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Abstract—Deep learning models have achieved high perfor-
mance in numerous semantic segmentation tasks. However, when
the input data at test time do not resemble the training data,
deep learning models can not handle them properly and will
probably produce poor results. Therefore, it is important to
design algorithms for deep learning models to reliably detect
out-of-distribution (OOD) data. In this paper, we propose a
novel fuzzy-uncertainty-based method to detect OOD samples for
semantic segmentation. Firstly, to capture both data and model
uncertainties, test-time augmentation and Monte Carlo dropout
are applied to a ready-trained image segmentation model for
generating multiple predicted instances of a given test image.
Then interval fuzzy sets are generated from these multiple
predictions to describe the captured uncertainty via distance
transform operators. Finally, an image-level uncertainty score,
which is calculated from the generated interval fuzzy sets, is used
to indicate if it is an OOD sample. Experiments on testing three
OOD test sets on a skin lesion segmentation model show that
our proposed method achieved significantly higher classification
accuracy in detecting OOD samples than three other state-of-
the-art uncertainty-based algorithms.

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) based meth-
ods have achieved high performance in numerous se-

mantic image segmentation tasks, but most methods assume
that the training and test data are sampled from the same
underlying distribution. However, the data used in the test time
potentially consists of anomalous data that are out of the train-
ing data distribution. In this case, the semantic segmentation
models tend to generate unsatisfactory segmentation results
without informing the user, since there are no ground truth
masks to assist the user in evaluating segmentation quality. In
some scenarios, such as self-driving and clinical applications,
the error-tolerance rate is considerably low. A tiny segmenta-
tion error may result in an unexpected car accident or a med-
ical negligence. Thus, reliable and robust image segmentation
models with the ability to detect out-of-distribution (OOD) test
cases are highly desirable in practical applications.

Based on the literature, there are mainly three categories of
OOD detection methods. 1) Distance-based methods calculate
the distances from the test image to each of the training
images [1], [2]. Each image is represented by its feature maps
learned from the semantic segmentation model. 2) Softmax-
based methods use the maximum value of softmax function
outputs as the OOD measure [3]. 3) Learning-based methods
normally introduce auxiliary models to assist the OOD de-
tection [4]. However, in practice, these methods have their
limitations. For example, distance-based methods are time-
consuming as they need to iterate through all the training

samples in each OOD detection. Softmax-based methods only
take pixel-wise OOD detection into consideration and highly
rely on the pixel-wise confidence values. Moreover, learning-
based approaches require larger training datasets than the other
methods, due to the large number of learnable parameters.

Different from the above methods, we explore the use of
image-level uncertainty as a high level and reliable measure to
detect OOD. The calculation of image-level uncertainty relies
only on the output of the segmentation model [5], which is
easy to implement and no learning process is required. When
the uncertainty is higher than a certain value, it means the
input image is potentially out of distribution and requires
a manual examination. Roy et al.[6] measured the image-
level uncertainty using the variance over the mean of all
foreground pixels based on multiple predicted images that are
produced by the image segmentation model (denoted as CV
method). Mehrtash et al. [7] firstly calculated the pixel-wise
uncertainty and then use the mean uncertainty value of the
target region to represent the image-level uncertainty (APE).
Both the CV and APE methods treated the low uncertainty
and the high uncertainty areas equally without acknowledge
that certain object regions are more important than other parts.
For instance, the segmentation around the object boundary is
more challenging and important than other regions. Therefore,
our previous work [5] proposed a distance-to-boundary-aware
method (denoted as FIU-SQ) to quantify the image-level
uncertainty based on type-1 and general type-2 fuzzy sets.

On the other hand, interval fuzzy sets are also power-
ful to describe and calculate different kinds of uncertainties
compared to type-1 fuzzy sets, and have low computational
complexity in comparison to general type-2 fuzzy sets [8].
Ananthi et al. [9] employed interval fuzzy sets to remove the
uncertainty in a noisy image. Xu et al. [10] leveraged interval
fuzzy sets to handle the higher-order uncertainty of remote
sensing image data. However, limited research works focus on
the application of applying interval fuzzy sets to assess image
segmentation uncertainty and then detect OOD samples.

