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Abstract. MEMS capacitively operated ring-based Coriolis vibratory gyroscopes are used to 

measure angular rate. Under standard operating conditions the ring is driven into resonance and 

Coriolis coupling generates a response that is proportional to the applied angular rate. In practice 

capacitive devices are susceptible to electrostatic nonlinearities due to narrow capacitive gaps 

which potentially degrades the quality of the measurement. One issue is that large amplitude 

drive responses yield multi-harmonic response which distorts the sense output causing the rate 

output to vary periodically (i.e. frequency instability). In this research it is shown that this 

frequency instability can be negated relatively easily by incorporating additional harmonics in 

the drive force. To implement such an approach it is necessary to use a voltage distribution to 

generate the appropriate electrostatic forces to eliminate or reduce the multi-frequency 

mechanical response of the ring. A mathematical model is used to quantify the effects of the 

implementation of the voltage distribution in terms of discrete Fourier transform of the ring 

response and the calculated Allan deviation. It is shown that the proposed implementation 

approximates linear behaviour by reducing the multi-harmonic response by orders of magnitude. 

1.  Introduction 

MEMS ring-based Coriolis Vibratory Gyroscopes (CVG’s) are conventionally operated within linear 

operating regimes where the operational drive and sense modes are linearly coupled by the Coriolis 

force in the presence of an angular rate [1]. The sense displacement amplitude is proportional to the 

angular rate, which is a key feature enabling the device to operate as an angular rate sensor. Within the 

linear operating regime, standard CVG operation involves the sense mode vibration exhibiting the 

following important characteristics. First, the angular rate sensitivity of the sense displacement 

amplitude scales proportionally with the drive displacement amplitude. As such, implementing larger 

drive displacement amplitudes is conventionally desirable to maximize the quality of the device rate 

output through signal-to-noise ratio (SNR) enhancements [2]. Second, the sense mode vibrates in 

phase/antiphase relative to the drive mode, resulting in zero quadrature sense displacement component 

due to the degeneracy of the ring flexural modes [3]. 

MEMS ring-based CVG’s are commonly operated capacitively due to compatibility with most 

microfabrication processes [1]. However, the electrostatic forces in capacitive MEMS CVG’s are known 

to be nonlinear [4-7]. The electrostatic nonlinearities are particularly strong for these miniaturized 

devices due to the narrow capacitive gaps between the ring and electrodes. Electrostatic nonlinearities 

cause the dynamics of the drive and sense modes to deviate from the previously discussed characteristics 

expected in standard linear device operation [4]. As such, electrostatic nonlinearities are commonly 

https://creativecommons.org/licenses/by/4.0/
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regarded as undesirable effects at larger drive displacement amplitudes, hindering attained rate 

sensitivity amplification at such operating regimes [7]. 

Frequency instability in mechanical resonators has been reported as a potential nonlinearity-induced 

performance degradation [6, 8, 9], in which the oscillation frequency of the resonator fluctuates with 

time, causing phase distortions. These distortions accumulate over time causing the oscillator phase to 

diffuse [10]. In the context of CVG’s, the drive frequency fluctuations have significant implications on 

the output of the device [11], as the rate and quadrature outputs are conventionally obtained via 

demodulation relative to the drive displacement phase [11, 12]. An approach involving exploiting 

internal resonance between two distinct modes to improve the frequency stability in mechanical 

resonators has been reported, relying on the mechanical energy exchange between the modes involved 

to oppose random perturbations imposed on the oscillation frequency [13]. This approach is 

demonstrated for a system where the two modes have differing nonlinearity types, i.e. hardening or 

softening. Another approach involves operating the resonator at the zero dispersion point [8], where the 

frequency is locally insensitive to vibration amplitude fluctuations. A key requirement of this 

implementation is a differing nonlinearity type between the cubic and quantic-ordered stiffnesses, which 

is unlikely the case in capacitive ring-based CVG’s due to the dominance of the softening electrostatic 

nonlinearities. It has also been shown that frequency stability can be improved through the use of a phase 

shifter, which uses the phase of the response as a control parameter to fixate the frequency [14-16]. In 

most of these studies, the frequency fluctuations are described as a result of random amplitude noise due 

to the amplitude-frequency coupling inherent in nonlinear systems. Deterministic sources of such 

effects, however, have not been widely reported or investigated. 

This research focuses on addressing the multi-frequency ring vibrations as a source of the frequency 

instability in MEMS CVG’s. This multi-frequency behaviour is a deterministic trait of nonlinear systems 

[17, 18] and may influence the capacitive sense output due to the nonlinear relationship between 

capacitance variation and mechanical displacement [1, 2]. The research aims to improve frequency 

stability by reducing or eliminating this multi-frequency behaviour. The paper is structured as follows.  

The fundamental mechanisms of the proposed approach are first described in Section 2.  Using a 

simplified case as a starting point, the required force conditions to eliminate multi-frequency response 

are identified. In Section 3.  the device considered is described, including the form of the voltage 

distribution applied to each electrode to apply the force condition identified in Section 2.  In Section 4.  

the proposed forcing approach is implemented on the coupled drive and sense dynamics. Equations of 

motion are developed and analysed to identify the voltage conditions necessary to achieve the force 

condition identified in Section 2.  The effectiveness of the proposed implementation is then assessed in 

Section 5.  The modal amplitude spectra and Allan deviation of the rate output are considered and Finite 

element (FE) results are included to validate the theoretical analysis.  

