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ABSTRACT
Multiple systems estimation strategies have recently been applied to quantify hard-to-reach populations,
particularly when estimating the number of victims of human trafficking and modern slavery. In such
contexts, it is not uncommon to see sparse or even no overlap between some of the lists on which the
estimates are based. These create difficulties in model fitting and selection, and we develop inference
procedures to address these challenges. The approach is based on Poisson log-linear regression modeling.
Issues investigated in detail include taking proper account of data sparsity in the estimation procedure, as
well as the existence and identifiability of maximum likelihood estimates. A stepwise method for choosing
the most suitable parameters is developed, together with a bootstrap approach to finding confidence
intervals for the total population size. We apply the strategy to two empirical datasets of trafficking in US
regions, and find that the approach results in stable, reasonable estimates. An accompanying R software
implementation has been made publicly available. Supplementary materials for this article are available
online.
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1. Introduction

Multiple systems estimation, a generalization of the mark-
recapture approach (Petersen 1896; Schwarz and Seber 1999),
is a class of methods that can be used to estimate the size
of hard-to-reach populations in many contexts, including, in
recent years, those comprising victims of human trafficking
or modern slavery. The methods are typically applied to
wildlife populations (Williams, Nichols, and Conroy 2002)
and to hidden populations such as injection drug users (King
et al. 2013). In the administrative or law enforcement context,
multiple systems estimation aims to read across from lists of
observed or identified individuals from a study population
to estimate the total population of interest (see, e.g., Bales,
Hesketh, and Silverman 2015; Cruyff, van Dijk, and van der
Heijden 2017). A mathematical model is posited for the pattern
of incidences across the lists, and the “dark figure,” the number
of unobserved cases, is estimated. A survey of the history of the
methods and a range of applications is provided, for example,
by Bird and King (2018).

Because the method estimates the number of victims includ-
ing those that are not directly observed or detected, it plays
an especially important role in making policy to help combat
human trafficking and modern slavery. For example, as set out
in Bales, Hesketh, and Silverman (2015), a multiple systems
estimate constructed from data collated by a government agency
was a key component of the strategy (Home Office 2014) leading
to the UK Modern Slavery Act 2015.

A frequent specific challenge posed by data on human traf-
ficking is sparse overlap between the observed administrative
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lists; indeed, it appears to be the norm rather than the excep-
tion that there will be pairs of lists between which there is
no observed overlap. This sparsity can lead to inferential and
algorithmic difficulties and instabilities if it is not addressed.
In applications such as wildlife populations, the researcher may
be able to continue capturing from the study population until
sufficient overlap is observed between the capture occasions.
Such a strategy is not available in the human trafficking context,
nor usually in other human rights areas either.

A pair of lists may fail to overlap for a number of reasons:
there may be a genuine structural reason why the particular lists
cannot overlap; there may be negative correlation between lists;
or it may simply be that the overall sample size is relatively small
and, especially if the two lists have small capture probabilities,
there do not happen to be any cases that are on both lists. In
this area, there is as yet limited understanding of data and of
mechanisms, and furthermore data are often highly anonymized
for reasons of confidentiality and security. Typically, those ana-
lyzing the data may not know anything about a list other than
an uninformative label, because the collation between lists is
carried out by a single trusted individual or agency on that
understanding (see, e.g., Bales, Hesketh, and Silverman 2015;
Bales, Murphy, and Silverman 2019). Hence, there may be no
further information available, beyond simply the number of
overlapping cases, as to why no cases are observed in common
between two lists.

We approach inference via Poisson log-linear regression
modeling applied to counts of individuals that are observed
on each possible combination of the lists. This is a well-
known technique that allows one to model correlations and
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dependencies between lists. The standard approach was set out
by Sandland and Cormack (1984), Cormack (1989), Cormack
(1992), Rivest and Daigle (2004), and Bird and King (2018),
among others, and implemented in Baillargeon and Rivest
(2007) and Rivest and Baillargeon (2019). However, as Fienberg
and Rinaldo (2012a) discussed in a much more general context,
contingency tables with zero entries, as will arise if there is
sparse overlap between lists, may lead to cases where to carry
out maximum likelihood estimation it is necessary to extend the
range of parameters to include −∞. Even then the maximum
likelihood estimate of the model parameters may not exist or
may not be identifiable.

