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    Abstract- This paper considers fault detection in the case of a 

three-phase three-wire (3P3W) inverter, when only two current 

sensors are used to save cost or due to a faulty current sensor. 

With two current sensors, there is no current method addressing 

the diagnosis of both IGBT open-circuit (OC) faults and current 

sensor faults. In order to solve this problem, this paper proposes 

a method which innovatively combines two kinds of diagnosis 

variables, line voltage deviations and phase voltage deviations. 

The unique faulty characteristics of diagnosis variables for each 

fault are extracted and utilized to distinguish the fault. Using an 

average model, the method only needs the signals already 

available in the controller. Both IGBT OC faults and current 

sensor faults can be detected quickly in inverter mode and 

rectifier mode, so that the converter can be protected in a timely 

way to avoid further damages. In addition, error-adaptive 

thresholds are adopted to make the method robust. Effects such 

as system unbalance is analyzed to ensure that the method is 

robust and feasible.  Simulation and experimental results are 

used to verify and validate the effectiveness of the method. 

 

NOMENCLATURE 
 

vxy (x,y =a,b,c) Line voltages between phase X and phase Y 

vxN Phase voltage of phase X 

ix Current of phase X 

VXY (X,Y = A, B, C) 
Bridge arm pole-to-pole voltage between phase 
X and phase Y 

VXL Bridge arm pole voltage of phase X 

VNL 
Voltage between output neutral point and lower 
point of DC bus 

Lx Filter inductance of phase X 

Rx Equivalent resistance of phase X 

γ Actual value of signal γ 

γ^ Sampled value of signal γ 

γ* Estimated value of signal γ 

Δγ^ Deviation between γ and γ^ 

Δγ* Deviation between γ and γ* 

[ ] n  Average value of γ during t[n-1] and t[n] 

ΔVth,sub Threshold of deviation ΔVsub 

Δsub Polarity of deviation ΔVsub 

σγ Error of signal or parameter γ 

ξГ Calculation error of function Г 

^

,

 xN IBv

 The upper limit of the error caused by system 
unbalance  calculated with sampled currents 

*

,

 xN IBv

 The upper limit of the error caused by system 

unbalance  calculated with estimated voltages 

 

I.  INTRODUCTION 

 

Grid-tied three-phase voltage-source inverters are widely 

used in renewable energy systems, electrical traction systems, 

etc. Inverters play the key roles of interfaces controlling and 

transferring power. However, inverters are of the parts with 

highest failure rate [1]. Unexpected inverter failure may cause 

considerable loss; therefore, methods to improve inverter 

availability, protect systems, and reduce maintenance time are 

hot topics [2]. 

In inverters, power semiconductor switches, particularly 

IGBTs, are the most vulnerable devices [3]. IGBTs may suffer 

from short-circuit (SC) faults and open-circuit (OC) faults. 

Unlike SC fault protection, OC fault protection is not 

generally included as a standard feature in inverters. However, 

OC faults also cause malfunction and could lead to failures on 

other parts [4]. Therefore, it is useful to consider fast and 

accurate IGBT OC fault diagnosis methods. Many papers have 

been published focusing on IGBT OC fault diagnosis. These 

methods include data-driven methods and circuit-driven 

methods. The data-driven methods apply artificial intelligence 

algorithms [5]-[7] or advanced signal processing methods [8]-

[10] to extract fault indication characteristics. The data-driven 

methods do not need circuit analysis or models, which makes 

them suitable for complicated systems. Nevertheless, they 

require large amounts of data and computational effort. Thus, 

for now, they are not good candidates for fast online inverter 

fault diagnosis. Circuit-driven methods can achieve faster fault 
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Fig.1 The grid-tied 3P3W inverter with two current sensors 

 

identification with less data, but they rely on circuit operation 

analysis or circuit models, so they are suitable for simpler and 

well-defined systems. Circuit-driven methods can be 

categorized as voltage signal based [11]-[14], current signal 

based [15]-[18] and model based [19]-[22]. With extra 

sampling and diagnosis circuits, voltage signal based methods 

introduced in [11]-[12] can detect the IGBT OC faults within 

one switching period. Current signal based methods [15]-[18] 

and model based methods [19]-[22] can diagnose IGBT OC 

faults with existing signals. Due to different features in terms 

of cost, speed, complexity and so on, these methods are 

favored in different applications. 

