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Abstract: Background: The prevalence of vascular dysfunction increases with advancing age, as does
the loss of muscle mass, strength and function. This systematic review explores the association between
vascular dysfunction and skeletal muscle health in healthy adults. Methods: EMBASE and MEDLINE
were searched for cross-sectional and randomized controlled studies between January 2009 and April
2019, with 33 out of 1246 studies included based on predefined criteria. Assessments of muscular
health included muscle mass, strength and function. Macrovascular function assessment included
arterial stiffness (pulse wave velocity or augmentation index), carotid intima-media thickness, and
flow-mediated dilation. Microvascular health assessment included capillary density or microvascular
flow (contrast enhanced ultrasound). Results: All 33 studies demonstrated a significant association
between vascular function and skeletal muscle health. Significant negative associations were reported
between vascular dysfunction and -muscle strength (10 studies); -mass (9 studies); and -function (5
studies). Nine studies reported positive correlations between muscle mass and microvascular health.
Conclusions: Multiple studies have revealed an association between vascular status and skeletal
muscle health in healthy adults. This review points to the importance of screening for muscle health
in adults with vascular dysfunction with a view to initiating early nutrition and exercise interventions
to ameliorate functional decline over time.

Keywords: vascular dysfunction; skeletal muscle mass; healthy adults

1. Introduction

The aging process is responsible for a variety of detrimental physiological changes within the
human body, including losses of skeletal muscle mass, strength and function (termed sarcopenia) [1,2].
Over time, there is a progressive decline in the number and size of muscle fibers resulting in a total
decrease in muscle mass of around 40% between the ages of 25 and 80 years [3]. The numerous negative
consequences of sarcopenia are well-established and include an increased risk of falls, fractures,
hospitalization, frailty, decreased quality of life and even death [4,5]. As such, sarcopenia has been
shown to pose a significant economic burden to health care systems [6]. The prevalence of sarcopenia
in community dwelling older adults is estimated to range from 7 to 73.3% in long-term care homes
and between 22% and 87% in assisted-living facilities [7,8]. In addition, the progression of sarcopenia
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is complex and multifactorial, with environmental influences such as physical inactivity, nutrient
deficiencies and oxidative stress all postulated to have a role [1,9].

Aging is also a major risk factor for cardiovascular (CV) disease, accounting for 17.3 million deaths
per year and projected to be 23.6 million by 2030 globally [10,11]. Multiple studies show a relationship
between low muscle mass and increased risk of CV-related mortality [12–14]. CV disease includes
diseases associated with both the heart and the vasculature, with vascular disease encompassing both
macro- and microvascular dysfunction.

Even in disease-free aging, it is postulated that age-related declines in macrovascular blood flow to
appendicular regions could play a substantial role in determining muscle health. Macrovascular flow is
generally assessed via conduit artery function by measuring arterial blood flow via Doppler ultrasound,
arterial stiffness (measured by pulse wave velocity (PWV) or augmentation index (AI)), carotid
intima-media thickness, and/or flow-mediated dilation (FMD), which is an estimate of endothelial
function. It has been demonstrated that older individuals exhibit 20–30% reductions in limb conduit
artery blood flow under both post-absorptive [15] and postprandial conditions [16] when compared to
younger adults, possibly due to endothelial dysfunction [17,18]. Such blunted blood flow responses
may contribute to age-related declines in anabolic responses to feeding by reducing the delivery and/or
utility of insulin and amino acids (AA) in muscle [19,20]. In addition, more recently, Rodriguez and
colleagues examined pulse wave velocity as an indicator of arterial stiffness in a meta-analysis and
demonstrated that lower muscle mass is significantly associated with increased arterial stiffness [21].

In addition to macrovascular blood flow, ‘microvascular/capillary’ blood flow or perfusion is
a critical mediator of insulin and AA delivery to the muscle [22–24]. Microvascular blood flow is
not routinely measured in clinical practice, but for research purposes can be assessed using contrast
enhanced ultrasound (CEUS) [25]. Capillary density and endothelial function are also good indicators
of microvascular function—both have been shown to decline with age and improve in response to
exercise training [26,27]. It has been suggested that reduced microvascular blood flow may contribute
to the anabolic resistance of muscle [28] which is observed with advancing age [20,29,30], however,
data on this is not yet conclusive [31].

This systematic review compiles studies that examine both skeletal muscle and vascular health
in healthy adult populations. However, the prevalence of hypertension in otherwise healthy adults
is estimated to be ~29% with progressive increases due to age [32]. Consequently, we expanded the
search to include hypertensive adults without other health complications. While the included studies
demonstrate various relationships between skeletal muscle health and vascular health, it remains
unclear as to whether there is a causal relationship between the two. Given that there are some
shared risk factors for declines in both systems, the relationship between them should be explored in a
systematic way [21]. One previous systematic review attempted to do this but focused specifically on
arterial stiffness assessed through PWV and did not explore other indices of macro or microvascular
status [21]. Therefore, the aim of this systematic review is to determine if there is a relationship between
skeletal muscle health and both macro- and microvascular function.

2. Materials and Methods

2.1. Literature Search

The electronic databases EMBASE and MEDLINE were searched for original articles between
January 2009 and April 2019. Evidence from cross-sectional and randomized controlled studies
was included. All relevant articles were assessed for pre-defined criteria regarding study outcome,
population and design. Database searching identified 2341 records of which 1095 were duplicates,
leaving 1246 unique records for title and abstract screening. Following screening, 1182 records were
excluded based on lack of assessment of an outcome of interest (n = 1101), inclusion of non-healthy
participants (n = 74) and animal/cell studies (n = 7), leaving 64 records for full-text review. Of these, 43
records were excluded primarily due to inclusion of diseased participants (n = 32), leaving a total of 21
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records. Through hand-searching full-text articles and references, we identified 12 more records which
satisfied all criteria for inclusion. As such, a total of 33 records were included in this systematic review.
A flow diagram is illustrated in Figure 1.
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2.2. Inclusion Criteria

The primary inclusion criteria were based on the assessment of certain outcomes, specifically
validated measurements of vascular function in combination with validated measurements of skeletal
muscle health. Detailed descriptions of the included validated markers for skeletal muscle health
assessments were split into three general categories: (1) muscle mass, (2) muscle strength and (3)
muscle function and are described in Section 2.5. Arterial function measurements and markers that
were included are described in Section 2.6.

