thus, conditional network binary
node degree shows a decrease in the epileptic brain
state in contrast to the significant increase seen in the
unconditional network.

The results in table 4 suggest that networkmetrics
are sensitive to differences between non-epileptic and
epileptic states. Unconditional networks are more
densely connected and have shorter path lengths
and increased clustering in the epileptic state. In
contrast, conditional networks show the opposite
trend, with significantly smaller clustering in the
epileptic state.
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4. Discussion

4.1. Differences between conditional and
unconditional networks
This paper compares network metrics derived from
unconditional and conditional graphical networks
using coherence and MVPC estimates, respectively.
We consider two elementary network metrics: node
degree and path length and two compound met-
rics: clustering coefficient and small-world-ness. Sim-
ulated data from a 100 neuron 10× 10 grid of cor-
tical neurons allows comparison of metrics with the
known connectivity. Absolute errors between estim-
ated and target node degree, table 1, and path length,
table 2, were an order of magnitude smaller for
the conditional network compared to the uncondi-
tional bivariate network. These differences in binary
node degree error and path length error estimated
from multivariate compared to bivariate coherence
were both highly significant, p < 0.001. Thus, for
this simulated data set, MVPC based network meas-
ures are significantly more accurate compared to
the known network connectivity than their bivariate
counterparts.

The differences in multivariate and bivariate net-
work metrics were also present when applied to
experimentalMEA recordings in left and right hippo-
campus in anaesthetised rat: Node degree was lower
by a factor of 2–3 for conditional networks com-
pared to unconditional networks, table 3. Condi-
tional networks had longer path lengths compared to
the unconditional network with binary and weighted
characteristic path lengths 31% and 60% higher,
respectively, figure 7. The differences in binary node
degree were significant in 42 of the 43 five min time
blocks (98%), the differences in binary path length
were significant in 35 of the 43 time blocks (81%). The
presence of significant differences in MVPC based
measures compared with coherence based measures,
in tandem with similar trends and the improved
accuracy seen in simulated data with known con-
nectivity, suggests that conditional network measures
may provide a more accurate description compared
to unconditional networks.

Systematic differences were also seen in com-
pound metrics for the MEA data. Conditional net-
works had significantly smaller binary clustering coef-
ficients in 17 time blocks (40%), and an increased
tendency to observe small-world-ness, figure 9, com-
pared to unconditional networks. Unconditional and
conditional metrics were sensitive to differences
in the non-epileptic and epileptic network states,
section 3.3.5. However, unconditional and condi-
tional networks altered in different ways during KA
induced epilepsy, see table 4 for summary. Differ-
ences between unconditional and conditional net-
works for MEA data need further investigation to
determine if they can provide reliable bio-markers for
different brain states.

4.2. Reliable MVPC estimation
The ability to accurately estimate conditional net-
work metrics relies on MVPC estimates. Scalability
was considered in section 3.1. An important consid-
eration is that records are sufficiently long to allow
reliable estimates to be constructed, where the degrees
of freedom exceed the number of available channels.
Additional considerations regarding stability of mat-
rix inversion have been investigated in [26] where
diagonal up-weighting was incorporated as a means
of stabilising the matrix inversion to generate g(λ).
We have not incorporated diagonal up-weighting in
our matrix inversion process, in part because we
are working with point-process spectra which have
constant asymptotic power at all frequencies [10].
Our approach to detecting the presence of an edge
is to compare the integrated coherence or partial
coherence over a predefined frequency range against
the 95% confidence interval for each estimate. This
requires the frequency range of interest to be defined
in advance of calculating network metrics. An altern-
ative approach is to define a frequency band of interest
according to accepted classifications (e.g. alpha, beta,
gamma) [9]. For situations involving multiple exper-
iments an approach using partial coherence in com-
bination with a false discovery rate across individual
graphs is described in [9]. The issue of reliableMVPC
estimation and edge detection is an area of ongoing
research.