As well as IGBT faults, inverters are also sensitive to sensor 

faults [23]. Sensor faults can be more catastrophic than IGBT 

OC faults. For example, when a fault occurs with a current 

sensor in grid-tied inverters, the current will rise quickly due 

to the actions of the close-loop control, which may cause 

further damages to IGBTs and sensitive loads. Therefore, it is 

necessary to diagnose sensor faults in a timely way. There 

have been some reports on fault diagnosis of sensors in 

inverters. Most of these methods are based on current analysis 

[24]-[26] and models [27]-[30]. Methods proposed in [24]-[25] 

are based on load current average values. They are simple and 

easy to implement. A fast and general method based on a 

parity space and temporal redundancies is developed in [26]. It 

is suitable for various kinds of sensor faults. Methods in [29]-

[30] can handle multiple current sensor faults by utilizing 

current residuals generated by state observers. 

Methods mentioned above show good performance in 

diagnosing IGBT OC faults or current sensor faults. However, 

the methods considering only one kind of fault may diagnose 

falsely when the other kind of fault occurs. IGBT faults and 

current sensor faults share faulty characteristics. Both faults 

can cause distortion in the sampled currents. This is why most 

diagnosis methods for only one kind of fault cannot work in an 

independent way, but interfere each other. As a result, the 

methods for IGBT fault diagnosis utilizing sampled currents 

may have false alarms when current sensor faults occur. On 

the other hand, the methods for current sensor faults are also 

interfered by IGBT faults. Therefore, in order to diagnose both 

faults accurately, it would be better to include both faults 

diagnosis in the same method. Besides, addressing two kinds 

of faults by one approach shows better simplicity in 

implementation than applying two separate methods, because 

the analysis, calculation and program codes of these two kinds 

of faults can be shared in part. 

In recent years, some methods have been developed to 

consider both IGBT faults and sensor faults [31]-[33]. In [31], 

the current deviations generated by a Luenberger observer are 

used to diagnose both faults. In order to improve diagnosis 

speed, Ren et al. [32] proposed a method based on average 

bridge arm pole-to-pole voltage deviations. The method in [33] 

can diagnose multiple IGBT faults and current sensor faults 

through stator current analysis. In all these methods, the sum 

of three phase currents is used to distinguish IGBT faults from 

current sensor faults. Therefore, these methods are only 

suitable for the three-phase three-wire (3P3W) inverters with 

three current sensors. 

The literature review shows the problem of diagnosing both 

IGBT OC faults and current sensor faults in 3P3W inverters 

with only two current sensors has not been investigated. In this 

paper, two kinds of diagnosis variables, line voltage deviations 

and phase voltage deviations, are innovatively combined to 

handle these two kinds of faults. The unique faulty 

characteristics of each fault is extracted and utilized to 

distinguish different faults. Importantly, the proposed method 

takes system unbalance into consideration. The problem of the 

system unbalance is new and inevitable when considering 

these two kinds of faults. It is solved by analyzing and 

computing the calculation error caused by the unbalance in 

two ways, so that the method is more robust and feasible. 

This paper is organized as follows. The IGBT OC fault and 

current sensor fault analysis is given in section II. The 

proposed method is detailed in section III. Section IV 

discusses calculation errors analysis and thresholds selection. 

The simulation and experimental results are shown in section 

V and the conclusions are given in the last section. 

 

II.  FAULTY CHARACTERISTICS OF OUTPUT VOLTAGE 

DEVIATIONS 
 

In this part, the deviation models of output line voltages and 

phase voltages are derived. The deviations are defined as  

 * *   = − , ^ ^   = −                         (1) 

Where, γ is the actual value, γ* and γ^ are the estimated and 

sampled values respectively.  

Then, the output voltage deviation characteristics under 

different IGBT OC faults and current sensor faults are 

analyzed and summarized. 

 

A. Output Voltage Deviation Models 

Fig.1 shows a grid-tied 3P3W inverter with two current 

sensors. Two phase currents, three phase grid voltages and DC 

voltage are sampled for control.  

Voltage sensors are healthy, so the actual output line 

voltages vxy (x,y =a,b,c) can be considered the same as the 

sampled output line voltages vxy
^. Besides, according to the 

loop shown in Fig.2 and Kirchoff Voltage Law, there is  
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TABLE II  
CRITERIA FOR IGBT AND CURRENT SENSOR FAULT DIAGNOSIS FOR 

3P3W INVERTER WITH TWO CURRENT SENSORS 

Fault 

Line voltage  

deviation polarities 

Phase voltage  

deviation polarities 

Δab Δbc Δca ΔaN ΔbN ΔcN 

None Z Z Z Z Z Z 

T1 N Z P N P P 

T2 P Z N P N N 

T3 P N Z P N P 

T4 N P Z N P N 

T5 Z P N P P N 

T6 Z N P N N P 

(CSa×, CSb) P/N P/N P/N P/N Z P/N 

(CSa, CSb×) P/N P/N P/N Z P/N P/N 

(CSa×, CSc) P/N P/N P/N P/N P/N Z 

(CSa, CSc×) P/N P/N P/N Z P/N P/N 

(CSb×, CSc) P/N P/N P/N P/N P/N Z 

(CSb, CSc×) P/N P/N P/N P/N Z P/N 

Note: “/” means “or”. 