2.  Proposed method 

As a starting point, the basic form of the drive equation of motion in the presence of external electrostatic 

forces is stated. For simplicity, the drive mode is conventionally modelled as a single degree-of-freedom 

oscillator where Coriolis back coupling from the sense mode is neglected [1, 6, 19]. because in practice 

the sense response is much smaller than the drive response. In this case, the nonlinear drive response 𝑋𝑠 

is described by:  

�̈�𝑠 + 2Γ�̇�𝑠 + 𝜔𝑠
2𝑋𝑠 + 𝛾𝑠𝑋𝑠

3 = 𝜒𝑠 cos𝜔𝑡 + 𝑓𝑠,𝑏(𝑡) (1) 

In (1), subscript ‘s’ denotes the basic, simplified form of the equation of motion. 𝑋𝑠 is the drive mode 

displacement. Γ is the linear damping coefficient. 𝜔𝑠
2 and 𝛾𝑠 are the linear resonant frequency and 

Duffing coefficient respectively. 𝜒𝑠 cos𝜔𝑡 is the harmonic drive force which is used to initiate the drive 

mode vibration at frequency 𝜔. 𝑓𝑠,𝑏(𝑡) is an additional balancing force used to ensure single-frequency 

response, which is to be determined. 

For the unbalanced case (𝑓𝑠,𝑏 = 0) the steady-state response is multi-harmonic due to the nonlinear 

restoring force 𝛾𝑠𝑋𝑠
3 in (1), given by 𝑋𝑠 = ∑ {𝑥𝑠,2𝑚−1

𝑎 cos[(2𝑚 − 1)𝜔𝑡] − 𝑥𝑠,2𝑚−1
𝑞

sin[(2𝑚 −
𝑚𝑚𝑎𝑥
𝑚=1
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1)𝜔𝑡]}, where 𝑚𝑚𝑎𝑥 is the number of harmonics retained in the expression and 𝑚 = 1 defines the 

fundamental frequency component. 𝑥𝑠,2𝑚−1
𝑖/𝑎

 and 𝑥𝑠,2𝑚−1
𝑞

 are the phase-decomposed drive amplitudes, 

representing the in/antiphase and quadrature response components respectively. The complexity of 

solving for 𝑥𝑠,2𝑚−1
𝑖/𝑎

 and 𝑥𝑠,2𝑚−1
𝑞

 increases with 𝑚𝑚𝑎𝑥 and so the number of Fourier terms is chosen such 

that there are as many harmonic components as are necessary to achieve the desired accuracy [17]. 

In practice, the phase-lock loop (PLL) is used to ensure drive mode resonance [6]. The target single-

frequency drive response in this implementation is 𝑋𝑠,𝑡 = 𝑥𝑠,1
𝑞

sin𝜔𝑡 and substituting 𝑋𝑠,𝑡 = 𝑥𝑠,1
𝑞

sin𝜔𝑡 

in (1), and solving for 𝑓𝑠,𝑏(𝑡) gives the following: 

𝑓𝑠,𝑏(𝑡) = 𝑓𝑠,𝑏(𝑡)|𝑡 = −𝑥𝑠,1
𝑞

(𝜔2 − 𝜔𝑠,𝑋
2) sin𝜔𝑡 −

1

4
𝛾𝑠𝑥𝑠,1

𝑞 3
sin 3𝜔𝑡 (2) 

where 𝜔𝑠,𝑋
2 = 𝜔𝑠

2 +
3

4
𝛾𝑠𝑥𝑠,1

𝑞 2
 is the drive resonant frequency. When excitation frequency 𝜔 = 𝜔𝑠,𝑋, a 

residual force −
1

4
𝛾𝑠𝑥𝑠,1

𝑞 3
sin3𝜔𝑡 is present on the left side of (1). Using 𝑓𝑠,𝑏(𝑡) to counterbalance this 

residual force using force condition (2) ensures that the targeted single-frequency drive response 𝑋𝑠,𝑡 =

𝑥𝑠,1
𝑞

sin𝜔𝑡 is the exact solution of (1), eliminating the multi-frequency behaviour. Thus in addition to 

the harmonic drive force 𝜒𝑠 cos𝜔𝑡 applied, an additional force proportional to sin3𝜔𝑡 must be applied 

to counteract the Duffing nonlinearity. In practice, a control system can be used to adjust the amplitude 

of this force until condition in (2) is satisfied. 

To demonstrate the impact of applying force (2), Figure 1 shows the amplitude spectra of the drive 

displacement obtained by solving (1) for the steady-state drive displacement for the cases 𝑓𝑠,𝑏 = 0 and 

𝑓𝑠,𝑏(𝑡) = 𝑓𝑠,𝑏(𝑡)|𝑡. In both cases, the numerical values of the modal parameters are Γ = 56.4 Hz, 𝜔𝑠 =

11.4 kHz, 𝛾𝑠 = −4.3 GHz2 m2⁄ , 𝜒𝑠 = 7.1 N kg⁄ , resulting in a resonant drive amplitude at 𝑥𝑠,1
𝑞

=

0.14 μm.     

 
Figure 1. Drive amplitude spectra for balanced (𝑓𝑠,𝑏 = 0) and unbalanced (𝑓𝑠,𝑏(𝑡) = 𝑓𝑠,𝑏(𝑡)|𝑡) cases . 

When 𝑓𝑠,𝑏 = 0 the drive displacement is composed of amplitude components at frequencies 𝜔𝑠,𝑋, 

3𝜔𝑠,𝑋, 5𝜔𝑠,𝑋, ⋯. The amplitude components decrease by orders of magnitude as the harmonic number 

increases due to the weak nonlinearity. However, when 𝑓𝑠,𝑏(𝑡) = 𝑓𝑠,𝑏(𝑡)|𝑡, the higher harmonic 

response components are significantly reduced when the residual forces from the Duffing nonlinearity 

are negated.  