Animal and cell-culture studies were not considered, nor were human studies involving diseased
populations (diabetes, peripheral arterial disease, atherosclerosis, chronic obstructive pulmonary
disease, kidney disease, cancer, or heart failure). Due to the prevalence of hypertension in otherwise
healthy adults, the inclusion criteria did allow studies involving hypertensive adults with no other
disease. Studies with professional athletic populations were not considered.

2.3. Data Extraction

Titles and abstracts resulting from the literature search were evaluated by two independent
investigators. Disagreements were resolved by consensus, or by consulting with a third investigator if
required. Studies were grouped according to skeletal muscle health assessments and vascular function
assessments. Data were extracted and collated on the following study characteristics: reference, study
design, participants (human, number of subjects, age, disease status, and gender ratio), skeletal muscle
health measurements and vascular function measurements.

2.4. Study Details and Sample Demographics

All 33 studies were either cross-sectional or randomized controlled trials published within the
past 10 years (Table 1). Twenty-three studies [20,26,27,33–52] included healthy mixed-age adults (age
range 18–95) and two studies [53,54] included healthy community-dwelling older adults (age range
65–81). Six studies sampled participants with hypertension [55–60], one study sampled individuals
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with diabetes as a comparator to healthy aged population [61], and one study [62] did not report
participant demographics. Study populations varied from a minimum of 6 [20] to a maximum of
3356 [42] participants. Eight studies included only men [25,27,37,42,49,50,56,61] and four studies
included only women [38,52,53,60]. Most studies reported the age range of the participants, except for
two studies with one claiming to study “middle-aged” adults [46] and one using adult participants [62].

Table 1. Study details and sample demographics.

Study & Year Design Sample Country n Male (%) Age Exclusion

Barnouin 2017 [33] Cross-sectional Healthy adults UK 47 77 22–74 Cardiovascular, neuromuscular,
or respiratory diseases

Barrera 2014 [35] Cross-sectional Healthy adults Chile 259 49 29–88

Undernutrition BMI < 18, cancer,
autoimmune disease, kidney,

liver or cardiac failure, diabetes,
cognitive impairment, steroids or

HRT

Brightwell 2018 [26] RCT Healthy adults USA 23 30 65–82

Diabetes, cancer, smoking, CVD,
kidney disease, uncontrolled

high blood pressure, low daily
protein intake

Chung 2018 [36] Cross-sectional Healthy adults Korea 1590 78 40–79 Metabolic syndrome, HRT, any
medication

den Ouden 2013 [37] Cross-sectional Healthy adults The
Netherlands 403 100 73–91 Inability to visit the study center

independently

Dipla 2017 [55] Cross-sectional Healthy and
hypertensive adults Greece 91 60 31–55 CVD, diabetes

Fahs 2017 [39] Cross-sectional Healthy adults USA 71 51 18–75 Hypertension, participation in
regular exercise, HRT

Gonzales 2015 [40] Cross-sectional Healthy adults USA 45 44 60–78
CVD, diabetes, pulmonary

disease, HRT, obesity, medication
for blood pressure or cholesterol

Groen 2014 [61] Cross-sectional Healthy and T2DM
adults

The
Netherlands 45 100 23–71

Impaired renal or liver function,
obesity, CVD, hypertension,
advanced diabetes, insulin

therapy

Gueugneau 2016 [56] Cross-sectional Healthy and
hypertensive adults France 37 100 21–74

Prior myocardial infarction or
stroke, heart failure, atrial

fibrillation, diabetes, morbid
obesity, Parkinson’s disease

Heffernan 2012 [41] Cross-sectional Healthy adults USA 24 46 70–85

Acute/terminal illness, coronary
heart disease, myocardial
infarction, hypertension,

neuromuscular disease, HRT,
diabetes, renal disease, BMI >

32.5

Im 2017 [42] Cross-sectional Healthy adults Korea 3356 100 40–64 ABI < 0.9, high WBC count,
cancer

Khoudary 2015 [38] Cross-sectional Healthy adults USA 1103 0 56–62

Stroke, angina or myocardial
infarction, hysterectomy or

bilateral oophorectomy,
pregnancy, HRT

Kohara 2017 [43] Cross-sectional Healthy adults Japan 1518 40 60–74
CVD, PAD, stroke, coronary
heart disease, and congestive

heart failure
Lee 2014 [44] Cross-sectional Healthy adults Korea 427 42 52–95 n/r or unclear

Lima-Junior 2018 [57] Cross-sectional Hypertensive adults Brazil 72 28 48–68

<18 years, smoking, diabetics,
CVD, inability to perform

isometric handgrip, enrolled in
physical activity program

Mitchell 2013 [25] RCT Healthy adults UK 36 100 18–75 Diabetes, CVD, BMI < 18 or >28

Ochi 2010 [46] Cross-sectional Healthy adults Japan 496 36 n/r
Stroke, TIA, coronary heart

disease and congestive heart
failure

Phillips 2012 [34] RCT Healthy adults UK 51 57 21–72
Muscle wasting, metabolic or

respiratory diseases, CVD,
chronic diseases

Prior 2016 [47] Cross-sectional Healthy adults USA 76 42 45–80
Coronary artery disease, heart

failure, PAD, stroke, liver, kidney
or lung disease, smoking

Sampaio 2014 [58] Cross-sectional Healthy and
hypertensive adults Japan 175 48 70–77

Moderate cognitive impairment,
uncontrolled cardiovascular,

pulmonary or metabolic diseases,
stroke, Parkinson’s disease, PAD,

orthopedic disease

Sanada 2010 [48] Cross-sectional Healthy adults Japan 1488 29 18–85 CVD, beta-blockers, HRT,
athletes
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Table 1. Cont.