 

 
Fig.2 Loop for estimating output line voltages  

 

 
Fig.3 Loop for estimating output phase voltages 

TABLE I 
OUTPUT VOLTAGE DEVIATION CHARACTERISTICS OF DIFFERENT IGBT 

AND CURRENT SENSOR FAULTS IN 3P3W INVERTERS WITH TWO 

CURRENT SENSORS 

Fault 

Line voltage  

deviations 

Phase voltage  

deviations 

Δvab
* Δvbc

* Δvca
* ΔvaN

* ΔvbN
* ΔvcN

* 

None = 0 = 0 = 0 = 0 = 0 = 0 

T1 ≤0 =0 ≥0 ≤0 ≥0 ≥0 

T2 ≥0 =0 ≤0 ≥0 ≤0 ≤0 

T3 ≥0 ≤0 =0 ≥0 ≤0 ≥0 

T4 ≤0 ≥0 =0 ≤0 ≥0 ≤0 

T5 =0 ≥0 ≤0 ≥0 ≥0 ≤0 

T6 =0 ≤0 ≥0 ≤0 ≤0 ≥0 

(CSa×, CSb) ≠0 ≠0 ≠0 ≠0 =0 ≠0 

(CSa, CSb×) ≠0 ≠0 ≠0 = 0 ≠0 ≠0 

(CSa×, CSc) ≠0 ≠0 ≠0 ≠0 ≠0 =0 

(CSa, CSc×) ≠0 ≠0 ≠0 =0 ≠0 ≠0 

(CSb×, CSc) ≠0 ≠0 ≠0 ≠0 ≠0 =0 

(CSb, CSc×) ≠0 ≠0 ≠0 ≠0 =0 ≠0 

Note: (CSx×, CSy) means current sensors CSx and CSy are available, 

where CSx is faulty. 

 

 yx
xy x x x XY y y y

didi
v L R i V L R i

dt dt
= − − + + +               (2) 

Where X,Y = A, B, C. Lx is the filter inductance and Rx is the 

equivalent resistance.  

Base on (2), the line voltage can be estimated as 
^^

* ^ * ^yx
xy x x x XY y y y

didi
v L R i V L R i

dt dt
= − − + + +            (3) 

Where ix
^ is the sampled phase current, and VXY

* is the 

estimated bridge arm pole-to-pole voltage.  

Then (2) minus (3) gives the output line voltage deviation 

as 
^^

* ^ * ^yx
xy x x x XY y y y

d id i
v L R i V L R i

dt dt


 = − −  +  + +            (4) 

Similarly, according to the loop shown in Fig. 3, there is 

x
xN x x x XL NL

di
v L R i V V

dt
= − − + −                       (5) 

Based on (5), there is 

, , , , , ,

( ) 3x
xN x x x XL NL

x a b c x a b c X A B C

di
v L R i V V

dt= = =

= − − + −              (6) 

For a balanced system, where La = Lb = Lc, Ra = Rb = Rc, vaN  

+ vbN + vcN =0, (6) becomes 

 
1

( )
3

NL AL BL CLV V V V= + +  (7) 

If the system is unbalanced, (7) is inaccurate. The error 

caused by system unbalance will be discussed in Section IV. 

Similar to (4), the output phase voltage deviations are 
^

* ^ * *x
xN x x x XL NL

d i
v L R i V V

dt


 = − −  +  −                  (8) 

Where 

   * * * *1
( )

3
NL AL BL CLV V V V =  +  +                         (9) 

 

B. Faulty Characteristics Analysis 
When no fault occurs, Δvxy

*
 = 0 and ΔvxN

*
 = 0. Whereas, 

when fault occurs, there may be Δvxy
*
 ≠ 0 and ΔvxN

*
  ≠ 0. In 

this paper, the focused current sensor faults refer to open-

circuit faults or short-circuit faults in sensor devices or 

conditioning circuits, as well as failures in A/D modules. In 

such faulty scenario, the output of the faulty sampled current 

is zero or other constants. 

T1 OC fault and sensor CSa fault are taken as examples to 

analyze the faulty characteristics of output voltage deviations. 

It is considered that only one kind of fault occurs at a time.  