The approach outlined here can be extended to account for higher order nonlinearities. E.g. if a 

quantic restoring force proportional to 𝑋𝑠
5 is present in (1), substituting 𝑋𝑠,𝑡 = 𝑥𝑠,1

𝑞
sin𝜔𝑡 indicates 

balancing force 𝑓𝑠,𝑏(𝑡) must contain an additional force proportional to sin5𝜔𝑡. However, for 

simplicity, the following investigation only accounts for cubic-ordered electrostatic nonlinearities.  

In what follows, electrostatic forces will be used to replicate the force condition described in this 

section. 
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3.  Device and electrostatic configuration 

Figure 2 shows the basic layout of the capacitive device considered including device dimensions and 

drive and sense deflections. 8 evenly distributed electrodes are implemented inside and outside the ring 

circumference to generate the required electrostatic forces to achieve the force condition described in 

Section 2.  The use of 8 evenly distributed electrodes is the minimum number typically implemented in 

practice [20, 21]. 

   
Figure 2. Device setup implementing 8 evenly distributed inner and outer electrodes and the resulting 

drive and sense mode deflection shapes.    

Due to the miniature size of these devices, the capacitive gap 𝑔0 is narrow, typically within the 

order of 1 or 10 µm and each ring-electrode pair approximates parallel-plate capacitors [5, 7, 19]. 

Electrostatic nonlinearity is significant when the flexural displacement amplitudes increase relative to 

the gap size, due to the nonlinear relationship between the capacitance and the displacement. This is a 

trade-off for improved measurement sensitivity when using variable-gap type capacitive devices [1].  

The most basic form of voltage distribution applied to each electrode consists of bias and drive 

voltage components [19]. However, in this investigation the voltage distribution must generate 

additional electrostatic forces fulfilling the role of 𝑓𝑠,𝑏(𝑡) in (1) for both the drive and sense modes. The 

chosen voltage distribution is described as a discrete Fourier series. Defining the mean angular position 

of the 𝑖th inner/outer electrode (𝑖 is an integer ranging from 1 to 8) 𝜃 = 𝜃0(𝑖) = 𝑖𝜋 4⁄ , the voltages 

applied to the 𝑖th electrodes are given by: 

𝑉±(𝑖) = 𝑉0 ± (𝑉AC cos𝜔𝑡 + 𝑉𝑋,3𝜔 sin3𝜔𝑡) cos 2𝜃0(𝑖)

± (𝑉𝑌,𝜔 sin𝜔𝑡 + 𝑉𝑌,3𝜔 sin 3𝜔𝑡) sin2𝜃0(𝑖) 
(3) 

where 𝑉+(𝑖) and 𝑉−(𝑖) represent the voltage distributions corresponding to the outer and inner electrode 

sets respectively. 

𝑉0 is the DC bias voltage component, which is typically the largest voltage component to maintain 

the polarity of the total voltage applied to each electrode. The bias voltage is uniformly applied to all 

electrodes, and so is the same for all electrodes. 

𝑉AC defines the amplitude of the drive voltage component and 𝜔 is the drive resonance frequency. 

The drive voltage is characterized by a cos 2𝜃0(𝑖) variation from electrode to electrode to generate the 

required ‘push-pull’ electrostatic forces for supporting the shape of the drive mode shown in Figure 2. 

The drive voltage applied to the inner and outer electrodes act in antiphase and accounts for the opposite 

changes in capacitance corresponding to the inner and outer electrodes as the ring vibrates. 

𝑉𝑌,𝜔 defines the amplitude of the sense balancing voltage component at frequency 𝜔.  This voltage 

component is used to nullify quadrature errors [22] by ensuring an in/antiphase relationship between the 

Ring 

Electrode 

𝛿 
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𝜃 
ℎ 

𝑔0 

Outer 

electrode 
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drive and sense modes. This voltage component is characterised by a sin 2𝜃0(𝑖) variation, which 

generates direct electrostatic forces on the sense mode similar to the drive voltage.  

𝑉𝑋,3𝜔 and 𝑉𝑌,3𝜔 are the amplitudes of the drive and sense balancing voltage components respectively 

at frequency 3𝜔. These triple frequency balancing voltage components generate direct electrostatic 

forces on the drive and sense modes to negate the multi-frequency vibrational behaviour due to the 

electrostatic nonlinearities, using the concept discussed in Section 2.  These voltages are characterised 

by a sin3𝜔𝑡 time variation, due to force condition (2).  

 The voltage distribution in (3) is used to determine the electrostatic potential energy [1], based on 

which expressions for the nonlinear electrostatic forces can be developed, and these forces are 

incorporated into the modal equations of motion, described next. 

4.  Implementation 

In this section, the forcing concept in Section 2.  is implemented on a typical mode-coupled gyroscope 

model to address multi-frequency behaviour and improve frequency stability. Nonlinear modal 

equations of motion are used to identify the voltage requirements to achieve the forcing condition in 

Section 2.   

