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Abstract—Deep convolutional neural networks (DCNN)-based
methods have achieved promising performance in semantic image
segmentation. However, in practical applications, it is important
not only to produce the segmentation result but also to inform the
segmentation quality (e.g. confidence of the segmentation result).
In this paper, we propose to utilize fuzzy sets for estimating
segmentation uncertainty, therefore to infer the quality of seg-
mentation produced by a DCNN model. The proposed method
combines test-time augmentation and fuzzy sets to estimate an
image-level uncertainty. Six different fuzziness measures are
implemented and compared, in order to select the best fuzzy
uncertainty metric for the proposed method. A public skin lesion
dataset is used to evaluate the method. The results show a strong
correlation (Pearson correlation coefficient of 0.736) between our
proposed uncertainty measure and image segmentation quality
measured by Dice coefficient.

Index Terms—fuzzy sets, image segmentation, quality quantifi-
cation, uncertainty, skin lesion

I. INTRODUCTION

Medical image segmentation has a pivotal role in medical
image analysis. Big data and parallel computing promote
the rapid development of medical image segmentation. In
recent years, numerous deep convolutional neural networks
(DCNN)-based segmentation models including FCN [1], UNet
[2], DeepLab [3], have been designed to segment variety of
medical image modalities (e.g. CT, MRI, etc.). For some
specific diseases (e.g. skin lesion [4], lung tumor [5]), the
segmentation performance of these DCNN-based models can
be on a par with human experts.

Although modern image segmentation models have
achieved high accuracy in numerous public datasets [6], their
applications in the real world are still limited due to the fact
that no reliable indication of the segmentation quality can be
provided. Current image segmentation models have no ability
to indicate the success/failure or the level of trustworthiness of
the segmentation result. Instead, these models only provide a
segmentation result without segmentation quality information,
which limits the widespread application of image segmentation
models especially in clinical settings. Note that the pixel-
wise conference scores provided by the segmentation models
are different from the uncertainty or trustworthiness of the
segmentation results.

Therefore, it would be of great importance to design a
quality quantification algorithm for the image segmentation
models. The quality quantification algorithm should be capable
of indicating whether the segmentation result has poor or good
quality without knowing the ground truth segmentation. Based
on the literature, there are many different types of methods to
enable quality quantification. Robinson et al. [7] and DeVries
et al. [8] constructed a DCNNs-based regression model, which
utilized the raw image and the predicted segmentation image
to directly predict the segmentation quality measured by
Dice coefficient. This method needs to train a new DCNN-
based regression model which is time-consuming, and the
performance is highly dependent on the training dataset. Roy
et al. [9] and Hoebel et al. [10] utilized the segmentation
uncertainty information captured by MCdropout [11] to assess
the segmentation quality. As a high uncertainty value generally
indicates an incorrect prediction, the segmentation quality
has a negative relationship with the segmentation uncertainty
[12]. However, these methods only considered the pixel-wise
uncertainty and their performance can be easily affected by the
output of a given segmentation model (see the corresponding
formula explanation in [9] and [10]). Different from the above
mentioned methods, we propose a novel fuzzy uncertainty
estimation method for image-level quality quantification, so
that it is useful in selecting high quality segmentation results
automatically in practical applications.

Fuzzy sets, proposed by Zadeh in 1965 [13], can efficiently
handle ambiguity and vagueness in many fields. Kwak et al.
[14] utilized fuzzy sets to manage the uncertainty in face
images, which was beneficial for the improvement of face
recognition performance. De et al. [15] studied the uncertainty
in medical diagnosis based on the intuitionistic fuzzy set
theory. Wang et al. [16] adopted fuzzy sets and fuzzy logic to
deal with the uncertainty in text and generate interpretable
results of the public sentiments analysis model. However,
no research investigates the application of fuzzy sets in the
evaluation of image segmentation uncertainty. In this paper,
fuzzy sets are applied to represent the segmentation results and
then the segmentation uncertainty is calculated by evaluating
the fuzziness (fuzzy uncertainty) of the given fuzzy sets. A
high uncertainty value indicates poor-quality segmentation and