When device T1 OC fault occurs, according to the fault 

analysis in [22], there are ΔVAL
* ≤ 0, ΔVBL

*
 = 0, ΔVCL

*
 = 0, 

ΔVAB
* ≤ 0, ΔVBC

*= 0, ΔVCA
*

 ≥ 0. Current sensors are healthy, 

namely Δia
^
 = 0, Δib

^
 = 0, Δic

^
 = –Δia

^
 –Δib

^
 = 0. Then, 

according to (4) and (8), there are 

Δvab
* ≤ 0, Δvbc

*
 = 0, Δvca 

*
 ≥ 0, ΔvaN

* ≤ 0, ΔvbN
*
  ≥ 0, ΔvcN 

* ≥ 0  

(10) 

When sensor CSa is faulty, there are Δia 
^
 ≠ 0, Δib

^
 = 0, Δic

^
 = 

–Δia
^
  –Δib

^
  ≠ 0. IGBTs are healthy, so ΔVAL

*
 = 0, ΔVBL

*
 = 0, 

ΔVCL
*
 = 0, ΔVAB

* = 0, ΔVBC
*
 = 0, ΔVCA

*
 = 0. Consequently 

Δvab
*
  ≠ 0, Δvbc

*
 ≠ 0, Δvca

*
  ≠ 0, ΔvaN

*  ≠ 0, ΔvbN
*
  = 0, ΔvcN 

*
 ≠ 0  

(11) 

With similar analysis, all faulty characteristics of output 

voltage deviations for different faults can be extracted and 

concluded in TABLE I. In the table, the cases where current 

sensors are in other phases are also included. For example, 
(CSa×, CSc) indicates the case where current sensors are in phase 

A and phase C, and the sensor in phase A CSa is faulty. 

 

III.  PROPOSED FAULT DIAGNOSIS METHOD 

 

A. Basic Principle of the Diagnosis Method 

It can be observed from TABLE I that, line voltage 

deviations or phase voltage deviations alone are not adequate 

for distinguishing IGBT OC faults from current sensor faults. 

However, the combinations of output line and phase voltage 

deviations show unique characteristics for each fault. 

Therefore, it is proposed that two kinds of faulty 
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Fig.4 Principle of the proposed fault diagnosis method 

 

 

TABLE II  
CRITERIA FOR IGBT AND CURRENT SENSOR FAULT DIAGNOSIS FOR 

3P3W INVERTER WITH TWO CURRENT SENSORS 

Fault 

Line voltage  

deviation polarities 

Phase voltage  

deviation polarities 

Δab Δbc Δca ΔaN ΔbN ΔcN 

None Z Z Z Z Z Z 

T1 N Z P N P P 

T2 P Z N P N N 

T3 P N Z P N P 

T4 N P Z N P N 

T5 Z P N P P N 

T6 Z N P N N P 

(CSa×, CSb) P/N P/N P/N P/N Z P/N 

(CSa, CSb×) P/N P/N P/N Z P/N P/N 

(CSa×, CSc) P/N P/N P/N P/N P/N Z 

(CSa, CSc×) P/N P/N P/N Z P/N P/N 

(CSb×, CSc) P/N P/N P/N P/N P/N Z 

(CSb, CSc×) P/N P/N P/N P/N Z P/N 

Note: “/” means “or”. 

 

characteristics are combined for fault identification. In order to 

utilize only existing signals in the controller, especially for a 

common circumstance where signals are sampled every 

switching period, the average model is applied to calculate 

output voltage deviations. 

The average model can be defined as  
[ ]

[ 1]

1
[ ]

t n

S t n

n dt
T

 
−

=                                  (12) 

Where TS is the sampling period. The sampling frequency can 

be different from the switching frequency. In this paper, as in 

most cases, the sampling frequency equals switching 

frequency. 

The diagnosis principle is shown in Fig.4. The average 

output line and phase voltage deviations are taken as diagnosis 

variables. The calculation models of diagnosis variables will 

be given later. Ideally, the deviations should be zero when no 

fault occurs. However due to calculation error caused by 

sampling error, inductance error, system unbalance, etc., the 

deviations are not always exactly zero under normal operation. 

Therefore, for robustness purposes, the error-adaptive 

threshold method proposed in [22] is applied in this method, 

which will be detailed in section IV.  

After obtaining the thresholds, the deviation polarities Δxy[n] 

and ΔxN[n] can be determined as 

,

, ,

,

,

,

,

sub th sub

sub th sub sub th sub

sub th sub

P V V

Z V V V

N V V

  


 = −    
   −

                 (13) 

Then, according to the faulty characteristics shown in 

TABLE I, the criteria for diagnosing IGBT OC fault and 

current sensor fault are given in TABLE II.  