Study & Year Design Sample Country n Male (%) Age Exclusion

Shimizu 2017 [59] Cross-sectional Hypertensive adults Japan 795 57 60–89
Participants without

hypertension, BMI < 18.5, high
BP, history of stroke

Shiotsu 2018 [49] RCT Healthy adults Japan 45 100 63–85

Current participation in
structured exercise program,

CVD, musculoskeletal disease,
diabetes

Suwa 2018 [50] Cross-sectional Healthy adults Japan 1354 100 35–59 CVD, history of stroke
Timmerman 2012 [20] RCT Healthy older adults USA 6 50 67–73 Obesity, chronic diseases

Verdijk 2016 [27] RCT Healthy adults The
Netherlands 30 100 19–83

CVD, PAD, diabetes, inability to
participate in an exercise

program

Wong 2018 [60] RCT Hypertensive adults Korea 41 0 49–67

Pre-menopause, CVD, diabetes,
HRT, smoking, exercise,

endocrine disorders, psychiatric
disorders

Wüst 2009 [62] Cross-sectional Adults UK 11 45 n/r n/r or unclear

Yamamoto 2009 [51] Cross-sectional Healthy adults Japan 526 34 20–83
Obesity, chronic diseases,
smoking, ABI < 0.9, any

medication

Yoo 2018 [53] Cross-sectional Community-dwelling
older adults Korea 236 0 67–79 CVD, cognitive disorder,

malignancy

Yoshizawa 2009 [52] RCT Healthy adults Japan 35 0 32–59 Chronic diseases, smoking, any
medication

Zhang 2019 [54] Cross-sectional Community-dwelling
older adults China 1002 42 65–81 n/r or unclear

Abbreviations: BMI: Body Mass Index; RCT: Randomized Controlled Trial; HRT: Hormone Replacement Therapy;
CVD: Cardiovascular Disease; T2DM: Type 2 Diabetes Mellitus; ABI: Ankle-Brachial Index; WBC: White Blood
Cells; PAD: Peripheral Artery Disease; TIA: Transient Ischemic Attack; n/r: Not reported.

2.5. Assessment of Skeletal Muscle Health

Muscle mass measurements were obtained by: (i) bioelectrical impedance analysis (BIA), (ii)
computed tomography (CT), (iii) dual-energy X-ray absorptiometry (DXA) and (iv). muscle fiber
cross sectional area analyses (commonly measured through muscle biopsy analysis). Muscle strength
assessments were limited to: (i) hand-grip strength, (ii) torque measurements using an isokinetic
dynamometer, and (iii) repetition-maximum exercises. Muscle function assessments were largely
varied and included: (i) arm extensibility, (ii) 40-foot walking speed, (iii) sit and reach, (iv) sit-to-stand,
(v) timed up and go (TUG), (vi) 12-min walk distance, (vii) perceived fatigue after a fast-pace
400-m walk, (viii) 10-m walking speed and ix. aerobic capacity. Table 2 indicates details of the
assessment tools used to estimate skeletal muscle health. Most studies reported a measurement
of skeletal muscle strength [26,27,34–37,39,41,49,53,55,57,59,60]. Thirteen studies assessed muscle
mass [20,25,27,34,39,42–44,47,48,54,58,61] and six studies assessed muscle fiber cross-sectional area
(CSA) [33,46,47,56,61,62]. Seven studies examined muscle function [35,38,40,49–52], one study assessed
muscular power [41] and one study assessed the muscle anabolic response [20]. Body composition was
measured as whole body lean mass [27,34,35,38–40,42–44,47–49,51,52,54,58] or as appendicular lean
mass [20,25,26,33,36,37,41,46,50,53,55–57,59–62]. To assess skeletal muscle mass various modalities
were utilized including BIA [42–44,54,58], DXA [25,27,34,39,47,48] and CT [27,43,46,47,61]. Muscle
biopsies were obtained from the vastus lateralis muscle to analyze muscle fiber CSA [27,33,56,61,62].
Muscular strength and power were measured using various assessments including hand-grip
strength [35–37,49,53,55,57,59], leg extension one-repetition maximum (1-RM) [27,39,41,49,52], peak
leg torque [26] and leg extension eight-repetition maximum (8-RM) [34,60]. The muscle anabolic
response was measured as muscle protein synthesis rate [20]. Muscle function was the most varied
assessment and included measurements of sit and reach [49,51], sit-to-stand [38], TUG [35], 12-min
walk distance [35], perceived fatigue after a fast-pace 400-m walk [40], 40-foot walking speed [38],
10-m walking speed [49], aerobic capacity [52] and arm extensibility [50] (Table 2).
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Table 2. Assessment of skeletal muscle health.

Study & Year Parameter Region Modality Device

Brightwell 2018 * [26] Muscular strength Appendicular Peak leg torque Biodex isokinetic
dynamometer

Chung 2018 [36] Muscular strength Appendicular Hand-grip strength Hand-grip
dynamometer

den Ouden 2013 [37] Muscular strength Appendicular Hand-grip strength JAMAR hand-grip
dynamometer

Dipla 2017 [55] Muscular strength Appendicular Hand-grip strength Biopac hand-grip
dynamometer

Lima-Junior 2018 [57] Muscular strength Appendicular Hand-grip strength Hand-grip
dynamometer

Shimizu 2017 [59] Muscular strength Appendicular Hand-grip strength Smedley hand-grip
dynamometer

Wong 2018 [60] Muscular Strength Appendicular 8-RM Cybex dynamometer

Yoo 2018 [53] Muscular strength Appendicular Hand-grip strength T.K.K hand-grip
dynamometer

Im 2017 [42] Muscle mass Whole body BIA Inbody
Kohara 2017 [43] Muscle mass Whole body BIA, CT Omron, GE