Fig. 1. The left part is the flow chart of our proposed fuzzy-based quality quantification algorithm. The right part is the detailed procedure for each step
shown in the left flow chart. First, test-time augmentation is applied to generate n predicted images. The n predicted images are then combined with the
grouped distance map calculated by a distance transform operator and the average predicted image, to obtain general type-2 fuzzy sets. Next a type reduction
operator is applied to convert type-2 fuzzy sets to type-1 fuzzy sets. Finally, the fuzziness measures of type-1 fuzzy sets are used to evaluate the image-level
uncertainty value.

vice versa. Experiments with six different fuzziness measures
are implemented to verify the effectiveness of the proposed
fuzzy-based quality quantification algorithm on a public skin
lesion dataset.

The main contributions are as follows.

• This is the first time that fuzzy sets are applied to design a
quality quantification algorithm in DCNN models, which
can estimate the segmentation quality without using the
ground truth segmentation result.

• Based on the combination of test-time augmentation and

distance transform, the segmentation uncertainty can be
represented by fuzzy sets and calculated by the fuzziness
of the given fuzzy set.

• Six different fuzziness measures are adopted and com-
pared to investigate the relationship between the proposed
uncertainty measure and the segmentation quality mea-
sured by Dice coefficient. .

The structure of this paper is as follows. Section II in-
troduces the background information for the quality quan-
tification. The detailed procedure for the proposed fuzzy-



based quality quantification algorithm is given in Section III.
Experimental results and discussion are drawn in Section IV.
Finally, conclusions are given in Section V.

II. BACKGROUND

Image segmentation models can generate the segmentation
results but have no ability to provide related information
about segmentation quality without the help of ground truth
images. To address this limitation of the segmentation model,
many researchers devote themselves to the investigation of the
quality quantification algorithms. The quality quantification is
a auxiliary algorithm, the function of which is to evaluate the
segmentation quality without the ground truth images.

Based on the literature, there are two popular classes of
methods to design the quality quantification algorithm. The
first class of methods is to use learning-based method (e.g.
DCNN-based regression model) to measure the segmentation
quality. The input of the model is the raw image and the
predicted image and the output is a value that indicates the
segmentation quality (e.g. Dice coefficient) [7], [8]. The sec-
ond one is to utilize the segmentation uncertainty to assess the
segmentation performance. As the segmentation uncertainty
has a negative relationship with the segmentation quality and
the calculation procedure of uncertainty is independent of the
ground truth images, a low uncertainty refers to a good quality
segmentation. After capturing the segmentation uncertainty
by MCdropout [11], Hoebel et al. [10] adopted the overlap
between pairwise predicted images to measure the uncertainty;
Roy et al. [9] utilized the intersection over overlap (IOU) to
calculate the uncertainty; and Roy et al. [17] proposed region-
wise variation coefficient (VC) to measure the uncertainty. In
this paper, our proposed method belongs to the second class
of methods, which utilizes fuzzy sets to estimate image-level
uncertainty for segmentation quality quantification.

III. FUZZY-BASED QUALITY QUANTIFICATION ALGORITHM

An overview of the proposed method is shown in Fig. 1. It
is assumed that a DCNN-based segmentation model is trained
(e.g. Unet [2]), which is capable of performing segmentation
on a given input image. Our method works as a computa-
tional block in the model inference process, which consists
of the following steps. (1) test-time augmentation [18] is
firstly applied to generate n predicted segmentation outputs.
(2) An average predicted segmentation image is calculated
based on the n predictions. A distance map is generated using
distance transform [19]. The distances are then normalized and
discretized into groups, results in a grouped distance map. (3)
The n predicted segmentation images are used to generate a
set of confidence distributions for each of the distance groups,
which is then formalized as general type-2 fuzzy sets. (4) Type
reduction is applied to convert the type-2 fuzzy sets to type-1
fuzzy sets. (5) Fuzziness measures are subsequently applied to
the type-1 fuzzy sets to calculate an image-level uncertainty
value, which is used as a surrogate for segmentation quality
quantification. The detailed process of each step is given as
follows.