In order to further improve robustness against disturbances, 

like noise and unmodeled high harmonics, the minimum time 

judging rule is implemented. The fault diagnosis result has to 

remain for the minimum time Tmin to be considered reliable. 

The higher Tmin leads to the better robustness and but longer 

detection time. In this paper, Tmin is set to 2TS. Besides, the 

signal filters in the conditioning circuirts and software are also 

helpful for eliminating the effects of disturbances. In the 

experiments, the harware filters are applied. 

 

B. Calculation of Average Output Voltage Deviations 

According to (3) and (12), the average estimated output line 

voltages can be calculated as  
* *

^ ^ ^ ^

^ ^ ^ ^

[ ] ( [ ] [ 1]) ( [ ] [ 1]) [ ]
2

( [ ] [ 1]) ( [ ] [ 1])
2

XY

x x
xy x x x x

S

y y

y y y y

S

L R
v n i n i n i n i n V n

T

L R
i n i n i n i n

T

= − − − − + − +

+ − − + + −
    (14) 

Where 
^ ^* 1

[ ] ( [ 1] [ ])( [ 1] [ 1])
2

XY x ydc dcV n V n V n d n d n= − + − − −           (15) 

The voltage sensors are healthy, so the actual output line 

voltage can be obtained as 

^ ^1
[ ] ( [ 1] [ ])

2
xy xy xyv n v n v n= − +                       (16) 

Similarly, the average estimated and actual output phase 

voltages are 
* * *^ ^ ^ ^[ ] ( [ ] [ 1]) ( [ ] [ 1]) [ ] [ ]

2
x x

xN XL NLx x x x

S

L R
v n i n i n i n i n V n V n

T
= − − − − + − + −  (17) 

^ ^1
[ ] ( [ 1] [ ])

2
xN xN xNv n v n v n= − +                         (18) 

Where 
^ ^* 1

[ ] ( [ 1] [ ]) [ 1]
2

XL xdc dcV n V n V n d n= − +  −                  (19) 

^ ^

, ,

* 1
[ ] ( [ 1] [ ]) [ 1]

6 x a b c

NL xdc dc dV n V n V n n
=

= − +  −               (20) 

More detailed derivation of the calculation model can be 

found in [22]. 

Finally, the average output voltage deviations are 
*

[ ] [ ] [ ]xy xy xyv n v n v n = −                          (21) 
*

[ ] [ ] [ ]xN xN xNv n v n v n = −                          (22) 
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In implementation, the calculation can be furtherly 

simplified. For example, [ ]xyv n  can be calculated directly by 

[ ] [ ] [ ]xy xN yNv n v n v n =  −  rather than by (14)-(16). 

 

IV. ERROR ANALYSIS AND THRESHOLDS SELECTION 

 

A. Errors Caused by System Unbalance 

For an unbalanced system, (7) is not accurate, which 

results in calculation errors in the output phase voltage 

deviations. The error caused by system unbalance ,xN IBv

  

can be defined as  

 
,

1
( )

3
NL AL BL CLxN IBv

V V V V


= − + +  (23) 

It can be obtained from (6) that 

 
, ,

,

1
( )

3

x
x x x xN

x a b c
xN IBv

di
L R i v

dt


=


= − − −  
(24) 

Normally, Ra, Rb, Rc are small and similar thus (24) can 

be simplified as 

 
, ,

,

1
(

3

x
x xN

x a b c
xN IBv

di
L v

dt


=


= − − ） 
(25) 

Considering only current sensors CSa and CSb are 

available, by replacing ic with (–ia–ib), (25) can be written as 

 
    

, ,
,

1
(( ) ( ) )

3

a b
c a c b xN

x a b c
xN IBv

di di
L L L L v

dt dt


=


= − + − −   
(26) 

Two methods are developed to estimate the upper limit 

of ,xN IBv

   corresponding to two circumstances: when current 

sensors are healthy, and when current sensors are faulty 

(IGBTs are healthy).  

1) When current sensors are healthy 

Define ΔL as the maximum inductance unbalance ，

namely L∈[L–ΔL, L+ΔL]. According to (26), there is 

    
, ,

,

1
(2 | | 2 | | | |)

3

a b
xN

x a b c
xN IBv

di di
L L v

dt dt


=


  +  +   (27) 

Then the upper limit of ,xN IBv

  can be calculated with 

sampled currents, which is denoted as 
^

,xN IBv

 . 