In our context, therefore, empty overlaps between lists
require careful treatment. The primary objective of this article
is to introduce inferential procedures and computational
implementations that explicitly handle this case. For simplicity,
we focus only on models that include parameters for two-list
effects (also called “first-order interactions” by some authors),
but the basic concepts of allowing for empty cells, and of
checking for the existence of estimates, are straightforward to
extend.

We first of all develop a method that fits a model stably, taking
proper account of existence and identifiability issues that can
arise if the data are sparse. We then consider a model-selection
procedure to choose the most suitable set of parameters on
which to base inference. A stepwise approach to model selection
is used, but so that any effects of choosing the specific model
are taken into account in the inference, confidence intervals for
the estimation are constructed using the BCa bootstrap method
(DiCiccio and Efron 1996).

The methods are motivated and illustrated by datasets based
on human trafficking victims in the New Orleans area (Bales,
Murphy, and Silverman 2019) and the Western site of a research
study in the USA (Farrell et al. 2019). Simulation studies are
used to validate the stepwise approach and are based on datasets
generated from these empirical datasets, assigning capture his-
tories to the population members by multinomial sampling, as
suggested by Cormack (1992). We conduct our analyses in the
R programming language (R Core Team 2016), and have devel-
oped an accompanying R software package SparseMSE (Chan,
Silverman, and Vincent 2019). The package allows readers to
implement the methodology on their own data as well as to
reproduce the results presented in the article.

The article is organized as follows. Section 2 outlines the
Poisson log-linear model and gives the notation and likeli-
hood setup. It details specific issues concerning the existence
and identifiability of maximum likelihood estimates, and also
discusses issues relating to the breakdown of the assumptions
underlying standard likelihood-ratio and information-theoretic
approaches. It also develops algorithms for checking efficiently
whether models present problems of nonexistence or uniden-
tifiability of estimates. Section 3 develops the model-selection
routine and corresponding inference procedure, setting out an
efficient algorithmic approach to the bootstrap in this case. A
simulation comparison with one of the current standard meth-
ods is included. Section 4 presents the results from the two
empirical applications, as well as a simulation study inform-
ing the choice of threshold in our procedure. The concluding
remarks in Section 5 include a comment on the R package,

as well as discussions of the possible extension of the proce-
dure to higher order interactions, and to data with covariate
information. There is further detail of several topics in the
supplementary materials to the article.

2. The Model

We first define notation and set out the model. The framework
leads to an algorithmic approach facilitating correct and stable
calculations. We then discuss the implications of sparse counts
on existing inferential methods, followed by a discussion on
checks for existence of maximum likelihood estimates and iden-
tifiability of the model.

2.1. Notation and Definitions

Suppose we have t capture occasions, or lists, on which members
of the population can occur. An individual’s capture history is
the set of lists on which the individual is actually observed, or
captured. A capture history is a subset ω of {1, 2, . . . , t}.

Now suppose that there are m individuals captured at least
once in our study. Denote the m observed capture histories
by ξ1, ξ 2, . . . , ξm. For any particular capture history ω define
Nω to be the number of individuals observed to have exactly
that capture history, that is, the number of ξ i equal to ω. It is
important to note that the actual data consist of a sample of
size m from a discrete distribution over the possible capture
histories.

The order of a capture history is defined to be the number
of captures in the set. The braces are often omitted when the
members of the history are given as suffices. Thus, for example,
if t = 4 the capture history {1, 3} has order 2, and N{1,3}, usually
written N13, is the number of individuals that are observed on
both lists 1 and 3 but not on lists 2 or 4. A particular capture
history of interest, with order 0, is the null capture history ∅. The
quantity N∅ is the dark figure of individuals that are not captured
on any list, and therefore cannot be observed. The observed data
give rise to the 2t − 1 values {Nω : ω �= ∅}, which we will also
write as N.