A. Segmentation Model

In this paper, a widely used DCNN-based semantic segmen-
tation model (i.e. Unet [2]) is used to perform the task of image
segmentation. Compared with other segmentation models,
Unet is more suitable for medical image segmentation since
it utilizes learned features in a multi-resolution manner. This
model is comprised of image/feature map downsampling and
upsampling processes. The aim of the downsampling process
is to capture multi-resolution features, while the upsampling
process (also called deconvolution) is primarily applied to re-
size the feature maps in order to make the predicted image and
the ground truth image have consistent sizes. Skip-connection
is the special characteristic of this model, which is applied to
transmit learned deep features from the downsampling process
to the upsampling process to enable a more effective feature
learning. The detailed model structure is given in section IV-
B. Note that our method can be applied to other DCNN based
models, as long as test-time augmentation (section III-B) can
be applied. .

B. Test-time Augmentation

Several segmentation uncertainty estimation methods can be
applied to the Unet model. Herein, we focus on estimating one
of most acknowledged types of uncertainty in DCNN mod-
els, known as data uncertainty. Data uncertainty is generally
caused by the process of image acquisition and cannot be
eliminated with the increasing amount of data. Inspired by
Wang’s research [18], test-time augmentation (TTA) shown in
Fig. 1– 1⃝ is adopted to handle the data uncertainty.

Given the true image X0 and the observed image X , the
image acquisition model is represented as: X =Θα (X0), where
Θ is a transformation operator (e.g. translation, rotation,
scaling, and flipping), and α depicts the parameters of the
given transformation operator.

The segmentation output Y can be f (X ,ω), where f (.)
refers to the learned mapping function by DCNN models, and
ω is the model parameters including weights, bias and other
hyper-parameters.

Then we have

Y =Θα (Y0) =Θα ( f (X0,ω)) =Θα

(
f
(
Θ

−1
α (X) ,ω

))
(1)

Y and Y0 are the segmentation images for X and X0
respectively. Intuitively, equation (1) indicates that to obtain
the segmentation output Y of the input image X , the X can
be firstly inversely transformed to the X0, then input to a
segmentation model for producing a segmentation output Y0,
followed by a transformation from Y0 to Y .

Next the posterior probability of Y given X is calculated as
p(Y |X ) = p

(
Θα

(
f
(
Θ−1

α (X) ,ω
)))

, where the precise value
of α is unknown but their prior distribution is informed that
is α ∼U(α). Therefore, the final predicted value is

Ŷ = E (Y |X ) =
∫

Θα

(
f
(
Θ

−1
α (X) ,ω

))
U(α)dα. (2)

The integral computation is time consuming and extremely
complicated. In practical application, Monte Carlo simulation



TABLE I
FUZZINESS MEASURES

Measures Formulas

FYa [22] 1− [∑N
i=1 |2µA(xi)−1|2]

1
2

N
1
2

FDt [23] − 1
N ∑

N
i=1 µA (xi)Log2 (µA (xi))+(1−µA (xi))Log2 (1−µA (xi))

FBe [24] 1−
(

1
N ∑

N
i=1 µA (xi)

2
)

FKa [25] 2

√
∑

N
i=1 |µA(xi)−µAnear (xi)|2

N , where µAnear (x) =
{

1,µA ⩾ 0.5
0,µA < 0.5

FKo [26]

√
∑

N
i=1 |µA(xi)−µAnear (xi)|2

∑
N
i=1

∣∣∣µA(xi)−µA f ar (xi)
∣∣∣2 where µAnear (x) =

{
1,µA ⩾ 0.5
0,µA < 0.5 and µA f ar (x) =

{
0,µA ⩾ 0.5
1,µA < 0.5

FBp [28] − 1
N ∑

N
i=1 Log2

(
µA (xi)

2 +(1−µA (xi))
2
)

method is utilized to assess E (Y |X ). We obtain the set
[α0,α1,α2, · · · ,αn] which is sampled from the prior distribu-
tion. For each parameter αi, the semantic segmentation model
is able to generate one predicted image ŷi based on equation
(2). Hence, the predicted image set [ŷ0, ŷ1, ŷ2, · · · , ŷn]is equal
to the values sampled from p(Y |X ). In another word, Ŷ
is estimated by aggregating the segmentation outputs of n
transformed versions of X . Then the n predicted images
[ŷ1, ŷ1, ŷ3, · · · , ŷn] are applied to evaluate the segmentation
uncertainty in the next step of our method.