4.1.  Equations of motion 

The equations of motion are developed using Lagrange’s equations, which has been widely 

implemented in the literature [5, 7, 19]. Expressions for the ring kinetic and bending potential energies, 

the total bending potential energy of the support beams and the energy dissipation rate and the 

electrostatic potential energy from the voltage distribution in (3) are obtained, subsequently giving the 

following form for the modal mass-normalised equations of motion: 

�̈� + 2Γ�̇� + (𝜔m
2 − 𝜔0

2 + 𝜅0

𝑌2

𝑔0
2)𝑋 + 𝛾0

𝑋3

𝑔0
2

= 𝐺ΩΩ�̇� + 𝑓𝑋(𝑡) (4a) 

�̈� + 2Γ�̇� + (𝜔m
2 − 𝜔0

2 + 𝜅0

𝑋2

𝑔0
2)𝑌 + 𝛾0

𝑌3

𝑔0
2

= −𝐺ΩΩ�̇� + 𝑓𝑌(𝑡) (4b) 

where 

[
𝑓𝑋(𝑡)

𝑓𝑌(𝑡)
] = [

𝜒0,AC cos𝜔𝑡 + 𝜒0,𝑋,3𝜔 sin 3𝜔𝑡

𝜒0,𝑌,𝜔 sin𝜔𝑡 + 𝜒0,𝑌,3𝜔 sin3𝜔𝑡
] (5) 

In (4a) and (4b), terms involving 𝑉AC
2 have been discarded because the drive voltage is much smaller 

than the bias voltage in practice, i.e. 𝑉AC
2 ≪ 𝑉0

2. The amplitudes of the drive and sense balancing 

voltage components 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 are also within the same order of magnitude as 𝑉𝐴𝐶 since these 

are also involved in direct forcing of the drive and sense modes. As such, terms involving any product 

combination of these amplitudes (𝑉AC𝑉𝑋,3𝜔, 𝑉𝑌,𝜔𝑉𝑋,3𝜔, 𝑉𝑋,3𝜔𝑉𝑌,3𝜔, ⋯) are also neglected. For the same 

reason, only linear forcing terms involving 𝑉𝐴𝐶, 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 are retained. As such, only the 

nonlinear electrostatic force from the bias voltage is retained in these equations. The mathematical 

model accounts for electrostatic nonlinearities up to cubic order, similar to previous studies [4, 19].  

𝑋 and 𝑌 are the drive and sense displacements, and nonlinear electrostatic forces are described by 

the cubic terms in these modal coordinates (𝑋3, 𝑋2𝑌, 𝑋𝑌2, 𝑌3). 

𝜔m is the mechanical component of the linear resonant frequency, stemming from the total bending 

potential energy of the ring and support beams.  

The electrostatic forces are described by terms involving any combinations of the subscripts ‘0’, 

‘𝑋, 3𝜔’, ‘𝑌,𝜔’, ‘𝑌, 3𝜔’ to indicate the contributing voltage components to these terms. 

𝜔0 is the electrostatic contribution to the linear resonant frequency from the bias voltage. The 

corresponding terms in (4a) and (4b) are negative, reducing the total linear resonant frequency due to 

the softening effect of the bias voltage. 𝜔0 affects the drive and sense modes equally, thus maintaining 

the linear elastic symmetry between the drive and sense modes. 𝜔0
2 is given by: 
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𝜔0
2 =

32𝜀0𝛿

5𝜌ℎ𝜋𝑔0
3
𝑉0

2 (6) 

The cubic electrostatic forces are represented by the single and mode-coupled cubic restoring forces 

with stiffness coefficients 𝛾0 and 𝜅0. 𝛾0 is also known as the modal Duffing coefficient. 𝛾0 and 𝜅0 are 

given by: 

𝛾0 = −
16𝜀0

5𝜌ℎ𝜋𝑔0
3
(3𝛿 +

sin4𝛿

4
)𝑉0

2 (7) 

𝜅0 = −
16𝜀0

5𝜌ℎ𝜋𝑔0
3
(3𝛿 −

3 sin 4𝛿

4
)𝑉0

2 (8) 

Since 𝛾0 < 0 and 𝜅0 < 0, the cubic restoring forces are also of the softening type. 𝛾0 and 𝜅0 are 

coincident when 𝛿 = 𝜋 4⁄ , i.e. the case of a continuous electrode. These cubic stiffness coefficients are 

responsible for the multi-frequency behavior of the drive and sense dynamics if uncompensated. 

On the right side of (4a) and (4b), 𝑓𝑋(𝑡) and 𝑓𝑌(𝑡) are the direct electrostatic forces acting on the 

drive and sense modes respectively. The 3𝜔 forces 𝜒0,𝑋,3𝜔 sin 3𝜔𝑡 and 𝜒0,𝑌,3𝜔 sin3𝜔𝑡 in (4a) and (4b) 

are analogous to balancing force 𝑓𝑠,𝑏(𝑡) in (1). 𝜒0,AC, 𝜒0,𝑋,3𝜔, 𝜒0,𝑌,𝜔, 𝜒0,𝑌,3𝜔 are given by: 

[𝜒0,AC 𝜒0,𝑋,3𝜔 𝜒0,𝑌,𝜔 𝜒0,𝑌,3𝜔] =
32𝜀0 sin 𝛿

5𝜌ℎ𝜋𝑔0
2

[𝑉0𝑉AC 𝑉0𝑉𝑋,3𝜔 𝑉0𝑉𝑌,𝜔 𝑉0𝑉𝑌,3𝜔] (9) 

The bias voltage scales the amplitudes of all these forces. However, in practice, the bias voltage is 

not directly used for this purpose and is typically used to tune the modal frequencies. As such, in the 

following, 𝑉AC, 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 are the variables used to control these amplitudes.    

4.2.  Multi-harmonic balancing 

In what follows, the mode-coupled equations of motion are analysed to identify the conditions for 

the voltage amplitudes 𝑉AC, 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 to reduce or eliminate multi-frequency drive and sense 

mode vibration responses in a manner similar to the approach discussed in Section 2.   