It is characteristic of data collected in the modern slavery
context that there will be some capture histories for which the
observed count is zero. Typically, each list only records a rela-
tively small proportion of the total population, because of the
“hidden” nature of modern slavery as a crime, and the numbers
of cases recorded on any particular pattern of overlaps between
lists can easily be considerably smaller.

For any capture history ω define
N∗

ω =
∑

ψ⊇ω,ψ �=∅
Nψ . (1)

Thus, N∗
ω is the number of observed cases that appear on all the

lists in ω, regardless of whether they do or do not appear on
other lists. For example, N∗

12 is the total number of cases that
are on both lists 1 and 2, while N12 is the number of individuals
that are on lists 1 and 2 but not on lists 3, 4, … . We will call {i, j}
a nonoverlapping pair of lists if N∗

ij = 0, so that no individual
appears on both lists. The main objective of this article is to
develop estimation procedures and algorithms that properly
account for these nonoverlapping pairs of lists.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

Because of the restriction to ψ �= ∅ in the defining sum,
the quantity N∗

∅ does not include the dark figure but is the sum
of all the observed values Nψ , the total of individuals actually
captured at some point in the study.

2.2. The Poisson Log-Linear Model

A standard model for the analysis is the Poisson log-linear
model as set out by Cormack (1989). This assumes that, inde-
pendently for each ω,

Nω ∼ Poisson(μω) with log μω =
∑
θ⊆ω

αθ (2)

for certain parameters αθ indexed by the possible capture his-
tories. Capture histories are used in two different ways, first to
index the observed data, and second to index the parameters.
Usually, but not invariably, the letter ω will be used when obser-
vations Nω are indexed and θ for parameters αθ . The index ψ

will be used in either case, as required.
Thus, for example, the dark figure has expected value exp α∅,

while the expected value of N13 is exp(α∅ + α1 + α3 + α13).
Denoting by α̂∅ the maximum likelihood estimate of the param-
eter α∅, the estimate of the total population size will be N∗

∅ +
exp α̂∅, the sum of the total number of cases actually observed
and the estimate of the dark figure.

Altogether, there are 2t parameters αθ , corresponding to the
2t capture histories including the null capture history. There are
only 2t−1 observable data points Nω from which to estimate the
parameters; without placing constraints on the αθ parameters,
the model is not identifiable. As Cormack (1989) set out, the
natural approach is to set some of the αθ to zero, and then to
estimate the remainder by maximum likelihood; for example,
one may set all coefficients indexed by third- or higher order
histories to zero, and we will do this throughout. Even if all the
two-list coefficients (those indexed by pairs of lists) are included,
the number of parameters to be estimated is 1 + t + 1

2 t(t − 1) ≤
2t − 1 provided t ≥ 3. Model choice then reduces to deciding
which two-list coefficients to include, and will be discussed
further in Section 3. For any particular choice of coefficients, the
estimation can be put into a standard generalized linear model
formulation.

A consequence of the definitions (1) and (2) is that, for each
ω,

N∗
ω ∼ Poisson(μ∗

ω) where μ∗
ω =

∑
ψ⊇ω,ψ �=∅

μψ .

Unlike the Nω, the N∗
ω are not independent. For example, if

capture histories ω and ψ share any lists, then the variables N∗
ω

and N∗
ψ will be dependent.

2.3. The Log-Likelihood Function

Before considering the treatment of nonoverlapping pairs of
lists, we derive some properties of the likelihood function. Let
� be the collection of indices of parameters included in the
model, and α = (αθ : θ ∈ �) the vector of parameters to
be estimated. Note that � always contains ∅. Up to an additive

constant depending only on the data, the log-likelihood is given
by

�(α|N) =
∑
ω �=∅

{Nω log(μω) − μω}.