C. Calculation of the Grouped Distance Map

TTA captures the segmentation uncertainty by generating n
predicted images [ŷ1, ŷ1, ŷ3, · · · , ŷn]. Then, a grouped distance
map (shown in Fig. 1– 2⃝) is calculated to help divide the
segmented object region into sub-groups according to their
distance to the object boundary. The reason of choosing the
pixel distance from the segmentation boundary to group the
pixels is that the segmentation results normally have higher
uncertainty for the pixels closer to the boundary and vice
versa. Hence, it is sensible to represent the predicted pixel-
wise confidence values as a function of their distance to the
object boundary. The detailed calculation procedure of the
grouped distance map is given in the following:

(1) Given an input image X, the predicted images are
[ŷ1, ŷ2, ŷ3, · · · , ŷn], where n is the number of TTA. The aver-
age of the predicted images is calculated as Ŷ = 1

n ∑
n
i=1 ŷi.

(2) The binary image ϒ of Ŷ is then calculated using the

function B(p) =

{
1, p ⩾ 0.5
0, p < 0.5

, where p is the pixel value

of Ŷ .
(3) The Euclidean distance transform algorithm [19] is then

applied to the binary image ϒ , resulting in a distance
map D . Each pixel value in the distance map means the
minimum distance to the segmented object boundary.

(4) To ensure consistent measurements of small and large ob-
jects, the distance values in the distance map is normalized
to the interval of [0,1] using Min-Max scaling algorithm
dnorm = d−dmin

dmax−dmin
, where d is the pixel value in the distance

map D .

(5) Finally, a grouped distance map is obtained by dividing the
distance into 10 evenly distributed sub-groups, as shown
in Fig. 1– 2⃝.

D. Fuzzy-Sets-based Uncertainty Estimation

Having the grouped distance map generated, the next step
is to calculate the image-level uncertainty to quantify the
segmentation quality. It is known that the degree of uncertainty
can be calculated based on the fuzziness of given type-1
fuzzy sets [21]. In this section, a novel method is proposed to
generate fuzzy sets based on predicted images and the grouped
distance map obtained in the previous sections. The method
is described in detail below and the flow-chart can be seen
in Fig. 1.

It is observed that the predicted pixel-wise confidence values
of a segmentation model are positively correlated to their
distance to the predicted object boundary. In other words, the
further away a pixel is from the object boundary the more
confident the prediction is, as illustrated in Fig. 1– 5⃝. This
curve can be considered as a type-1 fuzzy set.

On the other hand, as we have obtained the predicted images
and the grouped distance map, it is possible to get such a type-
1 fuzzy set described above by following the steps below.

As illustrated in Step 3⃝ of Fig. 1, all pixels in
[ŷ1, ŷ1, ŷ3, · · · , ŷn] are divided into 10 groups based on the
obtained grouped distance map (section III-C). It is known
that the predicted pixel value indicates the confidence level
of the pixel belonging to the target class. Therefore, for each
distance group, distribution of confidence values (see Fig. 1–
3⃝ (a)) for all pixels in that group is obtained. Hence, by
combining the distributions of all ten groups, a 3D distribution
is then generated as shown in Fig. 1– 3⃝ (b). We treat this 3D
distribution as a type-2 fuzzy set. The primary variable (x-axis)
is the distance from the pixel to the segmentation boundary,
and the secondary variable (y-axis) is the confidence value to
represent whether this pixel belongs to the target segmentation
class. The distribution of confidence values for each group can
be considered as the secondary membership function.