4.3. Reliable estimation of small-world
characteristics
We have used two simple network measures and two
compound measures to illustrate differences between
conditional and unconditional networks. One com-
pound measure is a small-world metric. Our main
finding is that there are clear differences in the estim-
ation of this small-world coefficient, equation (7),
depending on whether unconditional or conditional
functional networks are used, see figure 9. A num-
ber of additional factors should be taken into account
before labelling the MEA data as a small-world net-
work. The construction of small-world metrics using
correlation and partial correlation is discussed in
[14], who found that when using random networks
correlation based measures showed a tendency for
increased values of clustering coefficient. In contrast,
partial correlation based measure showed a tendency
for reduced values of clustering coefficient. Since the
normalised clustering coefficient forms the numer-
ator of the small-worldmeasure in equation (7), these
tendencies may well impact on this measure. Interest-
ingly, our analysis showed the opposite effect, where
the conditional networks showed increased clustering
compared to the unconditional networks for the same
data. A possible reason for this opposite effect is the
use of experimental data with non-random interac-
tions. A number of other factors that could bias small-
world estimates are discussed in [39].
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A related issue is the motivation for use of graph-
ical network representations and network metrics. In
the case of MEA data the number of channels avail-
able should be sufficient to get reliable indicators,
particularly for compound metrics. MEA data sets
should be screened to establish that patterns of correl-
ation and partial correlation are suitable to represent
as a graphical network prior to calculation of network
metrics.

4.4. Latent variables and size of conditioning set in
conditional networks
One concern in the construction of conditional
graphical networks is the presence of latent variable
effects which may lead to spurious correlations [40].
A partial coherence approach to constructing con-
ditional networks can remove linear effects of vari-
ables that are included in the data set. The approach
we adopt has the flexibility to incorporate both time
series and spike train data, thus for single unit data
a simultaneously sampled local field potential could
be incorporated as a predictor if required. Altern-
ative approaches to latent variables are discussed
in [40].

Our approach to calculating conditional networks
is to use MVPC estimates, where for r processes all
r(r− 1)/2 partial coherence estimates are generated
in a single calculation at each frequency with a single
matrix inversion operation using the approach in
[25]. This approach assumes that the conditioning set
for each pair of processes is the remaining processes.
If it is required to construct a conditional network
where MVPC estimates are conditioned on specific
sub-sets of predictors, then the approach in [10, 22]
may be preferable which defines specific groupings of
inputs (predictors) and outputs in a multivariate lin-
earmodel. Althoughmore computationally intensive,
this approach gives more flexibility in altering condi-
tioning sets in construction of graphical networks. A-
priori knowledge of appropriate groupings for con-
ditioning variables could be used to limit the search
space. In our case, all spike-trains are treated on an
equal basis, so MVPC estimates are conditioned on
all remaining processes for simulated and MEA data.

4.5. Concluding remarks
Network analysis is an important tool for quantitative
analysis of complex systems including brain networks
[3]. We have demonstrated that more reliable meas-
ures can be obtained from conditional networks using
MVPC than from unconditional networks based on
pair-wise correlation. To our knowledge this is the
first study to undertake such a comparison using real-
istic numbers of channels, MVPC estimates for sim-
ulated data had k= 98 predictors, for the MEA data
k= 17 predictors were available. Future work could
explore the broader applicability of this approach
using a wider range of simulations and data modal-
ities, for example EEG, MEG and fMRI.
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[31] Onnela J-P, Saramäki J, Kert́esz J and Kaski K 2005 Intensity
and coherence of motifs in weighted complex networks
Physical Review E 71 065103

[32] Humphries M D and Gurney K 2008 Network
‘small-world-ness’: a quantitative method for determining
canonical network equivalence PLoS ONE 3 e0002051

[33] Bolaños M, Bernat E M, He B and Aviyente S 2013 A
weighted small world network measure for assessing
functional connectivity J. Neurosci. Methods 212 133–142

[34] Mader W, Mader M, Timmer J, Thiel M and Schelter B 2015
Networks: On the relation of bi- and multivariate measures
Sci. Rep 5 10805

[35] Halliday D M et al 2005 Spike-train analysis for neural
systems eds Reeke G NModeling in the Neurosciences From
Biological Systems to Neuromimetic Robotics (Boca Raton, FL:
CRC Press) 555–78

[36] Senik M H, O’Donoghue M F and Mason R 2013 Intra-and
inter-hippocampal connectivity in a KA-induced mTLE rat
model Program No. 143.05. 2013 Neuroscience Meeting
Planner (San Diego, CA: Society for Neuroscience)

[37] Coomber B, O’Donoghue M F and Mason R 2008 Inhibition
of endocannabinoid metabolism attenuates enhanced
hippocampal neuronal activity induced by kainic acid
Synapse 62 746–755

[38] Liao W, Zhang Z, Pan Z, Mantini D, Ding J and Duan X
Chen H (2010) Altered functional connectivity and
small-world in mesial temporal lobe epilepsy PLoS ONE 5
e8525

[39] Papo D, Zanin M, Mart́ınez J H and Buldú J M 2016 Beware
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