        
^ ^

^ ^

, ,
,

1
(2 | | 2 | | | |)

3

a b
xN

x a b c
xN IBv

di di
L L v

dt dt


=


=  +  +   (28) 

After averaging 

 
^ ^ ^ ^

^

, ,

^

,

[ ] [ 1] [ ] [ 1]1
[ ] (2 | | 2 | | | [ ] |)

3

a a b b
xN

x a b cS S
xN IBv

i n i n i n i n
n L L v n

T T


=


− − − −
=  +  +   

(29) 

2) When current sensors are faulty 

When current sensors are faulty， ^

,vxN IB  may be lower 

than the actual error ,xN IBv

 . Therefore, the second method 

based on estimated voltages rather than sampled currents is 

developed. The error calculated with estimated voltages is 

denoted as 
*

,xN IBv

 . 

According to Kirchhoff Voltage Law, there is  

 
( )

a b
AB ab a a a b b b

a a b
AC ac a a a c c c

di di
V v L R i L R i

dt dt

di d i i
V v L R i L R i

dt dt


− = + − −


+ − = + + −



 
(30) 

Then it can be derived from (30) that 

 

PART  2
PART  1

PART  3

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

a b c a b c b a
c a c b AC ac

a b b c a c

c a b c b a c c a

a b b c a c b a

di di L L L L L L
L L L L V v

dt dt L L L L L L

L L L L L L L L L

L L L L L L L L

− + −
− + − = −

+ +

− + − −
+ −

+ +
PART  4

PART  5

( )

( ) ( ) ( )
( ( ) )) ( )

AB ab

c a b c b a b c b
a a c c a a b b a a b b

a b b c a c c b

V v

L L L L L L L L L
R i R i R i R i R i R i

L L L L L L L L

−

− + − −
+ − + − + −

+ +

 

(31) 

There are five parts in (31). The maximum values of 

PART 1, PART 3 and PART 5 can be obtained easily with the 

nonlinear programming tool in MATLAB. An example is 

given below. The parameters in the simulation and 

experiments are applied in this example, which is shown in 

TABLE III. ΔL= 5.5%L，Ra= Rb = Rc =0.3Ω, ix∈[–10A, 

10A]. Then it can be obtained that  PART 1 ≤ 0.0747, PART 3 

≤ 0.0683, PART 5 ≤ 1.29V. Thus 

| ( ) ( ) | 0.0747 | | 0.0683 | | 1.29Va b
c a c b AC ac AB ab

di di
L L L L V v V v

dt dt
− + −  − + − +  (32) 

Finally 

* ^ * ^ ^

, ,

*
,

1
(0.0747 | | 0.0683 | | 1.29V | |)

3
AC ac AB ab xN

x a b c

vxN IB V v V v v
=

 = − + − + +   (33) 

After averaging 

 
Fig.5 Experimental setup 

 

TABLE III 
SPECIFICATION OF THE INVERTER IN SIMULATIONS AND EXPERIMENTS 

Parameters Symbols Value 

DC-link voltage Vdc 400V 

Grid phase voltages vxN 110V(rms), 50Hz 

Rated power Prate 1.2kW 

Filter inductances  La, Lb, Lc 
8.5mH, 9.5mH, 

9.5mH 

Equivalent resistances Ra, Rb, Rc 0.3Ω, 0.3Ω, 0.3Ω 

Switching/Sampling 
frequency 

fs 10kHz 

Sampling error of Vdc, 

vxy, vxN, ix  
σVdc,σvxy, σvxN, σix 4V, 4V, 2V, 0.06A 

Inductance error σLf 1.8mH 

Dead time TDD 1.5μs 

Delay time TDL 1μs 
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Fig.6 Simulation waveforms under power changes 

 

 
Fig.7 Simulation waveforms when T1 OC fault or CSa fault occurs 

 

 

 
Fig.8 Experimental waveforms under power changes 

 

 

* ^

* ^ ^

, ,

*

,

1
[ ] (0.0747 | [ ] [ ] |

3

0.0683 | [ ] [ ] | 1.29V | [ ] |)

AC ac

AB ab xN

x a b c

vxN IB
n V n v n

V n v n v n



=


= −

+ − + + 

 
(34) 

In conclusion, when current sensors are healthy ，
^

,
[ ]

vxN IB
n

  calculated by (29) must be higher than the actual 

error; when current sensors are faulty, 
*

,
[ ]

vxN IB
n

  calculated by 

(34) must be higher than the actual error.  Therefore, ,
[ ]

vxN IB
n

  

is chosen as 

 
^ *

, , ,
[ ] max{ [ ],  [ ]}

vxN IB vxN IB vxN IB
n n n  

  
=  (35) 

 

B. Modeling Errors 

Beside system unbalance, the calculation errors can be 

caused by modeling errors from other factors, including 

sampling error, inductance error, dead time and delay time. 

