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FIG. 1: Energy bandgap of InSe obtained from the model discussed in the main text

(equation (1) ) with respect to lattice temperature. The fit curve in red has been produced

with the O’Donnell model.

I. O’DONNELL MODEL AND RAMAN SPECTRUM

Figure 1 shows the temperature dependence of the energy bandgap for the direct-bandgap

sample (24-layer). We observe a typical redshift with temperature of the PL emission as con-

sequence of the decrease of the bandgap energy due to the lattice expansion and to the inter-

action with phonons. The semi-empirical O’Donnell model (Eg(T ) = E0−S ~ω(coth( ~ω
kT

)−

1)) [1] can reproduce the dependence of the peak energy position Eg on temperature with

good accuracy. From the fitting, E0 = 1.299 eV is the PL energy at zero Kelvin, S = 1.55

is a dimensionless coupling constant, and ~ω = 18 ± 1 meV = 145 ± 8 cm−1 is an average

phonon energy. We note that the average phonon energy obtained by this fit is close to the

values of the energy of the optical phonons as measured by Raman (see Figure 2) and FTIR

spectroscopy[2–4].

In figure 2, a Raman spectrum of the 24-layer InSe sample is shown. We observed three

phonons at 115 cm−1, 177 cm−1 and 227 cm−1 in good agreement with literature [2]. The

observed peaks are slightly redshifted with respect to literature values of sample with the

same thickness. This fact could be due to a slight strain in the flake [5].

II. MODEL FOR THE PL LINESHAPE

The PL intensity is given by the following expression according to Katahara model [6]:

IPL(E) ∝ E2a(E)

exp(E−∆µ
kTPL

)− 1
·
(

1− 2

exp(E−∆µ
2kTPL

) + 1

)
(1)
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FIG. 2: Raman spectrum of thin-layer InSe. The excitation wavelength is 532 nm. The

thickness of the flake is 20 nm.

where the first part is the connection between Planck’s law and the absorption, and the

second part in bracket is a small correction that takes into account the occupation of the

bands (Pauli blocking). Here, a(E) is the absorption, ∆µ is the quasi-Fermi energy, and TPL

is the effective photoluminescence temperature. We note that in many cases the part of the

expression containing the temperature can be simplified assuming a Boltzmann distribution.

The quasi-Fermi energy is an effective Fermi energy for conduction and valence bands.

In order to fit the data, we need to get an expression for the absorption. We assume an

exponential decay distribution as sub-bandgap density of states ∼ Eu exp(− E
Eu

)θ(E), where

Eu is the Urbach energy. After convolution with a 3-dimensional density of states (DOS)

D(E) ∝
√
E − Eg, where Eg is the bandgap energy, the absorptivity is:

αB(E) ∝ E
5
2
u

 e
E−Eg
Eu : E < Eg√
4(E−Eg)

πEu
+ erfc(

√
E−Eg
Eu

)e
E−Eg
Eu : E ≥ Eg

(2)

where erfc() is the complementary error function. For energy below the bandgap, the

function is an exponential rise (Urbach) and above it is the usual 3D DOS. The last term

assures that the function belongs to the class of C1 functions (the function is differentiable).

To get a visual understanding of the model, we show the different components of absorption

and PL in figure 3.

We have assumed an exponential sub-bandgap tail because of the clear mono-exponential

decay of the low-energy side of the PL peak as shown in figure 4a.

In order to take into account the excitonic absorption, we add a Gaussian peak to the

total absorption:

αX(E) ∝ 1√
πσ2

e−(
E−EX
σ

)2 (3)
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FIG. 3: (a) Absorption related to the 3 dimensional DOS, Urbach tail and exciton. (b) PL

obtained considering the thermal occupation of the states shown in absorption.

where EX is the exciton energy, and σ is the broadening of the exciton resonance. There-

fore we get α(E) = αB(E)+p αX(E) where p is the relative weight of the exciton absorption.

With this parameter we can extrapolate the exciton contribution.

Considering also the small thickness of our sample, we assumed a linear relation between

absorption and absorptivity a(E) = α(E)d where d is the thickness of the sample. So finally

we can plug a(E) into equation 1.

The fitting function can reproduce the PL data for each temperature with excellent

accuracy as shown for example in figure 4 for T = 4 K and T = 160 K. In particular in

figure 4a the fit obtained without the exciton contribution is shown. Furthermore in figure

4c the free electron-hole and exciton contributions are shown separately.

III. PL TEMPERATURE AT ZERO KELVIN T0

The PL temperature at zero Kelvin T0 is mostly due to the inhomogeneous broadening

of the PL band. In real system, the PL band does not reach the limit of homogeneous

broadening even at TLattice = 0 K. Therefore, T0 can be used as a measure for the disorder

potential in the material.

Figure 5a shows the dependence of the parameter T0 on the number of layers. T0 was

obtained for each sample by fitting the PL line at TLattice = 4 using the model presented

in the main text. Then, T0 =
√
T 2
PL − T 2

Lattice. T0 increases upon decreasing the number of

layers. This indicates that the disorder potential is more pronounced for thinner samples.

In figure 5b, the dependence of the effective PL temperature T0 on excitation power is
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FIG. 4: (a) and (b) PL emission at 4 K and 160 K with fit as described in the text. (c)

Free electron-hole and exciton contribution as obtained by the model described above.

a b

FIG. 5: (a) Dependence of the effective PL temperature at zero Kelvin T0 on the number

of layers. T0 increases upon decreasing the number of layers, indicating higher disorder

potential for thinner samples. (b) Dependence of the effective PL temperature on

excitation power at TLattice = 4 K.
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shown. We observed only a slight contribution from the excitation power. Therefore the PL

temperature is related to an inhomogeneous broadening of the PL line rather than carrier

heating due to the photo-excitation.

IV. DECOMPOSITION OF THE PL DECAY

Figure 6a shows the PL emission as a function of time and photon energy of a 24-layer

InSe crystal. First we integrated the PL data with respect to the photon energy and then

we fitted the PL decay with a bi-exponential function.

After that, we fixed the time constants (τ1 = 7.7 ± 0.2 ns and τ2 = 49 ± 6 ns in the

case shown in figure 6) and we fitted the PL decay with bi-exponential function at each

photon energy. Figure 6b shows the obtained fit of the PL data. Figures 6c and 6d show

the decomposed fast and slow component of the PL decay.

The two components are spectrally separated now. In the main text the spectra of each

component is shown.

We further note that the same procedure was applied to samples with other thicknesses

with similar results.
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FIG. 6: (a) Normalized PL of a 24-layer thick sample as a function of time and photon

energy. (b) Bi-exponential fit of the PL at each photon energy. The decay constants were

kept fixed for each photon energy (τ1 = 7.7± 0.2 ns and τ2 = 49± 6 ns (c) and (d) Fast

and slow components of the PL emission as extracted from the fit.
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