In this paper, we propose to combine interval fuzzy sets
and deep learning based method for OOD detection in med-
ical image segmentation. Firstly, various image augmentation
operators e.g. rotation, scale, flipping, etc. are applied to the
input test image to generate several augmented images, which
are then sent into a ready-trained image segmentation model.
Both test-time augmentation and Monte Carlo dropout are
adopted to generate a set of predicted outputs that correspond
to the augmented input images for capturing the data and
model uncertainties. Next, interval fuzzy sets are applied to
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Fig. 1: The pipeline to generate multiple predicted images

describe the set of predicted images by considering pixel-to-
boundary distance measures. Finally, interval-fuzzy-sets-based
uncertainty is calculated to classify the in-distribution and
OOD data. The key contributions of this paper are as below.

• We extend our previous study [5] and introduce interval
fuzzy sets to calculate the segmentation uncertainty.

• A novel OOD detection algorithm is proposed using
interval fuzzy sets and distance transform operators.

• We evaluated our method using a public skin lesion
dataset as the training set and three other datasets (lung
X-ray, Nuclei and skin lesion with added artificial noise)
as the OOD test sets. The results show that our method is
more powerful to detect OOD samples while maintaining
higher classification accuracy compared to other state-of-
the-art uncertainty-based methods.

The remainder of this paper is structured as follows: Section
II introduces deep learning based image segmentation. Section
III describes the detailed procedure of our proposed interval-
fuzzy-sets-uncertainty-based OOD detection algorithm (FIU-
OD). Section IV presents the datasets, implementation details,
experimental design and results. Conclusions are drawn in
Section V.

II. BACKGROUND

Image segmentation is the process of dividing a digital
image into various image regions, the goal of which is to
reduce the complexity of the image and improve the efficiency
of image analysis. Recently, with the development of deep
learning technologies and the increasing amount of training
data, convolutional neural networks (CNNs) and transformer
modules have been widely used to construct segmentation
models and then segment images via supervised learning.
The deep-learning-based segmentation process is pixel-wise
classification and normally called semantic segmentation. In
2015, Long et al. [11] firstly designed a pixel-to-pixel and
end-to-end semantic segmentation model, known as Fully
Convolutional Networks (FCN), based on multiple convo-
lutional layers. Following the introduction of FCN, various
improved methods e.g. Unet [12], SegNet [13], Deeplab [14],
were developed and achieved excellent performance. With
the advent of the transformer module [15] in 2017, many
researchers adopted the transformer module to replace CNNs
and achieved outstanding performance such as Swin trans-
former [16]. However, transformer-based methods are more

time-consuming and require a larger amount of data for model
training in comparison to CNN-based methods.

Note that our developed OOD detection algorithm can be
considered as an add-on module to existing segmentation mod-
els, which is not highly dependent on the model architecture
(as long as drop-out layers are included). In this paper, due
to the popularity of Unet [12] in medical image segmentation
over other CNN-based models, we adopt the Unet model as
our backbone segmentation model.

III. A NOVEL FUZZY-UNCERTAINTY-BASED OOD
DETECTION ALGORITHM

The proposed fuzzy-uncertainty-based OOD detection al-
gorithm consists of four steps. Firstly, a CNN-based image
semantic segmentation model is trained based on a set of
training images with their corresponding ground truth masks.
Secondly, test-time augmentation (TTA) and Monte Carlo
dropout (MCdropout) are applied to capture the data uncer-
tainty and model uncertainty, respectively. Then interval fuzzy
sets are adopted to describe the captured uncertainty. Finally,
the interval-fuzzy-sets-based uncertainty value is utilized to
achieve OOD detection in the model inference process.