As discussed in Section 2.  the multi-frequency behaviour of the drive and sense responses can be 

expressed as: 

𝑋 = ∑ {𝑥2𝑚−1
𝑎 cos[(2𝑚 − 1)𝜔𝑡] − 𝑥2𝑚−1

𝑞
sin[(2𝑚 − 1)𝜔𝑡]}

𝑚𝑚𝑎𝑥

𝑚=1
 (10a) 

𝑌 = ∑ {𝑦2𝑚−1
𝑎 cos[(2𝑚 − 1)𝜔𝑡] − 𝑦2𝑚−1

𝑞
sin[(2𝑚 − 1)𝜔𝑡]}

𝑚𝑚𝑎𝑥

𝑚=1
 (10b) 

The amplitudes of the fundamental frequency component (𝑚 = 1) of the sense response, 𝑦1
𝑎 and 𝑦1

𝑞
 

are the quadrature and rate outputs respectively. To solve for the fundamental frequency and the higher 

harmonic amplitudes 𝑥2𝑚−1
𝑎,𝑞

, 𝑦2𝑚−1
𝑎,𝑞

, the multiharmonic balancing method [17] can be used. Using this 

approach, (10a) and (10b) are first substituted into (4a) and (4b), the result of which is multiplied by 

cos(2𝑚 − 1)𝜔𝑡 and sin(2𝑚 − 1)𝜔𝑡 for each harmonic number 𝑚 and integrated over the fundamental 

vibration period 2𝜋 𝜔⁄ . This process generates 4𝑚𝑚𝑎𝑥 simultaneous equations from which 𝑥2𝑚−1
𝑎,𝑞

, 

𝑦2𝑚−1
𝑎,𝑞

 could be solved. However, to determine the voltage conditions to reduce or eliminate multi-

frequency response the following approach is adopted. 

The targeted single-frequency forms of the drive and sense responses are 𝑋 = 𝑥𝑎 cos𝜔𝑡 − 𝑥𝑞 sin𝜔𝑡 

and 𝑌 = 𝑦𝑎 cos𝜔𝑡 − 𝑦𝑞 sin𝜔𝑡  respectively, where the subscripts have been removed for simplicity 

(i.e. 𝑥𝑎,𝑞 = 𝑥1
𝑎,𝑞

 and 𝑦𝑎,𝑞 = 𝑦1
𝑎,𝑞

). Substituting these expressions into (4a) and (4b) and using the 

previously described multiharmonic balancing steps up to 𝑚 = 2 gives:  

{[
𝑨𝟏,𝑿𝑿(𝜔) 𝑨𝟏,𝑿𝒀(𝜔)

𝑨𝟏,𝒀𝑿(𝜔) 𝑨𝟏,𝒀𝒀(𝜔)
] + [

𝑨𝟑,𝑿𝑿(𝑥𝑎, 𝑥𝑞 , 𝑦𝑎 , 𝑦𝑞) 𝑨𝟑.𝑿𝒀(𝑥𝑎 , 𝑥𝑞 , 𝑦𝑎 , 𝑦𝑞)

𝑨𝟑,𝒀𝑿(𝑥𝑎 , 𝑥𝑞 , 𝑦𝑎 , 𝑦𝑞) 𝑨𝟑,𝒀𝒀(𝑥
𝑎 , 𝑥𝑞 , 𝑦𝑎 , 𝑦𝑞)

]} 𝒁 = 𝝌 (11) 

where 𝝌 is the amplitude vector of the direct force components, given by 𝝌 =
[𝜒0,AC 0 0 𝜒0,𝑋,3𝜔 0 𝜒0,𝑌,𝜔 0 𝜒0,𝑌,3𝜔]𝑇. The first 4 rows are associated with drive equation 

(4a), while the remaining rows are associated with sense equation (4b). 
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The curly bracketed term is the effective dynamic stiffness matrix, and subscripts ‘1’ and ‘3’ indicate 

contributions from linear and cubic forces respectively. The partitioned dynamic stiffness matrices are 

given by: 

𝑨𝟏,𝑿𝑿 = 𝑨𝟏,𝒀𝒀 = [

−𝜔2 + 𝜔𝑚
2 − 𝜔0

2 −2Γ𝜔

−2Γ𝜔 𝜔2 − 𝜔𝑚
2 + 𝜔0

2

0 0
0 0

] (12a) 

𝑨𝟏,𝑿𝒀 = −𝑨𝟏,𝒀𝑿 = [

0 𝐺ΩΩω
𝐺ΩΩω 0

0 0
0 0

] (12b) 

𝑨𝟑,𝑿𝑿 =

[
 
 
 
 
 
 
 
 
 3

4
𝛾0

𝑥𝑎2
+ 𝑥𝑞2

𝑔0
2

+
1

4
𝜅0

3𝑦𝑎2
+ 𝑦𝑞2

𝑔0
2

1

2
𝜅0

𝑦𝑎𝑦𝑞

𝑔0
2

−
1

2
𝜅0

𝑦𝑎𝑦𝑞

𝑔0
2

−
3

4
𝛾0

𝑥𝑎2 + 𝑥𝑞2

𝑔0
2

−
1

4
𝜅0

𝑦𝑎2 + 3𝑦𝑞2

𝑔0
2

1

4
𝛾0

𝑥𝑎2
− 3𝑥𝑞2

𝑔0
2

+
1

4
𝜅0

𝑦𝑎2
− 𝑦𝑞2

𝑔0
2

−
1

2
𝜅0

𝑦𝑎𝑦𝑞

𝑔0
2

−
1

2
𝜅0

𝑦𝑎𝑦𝑞

𝑔0
2

−
1

4
𝛾0

3𝑥𝑎2 − 𝑥𝑞2

𝑔0
2

−
1

4
𝜅0

𝑦𝑎2 − 𝑦𝑞2

𝑔0
2 ]

 
 
 
 
 
 
 
 
 

 (12c) 

𝑨𝟑,𝒀𝒀 is identical to 𝑨𝟑,𝑿𝑿 with 𝑥𝑎, 𝑥𝑞 interchanged with 𝑦𝑎, 𝑦𝑞. 𝑨𝟑,𝒀𝑿 and 𝑨𝟑,𝑿𝒀 are zero matrices. 