Lee 2014 [44] Muscle mass Whole body BIA InBody
Mitchell 2013 * [25] Muscle mass Appendicular DXA Lunar
Sampaio 2014 [58] Muscle mass Whole body BIA n/r
Sanada 2010 [48] Muscle mass Whole body DXA Hologic

Timmerman 2012 * [20] Muscle anabolic response Appendicular Muscle biopsy Bergström needle
Zhang 2019 [54] Muscle mass Whole body BIA InBody

Barnouin 2017 * [33] Muscle CSA Appendicular Muscle biopsy Bergström needle
Gueugneau 2016 * [56] Muscle CSA Appendicular Muscle biopsy Bergström needle

Ochi 2010 [46] Muscle CSA Appendicular CT GE
Wüst 2009 * [62] Muscle CSA Appendicular Muscle biopsy Percutaneous needle

Gonzales 2015 [40] Muscular function Whole body 400 m walk Polar monitor (to track
HR during walk)

Khoudary 2015 [38] Muscular function Whole body
40-foot walking

speed, sit-to-stand
test

n/r

Suwa 2018 [50] Muscular function Appendicular Arm extensibility
test n/r

Yamamoto 2009 [51] Muscular function Whole body Sit and reach test
Takei Scientific digital

flexibility testing
device

Yoshizawa 2009 [52] Muscular function Whole body 1-RM, aerobic
capacity

Selectorized weight
machines, cycle

ergometer

Barrera 2014 [35] Muscular strength and
function Whole body 12-min walk, TUG,

hand-grip strength

Digital force
transducer and

hand-grip
dynamometer

Fahs 2017 [39] Muscular strength and
muscle mass Whole body 1-RM, DXA Selectorized weight

machines, Hologic

Groen 2014 * [61] Muscle mass and CSA Appendicular CT, muscle biopsy n/r, percutaneous
needle

Heffernan 2012 [41] Muscle strength and
power Appendicular 1-RM Keiser Sports

Phillips 2012 [34] Muscle mass and strength Whole body DXA, leg extension
75% 1-RM Lunar, Leisure Lines

Prior 2016 * [47] Muscle mass and CSA Whole body DXA, CT Lunar, Siemens

Shiotsu 2018 [49] Muscular strength and
function Whole body

1-RM, hand-grip
strength, 10-m

walk, sit and reach
test

Leg press/curl,
chest/shoulder press,

seated row, hand-grip
dynamometer

Verdijk 2016 * [27] Muscular strength and
muscle mass Whole body 1-RM, CT, DXA,

muscle biopsy

Technogym, Phillips
Medical, GE,

percutaneous needle

* Microvascular only assessment (no asterisk indicates macrovascular only); Abbreviations: RM: Repetition
Maximum; BIA: Bioelectrical Impedance Analysis; CT: Computed Tomography; DXA: Dual-Energy X-ray
Absorptiometry; CSA: Muscle Fiber Cross-Sectional Area; TUG: The Timed Up and Go Test; n/r: Not reported.
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2.6. Assessment of Vascular Health

Common validated markers of arterial function were: (i) pulse wave velocity, (ii) augmentation
index, (iii) carotid intima-media thickness and (iv). flow-mediated dilation. Table 3 indicates details
of the assessment tools used to measure vascular health. Macrovascular and/or microvascular
health was assessed in the included studies, with the majority examining macrovascular blood
flow. Macrovascular health was primarily assessed as arterial stiffness using multiple measurements
of either pulse wave velocity (PWV) [36,39,40,42,43,46,48,49,51,52,54,58,60], radial augmentation
index [41,44,57], carotid intima-media thickness (CIMT) [35,37,38,50,59] or flow-mediated dilation
(FMD) [41]. CIMT was assessed using ultrasound [35,37,38,50,59] and radial augmentation index
was measured using applanation tonometry [41,44,57]. For the studies assessing PWV, seven
studies assessed brachial-ankle PWV [36,43,46,48,51,54,60], four studies assessed carotid-femoral
PWV [39,40,49,52] and two studies assessed carotid-ankle PWV [42,58]. PWV was measured using a
volume-plethysmographic apparatus [36,43,46,48,51,52,54,60], an oscillometric apparatus [42,49,58]
and using applanation tonometry [39,40]. FMD was assessed using ultrasound [34,41] and applanation
tonometry [53]. Microvascular health was assessed primarily through histology staining to determine
capillary density in a vastus lateralis muscle biopsy [26,27,33,47,56,61,62] and through microvascular
blood flow using contrast-enhanced ultrasound (CEUS) with Sonovue microbubbles [25]. One study
assessed muscle perfusion using a muscle oxygenation apparatus [55].

Table 3. Assessment of vascular health.

Study & Year Parameter Vascular Site Method Device

Chung 2018 [36] PWV Brachial-ankle Volume-plethysmographic apparatus Colin Medical
Fahs 2017 [39] PWV Carotid-femoral Applanation tonometry SphygmoCor

Gonzales 2015 [40] PWV Carotid-femoral Applanation tonometry SphygmoCor
Im 2017 [42] PWV Carotid-ankle Oscillometric Fukuda Denshi

Kohara 2017 [43] PWV Brachial-ankle Volume-plethysmographic apparatus Omron
Ochi 2010 [46] PWV Brachial-ankle Volume-plethysmographic apparatus Omron

Sampaio 2014 [58] PWV Carotid-ankle Oscillometric Fukuda Denshi
Sanada 2010 [48] PWV Brachial-ankle Volume-plethysmographic apparatus Colin Medical
Shiotsu 2018 [49] PWV Carotid-femoral Oscillometric Fukuda Denshi
Wong 2018 [60] PWV Brachial-ankle Volume-plethysmographic apparatus Colin Medical

Yamamoto 2009 [51] PWV Brachial-ankle Volume-plethysmographic apparatus Omron
Yoshizawa 2009 [52] PWV Carotid-femoral Volume-plethysmographic apparatus Colin Medical