A. CNNs-based Semantic Segmentation Model

In this paper, Unet [12] is implemented to segment medical
images. Unet is a widely-used semantic segmentation model,
which is mainly designed to process 2D medical images.
The architecture consists of a contractive path, an expansive
path, and skip connections. The contractive path is a down-
sampling process including convolutional operators, relu ac-
tivation function, and max-pooling operators. This process is
employed to capture image features in multiple resolutions.
However, while feature information grows during this process,
spatial information diminishes. To recover spatial information,
the expansive path applies an up-sampling process so that
the output image and the ground truth image have the same
sizes. The skip connections transmit the features learned in the
contractive path to the expansive path by using concatenation
operators, allowing the expansive path to combine the spatial
and feature information simultaneously.

B. Test-time Argumentation and Monte Carlo Dropout

Once the Unet is ready-trained using the training images,
it is used for image segmentation of unseen test images.
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Fig. 2: The pipeline to obtain the interval fuzzy sets

During the test stage, TTA [17] and MCdropout [18] are used
simultaneously to estimate the data uncertainty and model
uncertainty, respectively, as illustrated in Fig. 1. For a given
test image X , N variations {X1, X2, · · · , XN} are created by
using rotation, flipping, scale etc., transformation operators.
Then these transformed versions of the given test image are
input to the ready-trained segmentation model (Unet). Note
that the dropout layers in the segmentation model are still
active in the test stage for MCdropout calculation. Thus,
for {X1, X2, · · · , XN}, N corresponding predicted images
{Y1, Y2, · · · , YN} are generated and then used to calculate the
segmentation uncertainty in the next step.

C. Grouped Distance Map Generation

Before calculating the segmentation uncertainty, a grouped
distance map is generated to divide the segmented target
region into M groups {p1, p2, · · · , pM} based on each pixel’s
distance to the segmented object boundary. The reason is that
the pixels having the same distance to the segmentation object
boundary share the same uncertainty and different distances to
the boundary imply different uncertainties. For pixels that are
closer to the object boundary, the uncertainties are normally
higher, because the object boundary is a critical and more
challenging image region for segmentation. Thus dividing the
pixels of the segmented region into different groups helps
assessing the segmentation uncertainty more accurately. The
detailed calculation procedure is described in Algorithm 1.

D. Interval-fuzzy-sets-based Uncertainty

After adopting the TTA and MCdropout, N predicted
images {Y1, Y2, · · · , YN} are obtained. To capture the
variation range of each pixel, an interval map Φ is
generated to describe the {Y1, Y2, · · · , YN}. In Φ, each
pixel value is an interval data and is represented as: Φ[i,j] =[
min

(
Y

[i,j]
1 , Y

[i,j]
2 , · · ·Y [i,j]

N

)
,max

(
Y

[i,j]
1 , Y

[i,j]
2 , · · ·Y [i,j]

N

)]
,

where i and j refer to the pixel location.
Then the interval map Φ is divided into M groups

based on each pixel’s position [i, j] and grouped
distance map {p1, p2, · · · , pM}. If the position [i, j]
belongs to pk, it means that Φ[i,j] is assigned
into the kth group. Thus, Φ is represented by
(([a11, b

1
1], [a

1
2, b

1
2], · · · , [a1τ1 , b

1
τ1 ]), · · · , ([a

k
1 , b

k
1 ], [a

k
2 , b

k
2 ], · · · ,

[akτk , b
k
τk
], · · · , ([aM1 , bM1 ], [aM2 , bM2 ], · · · , [aMτM , bMτM ])) where

Algorithm 1 Grouped Distance Map
Input: N predicted images {Y1, Y2, · · · , YN}, the size of

each image is R× C, the number of distance groups is M .
Output: the grouped pixel locations {p1, p2, · · · , pM}
1: calculate the average predicted image Yavg = 1

N

∑N
i=1 Yi

2: obtain the binary image Λ of Yavg
3: apply the Euclidean distance transform algorithm [19] on

Λ to get the distance map Θ, in which each pixel value
represents the minimum distance from this pixel location
to the segmentation boundary