Define function Г  as 

1( ,..., )  = kf                        (36)                     

Where γ1,.. γk are sampled signals and model parameters.  

Define σγ1,.. σγk, as the maximum errors of γ1,..γk . Then the 

total error of Г, namely ξГ, caused by errors σγ1,.. σγ can be 

estimated as  

1

| |
  



=

=

=  i

i k

i i

d

d
                         (37) 

In the derived calculation model, sampling errors and 

parameter errors are the factors causing modeling errors. 

According to (37), (14)-(22), the total calculation error of 

diagnosis variables from sampling and parameter errors are 
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Fig.9 Experimental waveforms of T1 OC fault diagnosis in inverter mode 

 
Fig.10 Experimental waveforms of CSa fault diagnosis in inverter mode 
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Fig.11 Experimental waveforms of T1 OC fault diagnosis in rectifier 

mode 

 

 
Fig.12 Experimental waveforms of CSa fault diagnosis in rectifier 

mode 

 

^ ^ ^ ^

,

1 1
[ ] ( [ ] [ 1] ) ( [ ] [ 1] )

4
( [ 1] [ 1] )

f f

dc xy x

xy L x x L y y

S S

V x y v i f

S

v SP
n i n i n i n i n

T T

d n d n L
T

 

  




= − − + − −

+ − − − + +

    (38) 

^ ^

, ,

,

1
[ ] ( [ ] [ 1] ) (| [ 1]

1 2
| [ 1]|

3

f dc

xN x

xN L x x V x

S

x v i f

x a b c S

v SP
n i n i n d n

T

d n L
T

 

 



=


= − − + −

− − + +
         (39) 

Where σLf is the maximum inductance error, σVdc, σvxy, σvxN, σix 

are the maximum sampling errors of Vdc, vxy, vxN, ix. The 

determination of sampling errors and inductance error is 

explained in [34]. 

       Beside sampling errors and parameter errors, dead time 

and delay time can also cause modeling errors. The impacts of 

the dead time and the delay time are discussed in [22]. In this 

manuscript the maximum calculation errors from dead time 

TDD and delay time TDL can be obtained as 

 

,
2

xy

DD
dcv DD

S

T
V

T



=  ,   ,

4

3xN

DD
dcv DD

S

T
V

T



=               (40) 

,
2

xy

DL
dcv DL

S

T
V

T



=  ,   ,
2

xN

DL
dcv DL

S

T
V

T



=               (41) 

 

C. Thresholds Selection 

After obtaining the calculation errors, the thresholds 

, [ ]th xyv n  and  , [ ]th xNv n  can be selected as 

,
, , ,

[ ] [ ]
xy xy xy

th xy
v SP v DD v DL

v n n  
  

 = + +             (42) 

,
, , , ,

[ ] [ ] [ ]
xN xN xN

th xN
vxN IB v SP v DD v DL

v n n n   
   

 = + + +   (43) 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

 

Simulation and experimental results have been obtained to 

verify the correctness and effectiveness of the proposed 

method. The specification of the 3P3W inverter for 

simulations and experiments is given in TABLE III. Fig.5 

shows the experimental platform. The system control and fault 

diagnosis methodologies are implemented using 

TMS320F28335 DSP. In the experiments, the IGBT OC fault 

is simulated by removing the corresponding driver signal. The 

current sensor fault is simulated by setting the faulty sampled

current to 0A or 5A.The fault diagnosis indicator signals are 

given by outputs on the DSP I/O pins.  

 

A. Simulation Verification of System Unbalance Error 

Analysis 

Simulations in this section aim to verify the theoretical 

correctness of the calculation error caused by system 

unbalance. In the simulations, the filter inductances (La, Lb, Lc) 
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Fig. 13 Diagnosis time when T1 fault or CSa fault occurs at 20 evenly-

spaced moments in a fundamental period 

 

 
are (8.5mH, 9.5mH, 9.5mH), with ΔL of 0.5mH. The grid 

voltages are unbalanced by 5%. Current waveforms are also 

unbalanced.  

In Fig.6, power is varied between 1.2kW in inverter mode 

(IM) and 1.2kW in rectifier mode (RM) several times. It can 

be observed that the calculation error caused by inductance 

unbalance is high when power changes drastically, namely, 

when di/dt is high. This is in accordance with (26). The result 

shows both 
^

,vxN IB

  and 

*

,vxN IB

  are always higher than the 

actual error when no fault occurs. 

Fig.7 shows the simulation results when T1 OC fault or 

CSa fault occurs. At t1, the IGBT T1 fault occurs. Before and 

after the T1 fault, 
^

,vxN IB

  is always higher than the actual error. 