Substitute the definition of the model, reverse the order of
summation, and then substitute the definition (1), to obtain

∑
ω �=∅

Nω log(μω) =
∑
ω �=∅

⎧⎨
⎩Nω

∑
θ⊆ω,θ∈�

αθ

⎫⎬
⎭ =

∑
θ∈�

⎧⎨
⎩αθ

∑
ω⊇θ ,ω �=∅

Nω

⎫⎬
⎭

=
∑
θ∈�

αθ N∗
θ . (3)

Turning to the other term in the log-likelihood,

−
∑
ω �=∅

μω =
∑
ω �=∅

⎧⎨
⎩− exp

⎡
⎣ ∑

θ⊆ω,θ∈�

αθ

⎤
⎦

⎫⎬
⎭ = C(α),

say. Regarded as a function of the αθ , each μω is an increasing
function of each of its arguments, and hence C(α) is a decreasing
function of each of its arguments {αθ : θ ∈ �}. Furthermore,
C(α) is a sum of concave functions of linear combinations of its
arguments, so �(α|N) is the sum of a linear and a concave func-
tion, and hence is a concave function. However, as Fienberg and
Rinaldo (2012a) showed in a much more general and abstract
context, and as we shall see below, the maximum likelihood
estimate of α need not be unique or even exist at all.

The expressions for the components of the log-likelihood
function demonstrate the following, which will be useful in our
discussion of model choice:

1. The statistics {N∗
θ : θ ∈ �} are jointly sufficient for the

parameters α.
2. Given any ω in �, N∗

ω is sufficient for αω if all the other
parameters {αψ : ψ ∈ �, ψ �= ω} are kept fixed.

2.4. Dealing With Nonoverlapping Pairs

Suppose that {i, j} is a nonoverlapping pair, so that N∗
ij = 0, and

that αij is one of the parameters in the model being fitted, so that
{i, j} ∈ �. In the terminology of Fienberg and Rinaldo (2012a)
we allow an extended maximum likelihood estimate, which
means that that the parameters may take values in [−∞, ∞).
If a parameter αθ = −∞ then we will have μω = 0 for
all ω ⊇ θ , so the actual Poisson parameters will still all be
finite. This section gives an elementary recapitulation of some of
the results (Fienberg and Rinaldo 2012a) cast into our specific
framework.

In the first term (3) of the log-likelihood, the coefficient of
αij is zero, so the maximum likelihood estimate of αij will be
obtained by maximizing C(α). Because C(α) is a decreasing
function of each of its arguments, whatever the value of the other
parameters the likelihood will be maximized as αij → −∞. The
maximum likelihood estimate of αij may therefore be regarded
as αij = −∞. This explains why existing software packages yield
errors or warnings if there are nonoverlapping pairs in the data
and the corresponding parameters are in the model. Because
the linear model is expressed in terms of the logarithm of the
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Poisson parameter, the value −∞ for αij gives the value zero for
μω for all ω ⊇ {i, j}, a legitimate value for the actual Poisson
parameters, regarding a Poisson distribution with parameter
zero to be the degenerate distribution with value zero.

Substituting these zeroes for μω back into the expression for
the log-likelihood yields, writing α†

ij for the vector of parameters
with αij excluded,

�(α†
ij|N, αij = −∞) =

∑
ω �=∅,ω �⊇{i,j}

{Nω log(μω) − μω}.

This is exactly the Poisson log-likelihood based on all the obser-
vations except those for the 2t−2 capture histories that include
both i and j. Note that the sum is over ω that do not include the
set {i, j}, in other words both of i and j. If there is more than one
nonoverlapping pair in �, the same calculations can be carried
out for each pair, leading to the following algorithm:

1. Initially define �† be the set of all nonnull capture histories
and �† = �.

2. For each {i, j} in � for which N∗
ij = 0, record that the

maximum likelihood estimator of αij is −∞ and remove αij

from the set of parameters �† yet to be estimated.
3. For each such {i, j} also remove from �† all ω for which ω ⊇

{i, j} (because N∗
ij = 0 the corresponding Nω will all be zero).