4: normalize the distances in Θ into the range of [0, 1]
5: calculate the evenly distributed distance ε for each group

by ε = 1
M

6: for k from 1 to M do
7: gmax = ε× (k − 1)
8: gmin = ε× k
9: define the pixel locations group pk, where the size of

pk is t = 0
10: for i from 1 to R do
11: for j from 1 to C do
12: if then gmin ≤ Θ [i, j] ≤ gmax
13: add the location(i, j) to the pk and the size

of pk is updated by t← t+ 1

14: return {p1, p2, · · · , pM}

a is the minimum value of the predicted values, b is the
maximum value of the predicted values for a given pixel
position. τk is the number of pixels in the kth group. It is
noted that pixel-wise information in a given image has little
effect on inferring the overall segmentation quality since
pixel-wise information is noisy in comparison to region-wise
information [6]. Hence, in the next step, the τk pixel-wise
intervals in the kth group are aggregated into one interval
to represent region-wise interval confidence. Based on the
literature [20], the commonly-used interval data aggregation
algorithm is Arithmetic mean.

Definition 1: Given n intervals I1, I2, · · · , In, the Arith-
metic mean is defined as

IAm =

[
1

n

n∑
i=1

Ii,
1

n

n∑
i=1

Ii

]
, (1)

where Ii = inf (I |I ∈ Ii ) and Ii = sup (I |I ∈ Ii ).
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After applying Arithmetic mean on each group
of Φ, region-wise interval confidence is obtained([

a1, b
1
]
, · · ·

[
ak, b

k
]
, · · ·

[
aM , b

M
])

, where ak is the

aggregation of
(
ak1 , a

k
2 , · · · , akτk

)
, and b

k
is the aggregation

of
(
bk1 , b

k
2 , · · · , bkτk

)
. The generated interval confidence

sets can be treated as interval fuzzy sets (shown in Fig.
2). The x-axis is the pixel-to-boundary distance. The y-
axis is the predicted value which refers to the degree of
belonging to the segmentation object.

[
a1, · · · , ak, · · · , aM

]
and

[
b
1
, · · · , bk, · · · , bM

]
represent the lower membership

function and the upper membership function, respectively.
The next step is to calculate the uncertainty of the interval

fuzzy set. Based on the literature [21], the commonly-used
interval fuzzy sets uncertainty formula is

UIFS

(
Ã
)
=

1

M

M∑
k=1

[
µÃ (xk)− µ

Ã
(xk)

]
(2)

where µÃ (xk) is b
k
, µ

Ã
(xk) is ak in our case. M is the

number of membership values. This formula uses the average
difference between the upper membership function and the
lower membership function to represent the uncertainty of
the generated interval fuzzy sets. Then the uncertainty value
is applied to detect OOD by finding a threshold, which is
determined using an in-distribution test set.

IV. EVALUATION

In this section, the performance of our proposed FIU-OD
algorithm is evaluated using public medical image datasets.
The training (in-distribution) dataset is skin lesion and the
OOD datasets are nuclei, lung and the skin lesion images
with added Gaussian noise. The goal of the experiments is to
discriminate the in-distribution and OOD datasets by finding
a threshold of uncertainty value.

A. Datasets

In-distribution dataset:
• Skin cancer (SK): this dataset is publicly available

in the ISIC-2018 challenge (https://challenge2018.isic-
archive.com/) that aims to segment skin lesions. It con-
sists of 2594 raw dermoscopic images and their corre-
sponding ground truth images. Each image only has one
skin lesion region and it is a binary segmentation task.

Out-of-distribution datasets:
• Nuclei: unlike the SK dataset, the nuclei dataset

has more than one object to be segmented. More-
over, the objects present various sizes and shapes.
This dataset is obtained from the 2018 Data Sci-
ence Bowl (https://www.kaggle.com/c/data-science-bowl-
2018-/data). 140 images were used as OOD samples to
test our method.

• Lung: this public dataset [22] contains lung x-ray images
that all patients share similar shapes of lung regions to be
segmented. 140 images were used as the OOD samples
to test our method.

• Gaussian noise: this is not a strictly OOD dataset, which
is generated from the SK dataset by adding Gaussian
noises to each of the SK images. The mean and variance
of the Gaussian noise were set to 0 and 30. The same
519 test images as the SK dataset were used for testing.