Zhang 2019 [54] PWV Brachial-ankle Volume-plethysmographic apparatus Omron
Barrera 2014 [35] CIMT Carotid Ultrasound GE

den Ouden 2013 [37] CIMT Carotid Ultrasound ATL Ultramark IV
Khoudary 2015 [38] CIMT Carotid Ultrasound Teratech Corp
Shimizu 2017 [59] CIMT Carotid Ultrasound GE

Suwa 2018 [50] CIMT Carotid Ultrasound Aplio
Heffernan 2012 [41] Aix Radial Applanation tonometry Omron

Lee 2014 [44] Aix Radial Applanation tonometry SphygmoCor
Lima-Junior 2018 [57] Aix Radial Applanation tonometry EndoPAT

Dipla 2017 [55] FMD Brachial Muscle oxygenation apparatus NIRS Artinis
Yoo 2018 [53] FMD Brachial Applanation tonometry EndoPAT

Phillips 2012 [34] LBF Femoral Doppler ultrasound Toshiba
Barnouin 2017 * [33] C: F Ratio Femoral Immunohistochemistry Bergström needle

Brightwell 2018 * [26] C: F Ratio Femoral Immunohistochemistry Bergström needle
Groen 2014 * [61] C: F Ratio Femoral Immunohistochemistry Percutaneous needle

Gueugneau 2016 * [56] C: F Ratio Femoral Immunohistochemistry Bergström needle
Prior 2016 * [47] C: F Ratio Femoral Immunohistochemistry Percutaneous needle

Verdijk 2016 * [27] C: F Ratio Femoral Immunohistochemistry Percutaneous needle
Wüst 2009 * [62] C: F Ratio Femoral Immunohistochemistry Percutaneous needle

Mitchell 2013 * [25] MBF Femoral Contrast-enhanced ultrasound Sonovue
Timmerman 2012 * [20] MBF Femoral Doppler ultrasound Philips ATL

* Microvascular only assessment (no asterisk indicates macrovascular only); Abbreviations: PWV: Pulse Wave
Velocity; CIMT: Carotid Intima Media Thickness; Aix: Radial Augmentation Index; FMD: Flow Mediated Dilation;
LBF: Leg Blood Flow; C: F Ratio: Capillary to Fiber Ratio; MBF: Microvascular Blood Flow.
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3. Results

3.1. Macrovascular Studies

Macrovascular studies focus on dysfunction at the level of the large conduit arteries, which
transport blood away from the heart. Most studies included in this review focused on macrovascular
analyses with detailed descriptions of the included macrovascular studies presented in Table 4.

Table 4. Association between skeletal muscle and macrovascular blood flow.

Study & Year Sample Age Muscle and Vascular Association Type of Association Finding

Barrera 2014 [35] Healthy adults 29–88 Muscular strength/function and
CIMT

Difference between groups
(p < 0.05) †

In older adults, CIMT is negatively
associated with muscular strength and

function

Chung 2018 [36] Healthy adult
men 40–79 Muscular strength and PWV Difference between groups

(p < 0.05) †
In middle-aged and older adults, arterial

stiffness is negatively associated with
muscular strength and function

den Ouden 2013
[37]

Healthy older
men 73–91 Muscular strength and CIMT Correlation (r = −0.17; p <

0.05)
In older men, CIMT is negatively

associated with muscular strength

Dipla 2017 # [55]
Healthy and
hypertensive

adults
31–55 Muscular strength and muscle

perfusion
Difference between groups

(p < 0.05) †

Hypertensive adults have reduced tissue
oxygen saturation compared to healthy

controls; to produce same amount of torque
compared to healthy controls requires a

two-fold increase in BP

Fahs 2017 [39] Healthy adults 18–75 Muscular strength and PWV Correlation (r =
−0.230/−0.484; p < 0.05)

In adults, arterial stiffness is negatively
correlated with absolute and relative

muscular strength

Gonzales 2015 [40] Healthy older
adults 60–78 Muscular function and PWV Beta coefficient (p < 0.05) In older adults, arterial stiffness is

positively correlated with muscle fatigue

Heffernan 2012 [41] Healthy older
adults 70–85 Muscular power and augmentation

index
Correlation (r = -0.54; p <

0.05)
In older adults, arterial stiffness is

negatively associated with muscular power

Im 2017 [42] Healthy adult
men 40–64 Muscle mass and PWV Correlation (p < 0.05) In middle-aged men, arterial stiffness is

negatively correlated with muscle mass

Khoudary 2015 [38] Healthy older
women 56–62 Muscle function and CIMT Beta coefficient (0.028; p <

0.05)
In older women, CIMT is negatively

associated with muscle function

Kohara 2017 [43] Healthy older
adults 60–74 Muscle mass and PWV Correlation (r = −0.24; p <

0.05)
In older adults, arterial stiffness is

negatively correlated with muscle mass

Lee 2014 [44] Healthy older
adults 52–95 Muscle mass and augmentation

index Beta coefficient (p < 0.05) In older adults, arterial stiffness is
negatively associated with muscle mass

Lima-Junior 2018 #

[57]
Hypertensive
older adults 48–68 Muscular strength and

augmentation index
Beta coefficient (−0.49; p <

0.05)

In older adults with hypertension, arterial
stiffness is negatively associated with

muscular strength

Ochi 2010 [46] Healthy adults n/r Muscle CSA and PWV Correlation (r = −0.34; p <
0.05)

In men, arterial stiffness is negatively
associated with muscle mass

Phillips 2012 * [34]
Healthy

adults—resistance
exercise

21–72 Muscle mass/strength and leg blood
flow

Difference between groups
(p < 0.05) †

Following resistance exercise training,
adults experience increases in leg blood

flow, muscle mass and strength regardless
of age in response to feeding

Sampaio 2014 # [58]
Healthy and
hypertensive
older adults

70–77 Muscle mass and PWV Odds ratio (1.82; p < 0.05)
In healthy and hypertensive older adults,
arterial stiffness is negatively associated

with muscle mass

Sanada 2010 [48] Healthy adults 41–71 Muscle mass and PWV Difference between groups
(p < 0.05) †