𝒁 is a vector containing the fundamental frequency displacement amplitudes, given by 𝒁 =
[𝑥𝑎 𝑥𝑞 𝑦𝑎 𝑦𝑞]𝑇. For an ideal, linear device:  

𝒁 = 𝒁𝒕 = [0 −𝑥 0
𝐺ΩΩ

2Γ
𝑥]

𝑇

 (13) 

where 𝒁𝒕 is the targeted form of the amplitude vector. For this case, 𝑥𝑎 = 0 and 𝑥𝑞 = −𝑥 because the 

drive response is resonant with amplitude 𝑥. For the sense response, 𝑦𝑎 = 0, indicating a zero quadrature 

response relative to the drive mode, and  𝑦𝑞 = 𝐺ΩΩ𝑥 (2Γ)⁄ , indicating that the rate output scales 

proportionally with drive amplitude. 

To ensure 𝒁 = 𝒁𝒕 is the solution to (11) so as to recover ideal, linear, single-frequency drive and 

sense responses, 𝒁 = 𝒁𝒕 is substituted into (11) and the resulting equation solved for 𝜒0,𝑋,3𝜔, 𝜒0,𝑌,𝜔 and 

𝜒0,𝑌,3𝜔.  Following this procedure the necessary frequency and force conditions are: 

𝜔2 = 𝜔𝑋
2 = 𝜔𝑚

2 − 𝜔0
2 +

3

4
𝛾0

𝑥2

𝑔0
2
+

3

4
𝜅0

𝑦2

𝑔0
2
 (14a) 

𝜒0,𝑋,3𝜔|𝑡 = −
1

4
𝑥 (𝛾0

𝑥2

𝑔0
2
+ 𝜅0

𝑦2

𝑔0
2) (14b) 

𝜒0,𝑌,𝜔|𝑡 = (𝜔2 − 𝜔𝑚
2 + 𝜔0

2 −
3

4
𝛾0

𝑦2

𝑔0
2
−

3

4
𝜅0

𝑥2

𝑔0
2)

𝐺ΩΩ

2Γ
𝑥 (14c) 

𝜒0,𝑌,3𝜔|𝑡 =
1

4
(𝛾0

𝑦2

𝑔0
2
+ 𝜅0

𝑥2

𝑔0
2)

𝐺ΩΩ

2Γ
𝑥 (14d) 

where 𝑦 = 𝐺Ω|Ω|𝑥 (2Γ)⁄  is the sense amplitude. 

In (14a), 𝜔𝑋 is the resonant drive frequency. Noting from (7) and (8) that 𝛾0 and 𝜅0 are negative, the 

drive frequency decreases with the drive and sense amplitude, indicating a nonlinear softening 

behaviour. In previous analyses [4, 19], the term involving 𝑦2 is typically discarded as the sense-to-

drive back coupling is neglected. In practice, the PLL is used to set 𝜔 = 𝜔𝑋. 

In (14b) and (14d), the presence of the cubic stiffness coefficients 𝛾0, 𝜅0 necessitates the presence of 

3𝜔 drive and sense balancing forces to negate the multi-frequency behaviour. It’s worth noting that the 

required 3𝜔 balancing force amplitudes 𝜒0,𝑋,3𝜔|𝑡 and 𝜒0,𝑌,3𝜔|𝑡 increase with drive amplitude such that 
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𝜒0,𝑋,3𝜔|𝑡 ∝ 𝑥3 and 𝜒0,𝑌,3𝜔|𝑡 ∝ 𝑥3. In practice, control loops are required to ensure that the 3𝜔 balancing 

force amplitudes satisfies force conditions in (14b) and (14d). This can be achieved by tracking the 3𝜔 

drive and sense response components simultaneously, and adjusting 𝜒0,𝑋,3𝜔 and 𝜒0,𝑌,3𝜔 until the 3𝜔 

response components nullify. These implementations will be demonstrated later. To nullify the 3𝜔 sense 

response, the required balancing force amplitude 𝜒0,𝑌,3𝜔|𝑡 is proportional to the angular rate. 

Satisfying (14c) ensures quadrature output is nullified. The bracketed term is the nonlinear frequency 

imbalance, which is a nonlinear extension of the linear frequency split. When the drive mode is resonant 

((14a)), 𝜒0,𝑌,𝜔|𝑡 = 0 if 𝛾0 = 𝜅0 and occurs for the continuous electrode arrangement, i.e. 𝛿 = 𝜋 4⁄  (see 

(7) and (8)). In this case the quadrature output is naturally zero due to the absence of nonlinear frequency 

imbalance and the 1𝜔 sense balancing voltage component is not required and 𝑉𝑌,𝜔 can be set to zero. 

Noting the definitions of the balancing force amplitudes 𝜒0,𝑋,3𝜔, 𝜒0,𝑌,𝜔, 𝜒0,𝑌,3𝜔 in (9), the balancing 

force amplitude conditions in (14b) – (14d) give the voltage conditions for 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 to achieve 

the targeted single-frequency drive and sense response. 

5.  Results 

In this section, the effectiveness of applying 3𝜔 balancing voltage components to achieve linear, single-

frequency drive and sense vibration is investigated. The frequency stabilising effects of the 

implementation are assessed using numerical results for the Allan deviation of the rate output, where 

the higher harmonic drive and sense response components are treated as pseudo-noise sources.  

The following results are based on the system parameters and operating conditions listed in Table 1. 