Fig. 3 shows the example images of in-distribution and out-
of-distribution datasets.

Fig. 3: (a) is from the in-distribution skin lesion dataset. (b),
(c) and (d) are from the out-of-distribution datasets of nuclei,
lung and SK with noise respectively.

B. Implementation Detail

In this paper, Unet was used as the segmentation model for
all experiments. The pixel size for the input and output of Unet
is 256×256, which means that all images of different datasets
were resized to the same size. This model has five layers
in both the contractive (encoding) and expansive (decoding)
paths. In the encoding stage, the number of kernels for the
convolutional operators was 32 (1st layer), 64 (2nd layer), 128
(3rd layer), 256 (4th layer), and 512 (5th layer). The kernel
size of each layer was 3× 3 with stride of 1, and maxpooling
was adopted to down-sample the feature maps. During the
decoding stage, de-convolution operations with the kernel size
of 2× 2 were adopted to up-sample the feature maps.

For all the segmentation tasks, the parameters of Unet were
initialized from a uniform distribution. Unet was trained with
cross-entropy loss. During the training process, early stopping
was applied to avoid the over-fitting issue. Adam was the op-
timization algorithm with an initial learning rate of 0.0001 to
update the parameters for Unet. Once the segmentation model
is ready-trained, it is then used for uncertainty estimation and
OOD detection for any given test image.

C. Experimental Design

We compared our method to three other uncertainty-based
methods, namely CV [6], APE [7] and FIU-SQ [5]:

1) CV: After obtaining N predicted images
{Y1, Y2, · · · , YN} by TTA and MCdropout, the region-
wise uncertainty is calculated by the standard deviation σ
over the mean µ:

UCV =
σ
{
Y S
1 , Y S

2 , · · ·Y S
N

}
µ
{
Y S
1 , Y S

2 , · · ·Y S
N

} (3)

where S is the segmented target region.
2) APE: Firstly, the pixel-wise uncertainty is calculated as

Up = − 1

N

N∑
i=1

pi (x) log (pi (x)) (4)
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Fig. 4: The ROC curves for three OOD detection algorithms: FIU-OD, CV, FIU-SQ and APE

where N is the number of the predicted images generated by
TTA and MCdropout. p(x) is the pixel-wise predicted value.
Then the region-wise uncertainty is calculated as:

UAPE =
1

|S|
∑
i∈S

U i
p, (5)

where S is the segmented target region.
3) FIU-SQ: The following fuzzy entropy formula is chosen

to calculate the uncertainty using FIU-SQ method.

U (A) = 1−

[∑M
i=1 |2µA (xi)− 1|2

] 1
2

M
1
2

, (6)

where µ is the fuzzy membership function and M is the
number of the elements in the defined fuzzy sets. A more
detailed explanation of the formula (6) is presented in our
previous work [5].

For method evaluation, each of the OOD datasets was added
to the in-distribution SK test set to build a new test set. Then
all methods were executed to generate an uncertainty value for
each of the test images. If the segmentation uncertainty value is
smaller than a threshold, it is classified as an in-distribution im-
age (positive), otherwise an OOD image (negative). The higher
the classification accuracy in discriminating in-distribution and
OOD the better the algorithms’ performance. The threshold of
the uncertainty value is determined by fixing the true positive
rate (TPR) at an acceptable level (application dependent) using
the in-distribution test set. The area under the receiver operat-
ing characteristic curve (AUROC), classification accuracy and
false positive rate (FPR) are used as the evaluation metrics for
method comparison.

D. Experimental Results

The receiver operating characteristic (ROC) curves of the
four methods on the three test sets are shown in Fig. 4.
The AUROC values are reported in TABLE I. It is seen
that our proposed FIU-OD algorithm performs better than all
other methods on the nuclei and lung datasets with statistical
significance (measured by Wilcoxon signed rank test with
p < 0.05). While for the SK dataset with Gaussian noise, CV
has better classification ability but no statistical significance
to our method.