4. Use the standard generalized linear model approach to esti-
mate the parameters with indices in �† from the observed
counts of the capture histories in �†. The set �† comprises
all the two-list parameters in the model that are not estimated
to be −∞.

In the next section, we will see that the final step should also
involve an explicit check for the existence and identifiability of
the parameter estimates.

2.5. How Existing Methods Go Wrong

Where there is a pair of nonoverlapping lists, existing methods
typically iterate toward a large negative estimate for the cor-
responding parameter αij, only stopping because the number
of iterations exceeds a prescribed limit, or because the second
derivative of the log-likelihood is numerically nearly zero. An
error or warning message may be produced. By contrast, our
approach deals explicitly with αij, immediately giving it the
value that maximizes the likelihood over the extended range
[−∞, ∞). Once the parameters corresponding to nonoverlap-
ping pairs of lists have been correctly estimated, all the other
parameters are estimated by an iterative process that converges
rapidly and does not yield any errors.

Suppose, for the moment, that a large negative value of αij
is used, say αij = −20 rather than αij = −∞. For practical
purposes e−20 is zero, so the fitted values of μω will be essentially
zero for all ω ⊇ {i, j} and the corresponding terms will make no
contribution to the maximization of the likelihood of the other
parameters. Hence, the fitted values of the other parameters will
be much the same as in our approach, which actually estimates
the parameter αij correctly. We are not fitting a different model
than other approaches; rather, we are correctly fitting a model
that other approaches can only fit approximately and in an
unsatisfactory way.

Table 1. Comparison of the performance of standard approaches using glm with
the method set out in this article.

Dataset Pair Standard Proposed

Estimate SE p-value Estimate p-value

Netherlands I:K −20.79 5778 0.997 −∞ 9.1 × 10−4

K:R −19.96 2783 0.994 −∞ 2.1 × 10−5

UK LA:GP −19.08 5350 0.997 −∞ 0.13
LA:NCA −19.19 7968 0.998 −∞ 0.30

NOTE: The quantity estimated is the parameter αij for the nonoverlapping pair (i, j)
under consideration. The model fitted includes all two-list parameters.

Not only is it inelegant to use an iterative method to approach
a known −∞ value of a parameter, but it leads to misleading
estimates of the precision of the parameter estimates. Because
the second derivative of the log-likelihood also rapidly tends to
zero, the estimated parameter tends to have very large reported
standard error, suggesting that its estimate is essentially unin-
formative. Furthermore, standard packages use approaches to
inference and model choice based on likelihood and informa-
tion criteria. The asymptotic theory and arguments behind these
approaches, for example, Wilks (1938) and Akaike (1974), break
down when parameters are at an extreme of their ranges, as is
the case in our application for the parameters corresponding to
nonoverlapping lists (see Section 1 of the supplementary mate-
rials for a simulation example illustrating that the likelihood
asymptotics do not hold).

An exploration of the possibly misleading precision esti-
mates, for two real datasets, is given in Table 1. The datasets
are from the UK (Home Office 2014) and The Netherlands (van
Dijk et al. 2017), both tabulated in Silverman (2020). In each
case the data consist of six lists, and in both cases there are
two nonoverlapping pairs. We will see that the corresponding
parameters are significant in one case but not the other. The
standard errors and p-values for glm are those produced using
the default method for that routine.

The table shows the result of fitting the model including all
two-list effects, using two algorithms, one being a “standard”
approach (Rivest and Baillargeon 2019) that makes use of the
R program glm, and the other the method set out above.
In the standard approach, the call to glm actually records
convergence, but after 21 and 22 iterations, respectively, which
is close to the default maximum number 25 of iterations in
glm. In both cases a warning is generated. By contrast, the call
to glm within our approach only requires 6 or 7 iterations.
The estimates of all the other parameters, as expected, are
virtually the same in both cases. The p-value for our approach is
the probability that the nonoverlap of the relevant pair could
have occurred by chance when the model is fitted without
the corresponding parameter; see Section 3.1. It can be seen
that the effects are highly significant for the Netherlands data
but not significant for the UK data. The reported standard
errors and p-values are not meaningful for the standard
approach.