Table 1. Parameters and operating conditions 

Symbol Value 

𝜌 (kg/m3) 2320 

𝑅 (µm) 550 

ℎ (µm) 4 

𝑔0 (µm) 1.4 

𝜔m (kHz) 13.5 

Γ (Hz) 56.4 

Ω (°/s) 250 

𝛿 (°) 38 

𝑉0 (V) 2.1 

Voltage components (𝑉AC, 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔) are varied depending on the cases investigated. 

FE results are also included to validate the effectiveness of the proposed approach. These results are 

obtained using a transient study of an electrostatic model in COMSOL. A time history of the radial ring 

displacement is obtained at multiple evenly-spaced points on the ring centerline, which are then used to 

conduct a circumferential Fourier decomposition to determine the 2𝜃 circumferential variation 

components of radial displacement at each time step at steady state. These components are used to 

extract time histories for the steady-state drive 𝑋 and sense displacements 𝑌.  

5.1.  Modal amplitude spectra 

To demonstrate the influence of balancing voltage on the multi-frequency behaviour of the drive and 

sense vibration, the FFT of the steady-state drive and sense displacements is considered, with 

comparisons made between the default unbalanced case (𝑉𝑋,3𝜔 = 𝑉𝑌,𝜔 = 𝑉𝑌,3𝜔 = 0) and with the 

conditions (14b) – (14d) satisfied. 

The effects of the 3𝜔 balancing voltage components on the 3𝜔 drive and sense response components 

are first investigated. Equations of motion (4a) and (4b) are solved to obtain the time histories of the 

drive and sense displacements until steady-state is achieved. Based on the steady-state drive and sense 

displacements, Figure 3(a) and (b) show the amplitudes of the 3𝜔 drive and sense displacement 
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components as the 3𝜔 drive and sense balancing voltage amplitudes are varied up to twice the required 

values to satisfy (14b) and (14d), which are 𝑉𝑋,3𝜔|𝑡 = 0.92 𝑚𝑉 and 𝑉𝑌,3𝜔|𝑡 = −7.12 𝜇𝑉 respectively. 

In these results, the drive amplitude is fixed at 10% of the capacitive gap, requiring a drive voltage 

amplitude of 𝑉AC = 5.5 𝑚𝑉, and the driving frequency is fixed at the drive resonant frequency 𝜔𝑋 

(condition in (14a)) at 11.4 kHz. The required 1𝜔 sense balancing voltage amplitude 𝑉𝑌,𝜔 to eliminate 

the quadrature output 𝑦𝑎 is 𝑉𝑌,𝜔|𝑡 = −6 𝜇𝑉 (condition in (14c)). FE results are also included at the data 

points near 𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 and 𝑉𝑌,3𝜔 = 𝑉𝑌,3𝜔|𝑡. 

 
Figure 3. Effects of the 3𝜔 (a) drive and (b) sense balancing voltage amplitudes on the 3𝜔 drive and 

sense vibration amplitude components respectively. 

Both the 3𝜔 drive and sense amplitude components minimise when 𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 and 𝑉𝑌,3𝜔 =

𝑉𝑌,3𝜔|𝑡, and the FE results are in good agreement with the theoretical results. These results indicate that 

the minimisation of the 3𝜔 drive and sense amplitude components offers a practical means to determine 

the required 3𝜔 balancing voltage amplitudes 𝑉𝑋,3𝜔|𝑡 and 𝑉𝑌,3𝜔|𝑡. 

Figure 4(a) and (b) show the FE results for the drive and sense amplitude spectra for the cases where 

no 3𝜔 balancing voltages are applied (𝑉𝑋,3𝜔 = 𝑉Y,3𝜔 = 0) and with the 3𝜔 balancing voltages applied 

to satisfy (14b) and (14d), i.e. 𝑉X,3𝜔 = 𝑉X,3𝜔|𝑡, 𝑉Y,3𝜔 = 𝑉Y,3𝜔|𝑡. In both sets of results, the FE transient 

studies are run for 900 load cycles to ensure sufficient decay of the transient response to obtain the 3𝜔 

drive and sense amplitude components with sufficient accuracy. The number of load cycles chosen is 

limited due to the significant computation time involved to obtain the time histories of the drive and 

sense displacements, which is within the order of days. 

 
Figure 4. Comparison of (a) drive and (b) sense amplitude spectra for the 3𝜔-unbalanced (𝑉𝑋,3𝜔 =

𝑉𝑌,3𝜔 = 0) and balanced (𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 , 𝑉𝑌,3𝜔 = 𝑉𝑌,3𝜔|𝑡) cases. 

The drive and sense displacements exhibit amplitude components at the fundamental frequency 𝜔 

and 3𝜔. The amplitude peaks for the higher harmonics (5𝜔, 7𝜔, 9𝜔, ⋯) are not revealed as the transient 

response is not sufficiently attenuated with the chosen number of load cycles.  

The amplitudes of the fundamental frequency component of the drive and sense displacements are 

unaffected by the presence of the 3𝜔 balancing voltages. However, the 3𝜔 drive and sense amplitude 
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components reduce by 2 orders of magnitude when the 3𝜔 balancing voltages are applied. The multi-

frequency behaviour is not fully negated as the FE model also includes higher order electrostatic 

nonlinearities (beyond cubic) which are not accounted for in the present theoretical analysis. 

Additionally, all nonlinear forces involving the direct forcing voltage amplitudes 𝑉𝐴𝐶, 𝑉𝑋,3𝜔, 𝑉𝑌,𝜔, 𝑉𝑌,3𝜔 

have been discarded from (4a) and (4b). However, the reduced 3𝜔 drive and sense amplitude 

components confirm that the proposed direct approach suppresses the multi-frequency behaviour.  