Furthermore, the distribution of the uncertainty values cal-
culated by each method for the in-distribution SK test set
and three OOD test sets are shown in Fig. 5. It is seen
that our FIU-OD method (Fig.5 (a)) can better separate the
in-distribution test images (blue line) from other OOD test
images. The threshold that applies to the uncertainty value
for OOD detection is determined by fixing the TPR at an
acceptable level based on the in-distribution test set. We
used 80% TPR as an example in our experiment for the
skin lesion detection problem, which can be set differently
dependent on applications. Based on 80% TPR, the thresholds
for FIU-OD, CV, APE, and FIU-SQ are 0.473, 0.244, 0.086,
and 0.325 respectively (black dash lines in Fig. 5). Then
based on these threshold values, the classification accuracy
of each method and FPR are calculated and reported in
TABLE I. For the lung and nuclei datasets, our method has the
highest classification accuracy and lowest FPR with statistical
significance compared to other methods. For the SK dataset
with Gaussian noise, APE has the highest accuracy but with
no statistical significance to our method. It is observed that
all methods performed similarly well for the SK with noise
dataset, because this is an artificially corrupted in-distribution
dataset that is relatively easy to handle. Note that current
findings of the proposed OOD algorithm are only based on
comparisons with three other OOD methods. To draw more
solid conclusions, extra experiments and comparisons with
other approaches may be needed.

V. CONCLUSIONS

This paper proposes an interval-fuzzy-sets-uncertainty-
based OOD detection algorithm, which can be used to in-
fer segmentation quality without access to the ground truth
segmentation masks. This method firstly generates several
predicted images to capture the data and model uncertainties
by TTA and MCdropout. Then interval fuzzy sets are applied
to quantify the captured uncertainty. Finally, a threshold is
determined using TPR of the in-distribution test set to classify
OOD data and in-distribution data. Experimental results show
that our proposed FIU-OD method has better classification
accuracy and lower FPR than three other state-of-the-art
uncertainty-based methods. In the future work, more com-
prehensive studies could be performed with other (e.g. 3D)
datasets and OOD approaches.
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Fig. 5: The distribution of uncertainty values for (a) FIU-OD, (b) CV, (c) APE, and (d) FIU-SQ. The blue line is the in-
distribution dataset. The green, yellow and red lines are OOD datasets. The black line is the selected threshold for each method.

TABLE I: Experimental results for FIU-OD, CV, APE and FIU-SQ in three OOD datsaets: Nuclei, Lung and Gaussian Noise.
Mean ± standard deviation values are reported for all the evaluation measures. Wilcoxon signed rank test was used as statistical
test. ∗ represents FIU-OD and CV are significantly different with p < 0.05; ♯ represents FIU-OD and APE are significantly
different with p < 0.05; ⋄ represents FIU-OD and FIU-SQ are significantly different with p < 0.05.

OOD Datasets Methods AUROC(%) ↑ Accuracy(%)↑ FPR(%) ↓

Nuclei
FIU-OD 94.20± 0.04 ∗♯⋄ 84.00± 0.07 ♯⋄ 0.00± 0.00 ∗♯⋄

CV 92.31± 0.07 83.53± 0.25 2.28± 0.94
APE 82.24± 0.02 77.84± 0.33 30.31± 0.72

FIU-SQ 90.91± 0.01 82.30± 0.59 8.34± 0.94

Lung
FIU-OD 87.33± 0.13 ∗♯⋄ 83.89± 0.36 ∗♯⋄ 1.43± 0.89 ∗♯⋄

CV 84.39± 0.14 81.91± 1.11 10.72± 1.68
APE 85.75± 0.06 80.24± 1.27 18.58± 2.10

FIU-SQ 68.01± 0.01 80.09± 1.12 19.29± 2.10

Gaussian
FIU-OD 90.29± 0.83 83.64± 0.41 7.66± 1.80

CV 91.39± 0.06 83.10± 0.52 9.46± 1.95
APE 88.54± 0.17 84.05± 0.06 6.31± 0.37

FIU-SQ 90.23± 0.09 82.02± 0.35 13.07± 0.27
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