Women with sarcopenia have higher
arterial stiffness compared to healthy

controls

Shimizu 2017 # [59]
Hypertensive
older adults 60–89 Muscular strength and CIMT Difference between groups

(p < 0.05) †
In older adults with hypertension, CIMT is

negatively associated with muscular
strength

Shiotsu 2018 * [49]
Healthy older

men—resistance
exercise

63–85 Muscular strength/function and
PWV

Difference between groups
(p < 0.05) †

Following resistance exercise training,
older men experience a decrease in arterial

stiffness and an increase in muscular
strength/function

Suwa 2018 [50] Healthy adult
men 35–59 Muscular function and CIMT Beta coefficient (−0.189; p

< 0.05)
In middle-aged adults, CIMT is negatively

associated with arm flexibility

Wong 2018 *# [60]

Hypertensive
older

women—stair
climbing
exercise

49–67 Muscular strength and PWV Correlation (r = −0.47; p <
0.05)

Following stair climbing training,
hypertensive older women experience a

decrease in arterial stiffness and an increase
in muscular strength

Yamamoto 2009
[51] Healthy adults 40–83 Muscular function and PWV Correlation (r = 0.17/0.45; p

< 0.05)

In middle-aged and older adults, arterial
stiffness is negatively correlated with

flexibility

Yoo 2018 [53] Older women 67–79 Muscular strength and endothelial
function

Correlation (r = 0.176; p <
0.05)

After adjusting for comorbidities, in older
women, endothelial function is positively

correlated with muscular strength

Yoshizawa 2009 *
[52]

Healthy
women—aerobic

exercise
32–59 Muscular function and PWV Difference between groups

(p < 0.05) †

Following aerobic training, middle-aged
women experience a decrease in arterial

stiffness and an increase in muscular
function

Zhang 2019 [54] Older adults 65–81 Muscle mass and PWV Odds ratio (1.11; p < 0.05)
After adjusting for comorbidities, in older

adults, arterial stiffness is negatively
associated with muscle mass

* Exercise intervention study; # hypertensive population; † correlation coefficient not reported; Abbreviations: CIMT:
Carotid Intima-Media Thickness; PWV: Pulse Wave Velocity; CSA: Mid-thigh Muscle Cross-sectional Area; n/r:
Not reported.
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Body composition, specifically muscle mass, appears to have a strong association with arterial
health. Given that PWV is the most commonly used assessment of arterial stiffness, six studies used
PWV as a measurement of arterial health. These studies were conducted in middle-aged and older
adults and revealed a negative correlation between PWV and muscle mass [42,43,46,48,54,58]. Using
the radial augmentation index as a measurement of arterial stiffness, a single study found an inverse
relationship between limb muscle mass and arterial function [44]. These correlations are indicative of
greater arterial stiffness in individuals with lower muscle mass. These publications collectively suggest
that skeletal muscle mass has an association with arterial health, specifically arterial wall elasticity.

In addition to skeletal muscle mass, skeletal muscle strength is an important indicator of overall
muscle health. Hand-grip strength has been correlated with changes in muscle function and joint
disability scores [63], disease activity states [64] and even all-cause mortality [65]. Multiple studies in
this review reported that increased CIMT, a common measurement of arterial stiffness, is associated
with impaired hand-grip strength [35,37,59]. Using other measurements of arterial stiffness, such as
radial augmentation index [57] and pulse wave velocity [36], other studies show the same association
between higher arterial stiffness and lower grip strength. One included study demonstrated that
higher PWV is associated with lower absolute and relative muscle strength assessed using selected
weight machines [39]. This observation is important as it directly demonstrates whole body strength
loss and not solely hand-grip strength impairment. One included study demonstrated that decreased
muscle strength is associated with endothelial dysfunction [53]. The authors of this study suggest that
endothelial function plays an important role in overall muscle health. Additionally, increased arterial
stiffness measured through radial augmentation index is associated with impaired leg power during
leg press exercise [41]. These studies provide evidence for an association between skeletal muscle
strength and arterial dysfunction.

Impaired skeletal muscle function also shows an association with macrovascular dysfunction.
Various mobility tests are predictive of the onset of disability, hospitalization and mortality [66–70]. This
association is important given that many included studies in this review demonstrate the correlation
between arterial stiffness and poor performance on tests of muscle function. For example, increased
PWV is associated with increased fatigue during a 400-m walk test [40] and increased CIMT is associated
with poor performance on the 40-foot walking speed test [38], 12-min walk test [35] and the timed up
and go test [35]. In addition, studies show impairments in muscle flexibility with arterial dysfunction.
Increased arterial stiffness is associated with poor performance on multiple flexibility tests including
sit and reach [51], and arm extensibility tests [50]. Furthermore, increased arterial stiffness is associated
with poor performance on a common test of muscle function, the sit-to-stand test [38]. These studies
suggest that the overall muscle function is impaired with arterial dysfunction.

Most included studies examined healthy adult populations. Nonetheless, the prevalence of
hypertension in otherwise healthy adults is estimated to be ~29% [32] and increases as people age.
Therefore, we examined relevant studies that included hypertensive participants [55–60]. All six
studies involved middle-aged and older adults. Five of the six studies reported that arterial stiffness
had a significant negative association with muscular strength [57,59,60] and muscle mass [58]. These
studies suggest an additional burden of muscle dysfunction in hypertensive populations.

Exercise interventions that increase muscle mass, strength and function were also found to
increase overall macrovascular health. One study included a group of middle-aged women that
were subjected to 12 weeks of aerobic training [52]. Following the training program, participants
experienced a concomitant decrease in arterial stiffness and increase in muscular function through
increased strength on various leg exercises and increased aerobic capacity on the cycle ergometer [52].
One group combined both aerobic and resistance exercise into 2 times per week workouts lasting 10
weeks [49]. Upon completion of the study, participants experienced a decrease in arterial stiffness and
an increase skeletal muscle strength through significant increases in leg press, chest press, shoulder
press, leg curl and seated row exercises [49]. One study subjected young, middle-aged and older
participants to progressive resistance exercise training three times a week for twenty weeks [34]. Upon
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completion of the training, researchers reported significant improvements in skeletal muscle mass and
strength, as well as leg blood in response to feeding and exercise [34]. Lastly, a 12-week stair climbing
exercise intervention in hypertensive older women increased skeletal muscle strength measured by
8-RM on a leg extension machine and decreased arterial stiffness [60]. This study is noteworthy as it
demonstrates that it is possible to improve skeletal muscle health together with macrovascular health
despite the presence of hypertension. Overall, these studies show the concomitant positive response
of the skeletal muscle and arterial function to exercise, suggesting an intimate connection between
the two.