In the next step, to get the type-1 fuzzy set, a type reduction
method is applied to the type-2 fuzzy set. An efficient method,
known as the centroid method (i.e. weighted average in
formula (3)), is used to convert the distribution (the secondary
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membership function) of each group to a single confidence
level (see Fig. 1– 4⃝).

∑i ciµi (d,ci)

∑i µi (d,ci)
(3)

Note that this is not a standard type reduction method
for type-2 fuzzy sets. However, it can be considered as
an extension (or a variation) of the Nie-Tan type reduction
operator [20], which is for interval type-2 fuzzy sets. When
the centroid method is applied to an interval type-2 fuzzy set
(where all secondary membership degrees are equal to 1) in the
way we used above, the type-reduced results will be the same
as that based on the Nie-Tan operator. Hence, in this paper,
we call this centroid method as a type reduction method. After
applying the type reduction, a type-1 fuzzy set (as illustrated
in Fig. 1– 4⃝ (b)) is obtained.

The next step is to calculate the uncertainty level based on
the fuzziness of the type-1 fuzzy set (Step 5⃝ in Fig. 1). There
are many studies about the fuzziness measures [22]–[28]. In
this paper, six commonly used fuzziness measures are chosen
and summarised in Table I. FYa, FKa and FKo take the distance
from the given membership value to a chosen threshold value
into consideration, while FDt , FBp and FBe only consider the
membership value itself. It is noted that the threshold value in
FYa, FKa and FKo is generally specified by the highest fuzziness
level [21].

Finally, an image-level uncertainty score is obtained from
the fuzziness measure, which is used as a surrogate for
segmentation quality quantification. The performance of these
six fuzziness measures in our proposed method is investigated
in next section.

IV. EVALUATION

In this section, the performance of the six aforementioned
fuzziness measures in our proposed method is discussed.
Firstly the experiments of evaluating the correlation between
the segmentation uncertainty and the segmentation quality with
various fuzziness metrics were conducted. Then by setting a
threshold, the ability of detecting good-quality segmentation
images for the six different fuzziness measures were investi-
gated. The detail for the dataset, experimental methods and
experimental results are presented in the following subsec-
tions.

A. Dataset

A public skin lesion dataset is used to evaluate the per-
formance of our proposed fuzzy-based quality quantification
method. This dataset is from a grand challenge (ISIC2018),
which includes 2594 dermoscopic lesion images with corre-
sponding ground truth segmentation labels. Compared to other
medical image segmentation datasets, the skin lesion dataset
has a wide variety of shapes, colours, sizes, textures, and lesion
boundaries. Therefore, it was selected to evaluate our method.

B. Experimental Methods
In the experiments, we compared the performance of six

commonly used fuzziness measures as discussed in III-D
(Table I) for segmentation uncertainty estimation. Pearson
correlation coefficient [30] is used to measure the relationship
between the estimated uncertainty value and the image seg-
mentation quality measured by Dice coefficient. The Pearson
correlation coefficient measures the linear correlation of two
variables and the value is between -1 and 1. When the value
is close to 1 or -1, it means the given two variables have a
strong positive relationship or a strong negative relationship.
When the value is close to 0, it means the given two variables
are almost unrelated. The formula of Pearson correlation
coefficient is given as

ρX ,Y =
E [XY ]−E [X ]E [Y ]√

E [X2]− (E [X ])2
√
E [Y 2]− (E [Y ])2

, (4)

where X and Y refers to uncertainty values and Dice values
respectively, E means the expectation. It is noted that the
proposed fuzzy uncertainty measure has a negative relation-
ship with the segmentation quality. The Dice coefficient is
a widely used metric to measure the segmentation quality,
and its formula is Dice = 2|A∩B|

|A|+|B| , where A and B refer to the
foreground areas of the predicted image and the ground truth
image respectively. Therefore, when the Pearson correlation
coefficient between the fuzzy uncertainty and Dice is closer
to -1, it means the given fuzzy uncertainty algorithm has a
better ability to evaluate the segmentation performance and
the corresponding fuzziness measure is better.