5.2.  Rate readout and Allan deviation 

The device rate readout of the device is now considered, which is determined from the multi-frequency 

sense displacement. The higher harmonic drive and sense components are treated as pseudo-noise 

sources distorting the rate readout, and the effects on the Allan deviation of the rate readout are 

investigated. 

The rate readout Ω𝑜𝑢𝑡 is determined from sense displacement 𝑌. Provided the drive mode is resonant 

(𝜔 = 𝜔𝑋) and the 1𝜔 sense balancing voltage has been set to negate the quadrature output (condition 

(14c)), the rate readout is defined as: 

Ω𝑜𝑢𝑡(𝑡) =
1

𝑆
[2𝑌 sin𝜔𝑋𝑡 + (

𝜔𝑋

2𝜋
∫ 2𝑌 sin𝜔𝑋𝑡 𝑑𝑡

2𝜋 𝜔𝑋⁄

0

)cos 2𝜔𝑋𝑡] 

where 𝑆 = 𝐺Ω𝑥 (2Γ)⁄  is the scale factor (see definition of rate output 𝑦𝑞 in (13)).  

In the bracketed term, sin𝜔𝑋𝑡 represents the drive phase as it oscillates at a −𝜋 2⁄  phase lag relative 

to the harmonic drive force 𝜒0,AC cos𝜔𝑡. The multiplication of the sense displacement signal 𝑌 with 

sin𝜔𝑋𝑡 is commonly implemented in the demodulation process to obtain the rate readout as the drive 

vibration phase is used as the demodulation reference [11, 12]. The fundamental frequency component 

in the sense displacement also generates a 2𝜔𝑋 signal after the multiplication 𝑌 sin𝜔𝑋𝑡, so the second 

term involving the integral is aimed at negating this 2𝜔𝑋 signal. As such, in the linear, ideal case where 

the sense displacement has a single frequency (𝑌 = −𝑦𝑞 sin𝜔𝑡), the rate readout is constant and equal 

to the angular rate input, i.e. Ω𝑜𝑢𝑡 = Ω. As such, any time variation of the rate readout is directly 

attributed to the presence of higher harmonics in the sense displacement. 

Figure 5 shows the FE results for the rate readout error for the cases without the 3𝜔 balancing 

voltages (𝑉𝑋,3𝜔 = 𝑉𝑌,3𝜔 = 0) and with the 3𝜔 balancing voltages applied i.e. 𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 , 𝑉𝑌,3𝜔 =
𝑉𝑌,3𝜔|𝑡. In the plot, the final 10 load cycles of the FE transient study have been used to ensure the 

transient response effects are minimised. 

  
Figure 5. Time histories of rate readout errors for the 3𝜔-unbalanced (𝑉𝑋,3𝜔 = 𝑉𝑌,3𝜔 = 0) and balanced 

(𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 , 𝑉𝑌,3𝜔 = 𝑉𝑌,3𝜔|𝑡) cases.  

The 3𝜔 balancing voltage significantly reduces the rate readout error. This is due to the reduced 3𝜔 

sense amplitude component, as shown in Figure 4(b). The magnitude of the rate readout fluctuation is 

comparable with typical MEMS gyroscopes [12], indicating that these deterministic nonlinearities have 

non-negligible impact on rate readout compared to random noise sources. 
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The rate readout without 3𝜔 balancing voltages exhibits periodicity, where the dominant frequency 

component is 4𝜔 stemming from the 3𝜔 and 5𝜔 sense amplitude components. This periodicity is the 

direct result of the higher harmonics within the sense displacement. The 4𝜔 rate readout periodicity is 

not clearly shown for the case with the 3𝜔 balancing voltages applied because the 3𝜔 sense 

displacement amplitude has been reduced significantly such that it is only 1 order of magnitude larger 

than the transient response, as shown in Figure 4(b).   

Figure 6 shows the Allan deviation of the rate readout for the same systems used in Figure 5. Similar 

to the results in Figure 5, only the last 10 load cycles of the rate readout time history is considered when 

calculating the Allan deviation results, limiting the averaging time to 0.43 ms. 

 

 
Figure 6. Allan deviation of rate readout comparison between the 3𝜔-unbalanced (𝑉𝑋,3𝜔 = 𝑉𝑌,3𝜔 = 0) 

and balanced (𝑉𝑋,3𝜔 = 𝑉𝑋,3𝜔|𝑡 , 𝑉𝑌,3𝜔 = 𝑉𝑌,3𝜔|𝑡) cases.  

Applying the 3𝜔 balancing voltage reduces the Allan deviation by 1 order of magnitude, indicating 

improved frequency stability of the rate readout. The achieved reduction is limited by the strength of 

higher order electrostatic nonlinearities, which are not compensated for using the proposed approach. 

6.  Conclusion 

An approach using electrostatic forces to suppress the multi-frequency mechanical vibrations in MEMS 

ring-based CVG’s has been investigated. The approach involves applying direct electrostatic forces on 

the drive and sense modes to counterbalance residual higher frequency forces caused by electrostatic 

nonlinearities, up to cubic order. It is found that specific conditions must be satisfied to achieve this 

balancing, necessitating the use of harmonic drive and sense balancing voltages at triple the drive 

frequency. 

The proposed implementation is shown to reduce the higher harmonic drive and sense response 

components by orders of magnitude. This results in improved frequency stability as indicated by lower 

Allan deviations, and reduced device rate readout fluctuations. The attainable frequency stability 

improvement is limited by the presence of higher order electrostatic nonlinearities. However, the 

proposed approach can be extended to account for these higher order electrostatic nonlinearities. 
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