Whereas, 
*

,vxN IB

  is lower than the actual error at t1. The 

current sensor CSa fault occurs at t2. Before and after CSa fault, 
*

,vxN IB

  is always higher than the actual error. However, 

^

,vxN IB

  

is lower than the actual error after CSa fault. These 

observations are the same as the error analysis. 

The simulation results show that the analysis of the 

calculation error caused by system unbalance is correct. (35) 

can be used to make sure that the estimated calculation error 

caused by system unbalance is higher than the actual error. 

 

B. Experimental Result of Robustness 

Fig.8 shows the experimental results under normal 

operation with power changes ranging from 1.2kW in RM to 

1.2kW in IM. In this experiment, the filter inductances (La, Lb, 

Lc) are (8.5mH, 9.5mH, 9.5mH), with ΔL of 0.5mH. The grid 

voltages are unbalanced by 5% and the current waveforms are 

also unbalanced.  It can be observed that with various power 

rates and under drastic power changes at t1-t4, all the diagnosis 

variables are within thresholds. No false diagnosis is caused. 

These experimental results prove this method is featured with 

strong resistance against system unbalance, modeling errors 

and power changes.  

 

C. Experimental Results of IGBT Fault and Current Sensor 

Fault Diagnosis 

Fig.9 shows the experimental waveforms of IGBT T1 OC 

fault diagnosis. Before the fault occurs, all the diagnosis 

variables are within the thresholds. After the fault is triggered 

at t0, the voltage deviation polarities (Δab, Δbc, Δca, ΔaN, ΔbN, 

ΔcN) change to (N, Z, P, N, P, P) soon. According to the 

criteria in TABLE II, T1 OC fault is diagnosed at t1. The fault 

diagnosis time is 0.2ms (two switching periods).  

Fig.10 demonstrates the result of current sensor CSa fault 

diagnosis. The current sensor fault is triggered at t0, then the 

voltage deviation polarities change to (N, N, P, N, Z, P) soon. 

According to the criteria in TABLE II, CSa fault is diagnosed 

at t1. The fault diagnosis time is 0.2ms (two switching periods).  

Similar experiments have been carried out in rectifier 

mode, as shown in Fig.11 and Fig.12. It can be seen that the 

performance in rectifier mode is the same as in inverter mode. 

Both faults are diagnosed in two switching periods. 

These experiments verify the proposed method can 

diagnose the IGBT OC faults and current sensor faults 

accurately and quickly in both inverter mode and rectifier 

mode.  

 

D. Experimental Diagnosis Speed 

In order to give an overview of the diagnosis speed, the 

diagnosis time of IGBT faults and current sensor faults during 

a fundamental period is investigated and shown in Fig.13. The 

diagnosis time is obtained by experiments in inverter mode.  

It can be seen that, the diagnosis time of IGBT T1 fault is 

short in the positive half period, about 0.2ms (two switching 

periods, 1% fundamental period).  However if T1 fault occurs 

in the negative half period, the fault cannot be detected 

immediately but until the next positive half period comes. This 

is because T1 fault does not affect the operation of inverter in 

the negative half periods. During the whole fundamental 

period, the fault diagnosis time of current sensor CSa fault is 

short. Most diagnosis time is 0.2ms (two switching periods, 

1% fundamental period). 

In conclusion, this method shows outstanding 

performance in terms of diagnosis speed.  

 

V. CONCLUSION  

 

The contributions of this paper can be concluded as: 

1) A new method is proposed. Two kinds of diagnosis 

variables, line voltage deviations and phase voltage deviations, 

are innovatively combined to handle two kinds of faults. The 

unique faulty characteristics of each fault is extracted and 

utilized to distinguish the fault. The method of combining 

various kinds of diagnosis variables for multiple kinds of 

faults may help stimulate new ideas.  

2) The proposed method is the only method so far that can 

diagnose both IGBT OC fault and current sensor fault in the 

grid-tied 3P3W inverter with only two current sensors by 

utilizing signals already existing in the controller. The fault 

can be detected in 0.2ms (two switching periods, 1% 

fundamental period) at the fastest in inverter and rectifier 
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modes, which enables the converter to be protected in a timely 

way to avoid further damages. 

3) The problem of the system unbalance is solved by 

computing the calculation error caused by the unbalance in 

two ways, so that the method is more robust and feasible. The 

idea of tackling non-ideal factors to make a proposed method 

more practically valuable is interesting and helpful to 

researchers and engineers. 

 It should be noted that this method may have some 

limitations. It can only handle single IGBT OC fault or current 

sensor fault. It is best effective for current sensor faults which 

cause the sampled current to be zero or other constants. Other 

kinds of current sensor faults will be covered in the future 

work. 
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