Five-fold cross validation is applied to obtain the final
experimental results. The training data was used to train the
Unet semantic segmentation model. This Unet model is an
encoder-decoder framework. The encoding stage consists of
5 layers. Each layer contains two convolutional blocks with
3× 3 convolutional filters. Max-pooling operator is used to
down-sampling the feature maps between each layer. The
decoding stage consists of 4 layers. Each layer also contains
two convolutional blocks with 3 × 3 convolutional filters.
Deconvolutional operator with 2× 2 deconvolutional filter is
used to up-sampling the feature maps between each layer.
During the training process, cross entropy loss and adam
optimization algorithm were applied to update the parameters
in the Unet model. The initial learning rate was 10−4. After
obtaining the pre-trained Unet model, TTA was utilized to
capture the segmentation uncertaint by using rotation, scaling,
and flipping transformation operators. In this way, 24 predicted
images [ŷ1, ŷ2, ŷ3, · · · , ŷ24] for one given input image were
generated. Next type-1 fuzzy set was generated to describe the
24 predicted images based on the procedure given in section
III-D. Finally, the image-level segmentation uncertainty was
calculated by the fuzziness measure of the type-1 fuzzy sets
shown in Table I.

Furthermore, we investigated the feasibility of using the
estimated uncertainty value for image segmentation quality
control. In practice, the ground truth segmentation label is not
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TABLE II
EXPERIMENTAL RESULTS FOR OUR PROPOSED FUZZY-BASED QUALITY

QUANTIFICATION ALGORITHM USING SIX DIFFERENT FUZZINESS
MEASURES ON SKIN LESION DATASET. MEAN AND STANDARD DEVIATION

VALUES ARE REPORTED FOR PEARSON CORRELATION COEFFICIENT
MEASURED IN 5-FOLD CROSS VALIDATION. ∗ MEANS THE GIVEN METHOD

AND FYa ARE SIGNIFICANTLY DIFFERENT WITH P VALUE <0.01

Method Mean Standard Deviation
FYa -0.736 0.027

FDt∗ -0.689 0.021
FBe∗ -0.721 0.025
FKa∗ -0.716 0.029
FKo∗ -0.677 0.026
FBp∗ -0.719 0.024

provided for a given unseen image to be segmented. In this
case, it is desirable to inform the user, if the predicted seg-
mentation result is in good quality or not. In this experiment,
we explored if a threshold can be applied to the uncertainty
value, so that the predicted segmentation can be classified into
good and poor quality.

For this lesion segmentation dataset, based on the results
reported in the literature [29], Dice score of greater than 0.8
was considered to be good quality and vice versa. Hence by
setting a threshold for the uncertainty value, we compared
the number of good quality images and poor quality images
produced by the six fuzziness measures.

All the experiments were implemented using PyTorch and
trained on a workstation with NVIDIA GeForce GTX1080Ti
GPU and i7-3820 CPU.

C. Experimental Results

Table II shows the experimental results for the Pearson
correlation coefficient between Dice and our proposed un-
certainty measure. FYa, FDt , FBe, FKa, FKo, FBp means six
different fuzziness measures and their formulas are given
in Table I. In Table II, the Pearson correlation coefficient
between the FYa measure and Dice is -0.736, which performs
the best compared with other fuzziness measures. The result
means that FYa metric has the strongest linear relationship
with the segmentation quality. Wilcoxon sign rank test results
show that there is a statistically significant difference between
FYa fuzziness measured values and other fuzziness measured
values with P < 0.01.