3.2. Microvascular Studies

Arteries branch into arterioles which further branch into capillaries, which are primarily responsible
for distributing blood carrying nutrients and oxygen to muscle tissues beds. Thus, it is critical to
examine the relationship between the muscle microvasculature and skeletal muscle health. Both
higher capillary density and/or greater microvascular flow within the muscle (muscle perfusion) offers
potential for greater diffusion of substrates, oxygen, hormones, and nutrients, thereby enhancing
skeletal muscle mass and function. Detailed descriptions of the included microvascular studies are
presented in Table 5.

Table 5. Association between skeletal muscle and microvascular blood flow.

Study & Year Sample Age Muscle and Vascular Association Type of Association Finding

Barnouin 2017 [33] Healthy adults 22–74 Muscle fiber CSA and capillary
density

Correlation (R2 =
0.46; p < 0.05)

In young and older adults,
capillary-to-fiber ratio is positively

correlated with muscle mass

Brightwell 2018 * [26]
Healthy older

adults—aerobic
exercise

65–82 Muscular strength and capillary
density

Difference between
groups (p < 0.05) †

Following aerobic training, older
adults experience an increase in

capillary density and an increase in
muscular strength

Groen 2014 [61] Healthy adult
men 23–71 Muscle fiber CSA and capillary

density
Difference between
groups (p < 0.05) †

Older adults have reduced
capillary-to-fiber ratio and muscle
mass compared to young controls

Gueugneau 2016 # [56]
Healthy and
hypertensive

older men
72–74 Muscle fiber CSA and capillary

density
Difference between
groups (p < 0.05) †

Older adults with hypertension
have lower capillary-to-fiber ratio

and muscle mass compared to
healthy older controls

Mitchell 2013 [25] Healthy adult
men 18–75 Muscle mass and microvascular

blood flow
Difference between
groups (p < 0.05) †

Young adults have higher muscle
mass and have higher

microvascular blood flow in
response to feeding compared to

healthy older adults

Prior 2016 [47] Healthy adults 45–80 Muscle mass and capillary density Correlation (r =
0.30–0.37; p < 0.05)

In adults, capillary-to-fiber ratio is
positively correlated with muscle

mass

Timmerman 2012 [20]
Healthy older

adults—aerobic
exercise

67–73 Muscle protein synthesis and
microvascular blood flow

Difference between
groups (p < 0.05) †

Following aerobic exercise, older
adults experience improved

microvascular flow and muscle
protein synthesis

Verdijk 2016 * [27]
Healthy older

adults—resistance
exercise

65–83 Muscle fiber CSA/strength and
capillary density

Difference between
groups (p < 0.05) †

Following resistance training, older
adults experience an increase in

capillary-to-fiber ratio and an
increase in muscle mass and

strength

Wüst 2009 [62] Adults n/r Muscle fiber CSA and capillary
density

Correlation (r = 0.62;
p < 0.05)

In adults, capillary-to-fiber ratio is
positively correlated with muscle

mass

* Exercise intervention study; # hypertensive population; † correlation coefficient not reported; Abbreviations: CSA:
Mid-Thigh Muscle Cross-sectional area.

Capillary density, a common marker of microvascular health, appears to have an association with
skeletal muscle mass regardless of age. Most studies examined this association through muscle biopsy
analysis. These studies demonstrate that increased capillary density is correlated with increased muscle
mass across age groups [33,47,62], as well as with increase muscle strength [26,27]. Correspondingly,
decrease capillary density was observed in sarcopenic individuals along with concomitant decline in
exercise capacity [47,61]. Microvascular flow and function were also found to decline in populations
with functional impairments such as aging and chronic disease [43,61].
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Two studies in this review included microvascular blood flow analysis in hypertensive participants.
One study showed that hypertensive older adults have significantly lower capillary to fiber ratio and
muscle mass compared to healthy older controls [56]. Furthermore, adults with hypertension have
a reduced tissue oxygen saturation compared to healthy controls and require a two-fold increase in
blood pressure to produce equal amount of muscle torque compared to controls [55]. These studies
suggest a microvascular impairment in hypertensive populations.

Exercise interventions that increase muscle mass, strength and function were also found to increase
microvascular flow and capillary density. In addition to the included cross-sectional studies, several
randomized controlled trials that involved an exercise intervention were included. These studies are
important as they demonstrate the intimate relationship between vascular health and skeletal muscle
health. Two studies examined microvascular function via capillary density and reported significant
improvements following both resistance [27] and aerobic [26] training. Following 24 weeks of aerobic
exercise, older adults experienced a concomitant increase in skeletal muscle strength and capillary
density [26]. Another study demonstrated that older adults following 12 weeks of resistance exercise
training experienced an increase in skeletal muscle mass, strength and capillary density [27]. One
study examined nutrient delivery to the muscle following a bout of aerobic exercise and reported
significant improvements in muscle protein synthesis as well as microvascular blood flow [20]. These
data suggest that various types of exercise can significantly impact both the skeletal muscle function
and microvascular health of the participants.