In order to use the measured uncertainty values to infer
segmentation quality (good or poor) using the proposed thresh-
olding method (described in section IV-B), a threshold needs
to be determined first. Mathematically, all six methods should
produce the uncertainty value in the range of [0,1]. Hence we
use all the data points from all six methods to determine the
threshold. The Dice and uncertainty values for the test images
using all six fuzziness measures are plotted in Fig. 2. Yellow
dots means that their Dice values are greater than 0.8 while
the green dots means that their Dice values are less than 0.8.
Red dotted lines are different uncertainty threshold values. In
Fig. 2, each red dotted line and the sky-blue dotted line divide
all dots into four groups. By maximising the number of yellow

Fig. 2. Choosing the optimal uncertainty threshold: red dotted lines mean
different uncertainty threshold values. Yellow dots mean their Dice> 0.8,
while green dots mean their Dice≤ 0.8.

dots in group 1⃝ and minimising the number of green dots in
group 2⃝, the optimal uncertainty threshold is determined. In
this application, the uncertainty threshold is set as 0.2.

Next, the performance of six fuzziness measures with the
given uncertainty threshold 0.2 is explored. Fig. 3 shows the
distribution of the Dice for six different fuzziness metrics. In
Fig. 3 (a), it is seen that almost all the test images with a fuzzy
uncertainty value less than 0.2 have good-quality segmentation
(Dice>0.8). Moreover, FYa and FBe fuzziness metrics are
capable of detecting more good-quality segmentation images
compared with other fuzzy uncertainty metrics. In Fig. 3 (b),
when the fuzzy uncertainty is greater than or equal to 0.2,
there are still many more good-quality segmentation images
(Dice>0.8) for FDt , FKa, FKo, FBp measures than the FYa and
FBe measures, which also indicates FYa and FBe are the best
two methods. This is consistent with the conclusion drawn
from Table II that FYa and FBe measures have the strongest
linear correlations with Dice values.

Furthermore, to visualize the relationship between the seg-
mentation performance index and the six uncertainty measures,
the scatter plot of individual method is shown in Fig. 4. The
x-axis refers to the specific fuzziness metric and the y-axis
represents the Dice values. Each point in the scatter plot
represents one test image. Yellow dots mean their uncertainty
values are less than 0.2. Green dots mean their uncertainty
values are greater than or equal to 0.2. The red dotted line
indicates the threshold of 0.2. The grey line is the best fitted
straight line (BFSL) for all test images. All dots in Fig. 4 (a)
are evenly distributed on both sides of the BFSL, which means
that there’s a reasonably high linear correlation between the
FYa measured uncertainty and the segmentation performance
index (Dice). Moreover, when the uncertainty value is less than
the threshold 0.2, there are more yellow dots in Fig. 4 (a)
and Fig. 4 (c) than other four scatter plots, and almost all
yellow dots have a high Dice value. It further verifies that



Fig. 3. (a) The distribution of Dice when the fuzzy uncertainty is less than 0.2. (b) The distribution of Dice when the fuzzy uncertainty is greater than or
equal to 0.2.

the abilities of detecting good quality segmentation images
using FYa and FBe fuzziness metrics are better than other four
fuzziness metrics.

Therefore, based on the result in Table II and Fig. 4, we
conclude that FYa is the best fuzziness measure for our pro-
posed fuzzy-based quality quantification algorithm compared
with other fuzziness metrics.

V. CONCLUSIONS

In this paper, we have proposed a novel quality quantifica-
tion method based on the TTA and fuzzy sets. TTA is imple-
mented to capture the segmentation uncertainty by generating
n predicted images. Then the distance transform algorithm is
applied to capture each pixel’s distance to the closest boundary.
Next the n predicted images are represented by fuzzy sets
with the distance information. Finally, six different fuzzy
uncertainty metrics are utilized to calculate the fuzziness of
the fuzzy set. The fuzziness value is used to quantify the
image-level uncertainty of the predicted segmentation result,
and therefore to infer the segmentation performance when
there are no ground truth labels. Experimental results show that
our proposed method is capable of estimating the skin lesion
segmentation quality, and FYa is the best fuzziness measure
compared with other five fuzziness metrics.

In future work, we will compare our fuzzy based method
to other quality quantification methods on more datasets.
Furthermore, the number of groups in grouped distance map
and the number of predicted images generated by TTA are
fixed, and the influence of these parameters will be investigated
in our future work.
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