4. Discussion

Sarcopenia, the progressive loss of muscle mass, muscle function and physical performance,
was previously associated with cardiovascular disease [12–14]. Given that many of the risk factors
for sarcopenia and cardiovascular disease are shared, it is not surprising that there is an association
between measures of vascular dysfunction and muscle health. Existing reviews solely target arterial
stiffness as an indicator of vascular dysfunction and its’ association with skeletal muscle health [21].
This systematic review takes a broader approach and examines other validated indices of vascular
function including microvascular function. The focus of the review is on relatively healthy adults and
we observed an inverse association between skeletal muscle health and vascular dysfunction. Our data
indicate that the inverse relationship between vascular dysfunction and skeletal muscle is consistently
observed in the hypertensive populations as well. Given the high prevalence of hypertension (63.1%)
in adults over the age of 60 [32], these data suggest that it may be important to start to screen for and
address muscle health issues in adults with hypertension. Not unexpectedly, exercise interventions
demonstrated both macrovascular and microvascular health benefits, in addition to improving indices
of skeletal muscle health, indicating the importance of habitual exercise for healthy aging.

Given that most of the included studies are cross-sectional, the mechanism of the association
between vascular dysfunction and muscle strength and function is not clear. Rodriguez and colleagues
completed an extensive review of the musculoskeletal system and vasculature and proposed a
conceptual disease model [71]. On the microsystemic level, systemic inflammation, local inflammation,
low calcium and low vitamin D intake, as well as impaired glucose metabolism promote cellular
stress and damage. If the cellular stress and damage is chronic, it is manifested in damage to both
the vascular system, impacting endothelial function and eventually microvascular health and the
musculoskeletal system [71]. Arterial stiffness and perhaps microvascular dysfunction would occur in
combination with sarcopenia on the macrosystemic level. It has been shown that muscle perfusion, an
indicator of peripheral microvascular health, decline with age [25]. This decline can lead to a decrease
in ‘nutritive’ flow to the muscle, impacting the availability of nutrients need for muscle function [22–24].
Reduced ‘nutritive’ blood flow may contribute to the anabolic resistance of muscle observed with
ageing [29,30], eventually leading to loss of muscle mass, strength and function. What is not known is
if the relationship between vascular dysfunction and muscle health is bi-directional and this needs to
be further explored in prospective studies.
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There are some important limitations of the included studies that must be considered. First, there
is a heterogeneity in assessment of arterial health. For example, arterial dysfunction in the included
studies is measured through pulse-wave velocity, CIMT, augmentation index and flow-mediated
dilation. This variation makes it difficult to complete a meta-analysis, though we felt it was important
to include these studies to demonstrate the relationship between arterial dysfunction and skeletal
muscle health regardless of outcome measurement. Second, like the variation in arterial function
assessments, there is a heterogeneity in assessment of skeletal muscle health and function. While
muscle mass and strength assessments are relatively consistent, muscle function assessments varied
greatly from 40-foot walking speed tests [38] to arm extensibility tests [50]. Lastly, the number of
studies evaluating microvascular health is comparatively low and more research is needed in this field.

The exclusion criteria for each study varied which impacts several variables including nutrition
status, daily physical activity and use of medications. Though a few of the studies excluded participants
based on a low BMI [4,25,59] and low daily protein intake [26], the rest of the studies did not examine
the nutrition status of the participants. Nutrition has been suggested to play an important role in
arterial stiffness, specifically through the dietary intake of vitamin D and calcium. An observational
study conducted on 131 participants suggested that insufficient intake of vitamin D is associated
with increased arterial stiffness [72]. A large study of 12,097 men and women determined that higher
calcium intake from food was associated with decreased risk for stroke and non-fatal cardiovascular
disease [73]. Despite these data, a detailed meta-analysis of vitamin D supplementation and the impact
on arterial stiffness determined that there is inconsistent evidence to suggest a connection between
the two factors, which was attributed to large heterogeneity in study design [74]. Similarly, other
studies demonstrated no relationship between calcium supplementation and markers of vascular
disease [75,76]. Most studies included in this systematic review did not measure daily physical
activity. Given the importance of physical activity for maintaining skeletal muscle mass and improving
cardiovascular function [77,78], an accurate measurement of daily activity is important for a complete
assessment of the participants. Lastly, the use of medications was poorly reported in most studies and
this can impact a variety of factors related to vascular dysfunction including blood pressure, blood
triglycerides and blood cholesterol levels.

Although the focus of this systematic review has been on relatively healthy subjects, the association
between skeletal muscle health and vascular dysfunction has been demonstrated in other populations. A
recent meta-analysis examined macrovascular function through pulse wave velocity and demonstrated
that lower muscle tissue is associated with higher arterial stiffness in populations with diabetes
and kidney disease [21]. This association has been demonstrated in healthy children as well, in
which researchers determined that arterial stiffness (measured by CIMT) is negatively associated with
muscular strength [79]. Furthermore, following isometric handgrip training, young healthy adults
improved their brachial artery flow-mediated dilation [80]. Overall, the connection between skeletal
muscle function and vascular dysfunction is observed in other populations and may be exacerbated in
populations with disease.

5. Conclusions

In conclusion, we described over 30 studies that demonstrate an inverse relationship between
vascular dysfunction and skeletal muscle health. This association is observed both on the macrovascular
and the microvascular levels. Given the cross-sectional nature of most of the studies included, it
is impossible to say if impaired vascular health causes skeletal muscle dysfunction or vice versa.
Nevertheless, we included some exercise intervention trials that demonstrate concurrent improvements
in skeletal muscle health and vascular function [26,27,49,52,60]. More studies are necessary to determine
if vascular dysfunction is predictive of skeletal muscle dysfunction. Furthermore, the field requires a
standardized assessment of macrovascular dysfunction and should also start to include assessment of
microvascular dysfunction. The clinical significance of this association between vascular health and
muscle health cannot be overlooked, considering the heavy clinical and economic burden of vascular
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dysfunction and sarcopenia, independently. If skeletal muscle health impairment is predictive of future
cardiovascular events or vice versa, early screenings will allow for early preventative interventions to
help improve long-term outcomes as the population ages. It is possible that interventions targeting
vascular dysfunction may have a long-term benefit on muscle health or vice versa, but this needs to be
systematically tested in prospective randomized clinical studies.
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