In fact there are additional aspects not handled by current
methods that need to be addressed, even if one allows for the
parameters to be estimated over the extended range [−∞, ∞),
and these are discussed in Section 2.6.
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2.6. Existence and Identifiability Issues

Two estimability issues may arise when applying multiple sys-
tems estimation to sparse data, both of which will mean that
the model will not give a well-defined finite estimate of the
population size.

One possibility is that there is no value of the parameter vec-
tor α that maximizes the likelihood, even allowing the extended
range [−∞, ∞) for the parameters. The other, separate, possi-
bility is that (whether or not the likelihood can be maximized)
there is parameter redundancy and the estimates are not identi-
fiable. We discuss the existence question first.

Fienberg and Rinaldo (2012b) showed that existence of the
estimate can be checked by solving a linear programming prob-
lem. Defining �† and �† as in the algorithm set out in Sec-
tion 2.4, let A be the incidence matrix that maps the parameters
in �† to the logarithm of the expected values of the counts of
capture histories in �†. From (2), for θ ∈ �† and ω ∈ �†,
Aωθ = 1 if θ ⊆ ω and 0 otherwise. Let t be the vector
of sufficient statistics N∗

θ for θ ∈ �†. Then set up the linear
programming problem of finding the maximum value of s over
all scalars s and all real vectors x = (xω, ω ∈ �†) satisfying the
constraints

ATx = t and xω − s ≥ 0 for all ω ∈ �†. (4)
A necessary and sufficient condition for a maximum likelihood
estimate of α to exist (possibly allowing some parameters to be
−∞) is that the maximizing value smax of s is strictly greater
than 0.

Setting xω = Nω for all ω and s = min Nω will yield a
feasible solution satisfying (4). Hence, smax will be at least the
minimum of the observed Nω over �†. In the nonsparse case,
where every combination of capture histories is observed at
least once, this minimum will be strictly positive and hence the
maximum likelihood estimator will always exist.

The other possibility is that, even if the likelihood can be
maximized, the parameters are nonidentifiable, so that the esti-
mate is not unique, a state of affairs also called parameter
redundancy (see, e.g., Far, Papathomas, and King 2019). The
model will be identifiable if and only if A is of full column
rank. We show in Section 3 of the supplementary materials that
nonidentifiability can only arise if all list pairs are in the model
and if the data are so sparse that every set of three lists contains at
least one nonoverlapping pair. This condition is easily checked.

Fienberg and Rinaldo (2012a) point out that most or all
standard generalized linear modeling packages fail to check
for existence of estimates. Nor do programs necessarily report
unidenfiability directly, more often arbitrarily removing one
or more of the parameters. Unless every possible capture his-
tory is actually represented in the observed data, therefore, it
is important to check that a potential model gives a strictly
positive value for the linear programming problem. If the full
model containing all two-list parameters is being fitted then, in
addition, identifiability should also be checked. If the model fails
on either count it should be ruled out. These checks incur only
a small computational overhead.

A simple example is given in Table 2. As there are three pos-
sible two-way interactions, there are 23 = 8 possible choices of
the two-list parameters to include in the model. We summarize
the linear programming output smax and test results in Table 3.

Table 2. An artificial dataset with three lists.

Cases observed only on one list Cases observed on exactly 2 lists

List Number Lists Number

A 40 A&B 6
B 30
C 20

NOTE: In this dataset, there are no cases with capture histories AC, BC, or ABC.

Table 3. Summary of linear programming output and test result for all possible
choices of two-list effects to include in the model.

Two-list parameters included Test result smax

None No error 1.2
αAB Nonexistent MLE 0
αAC No error 3
αBC No error 3
αAB, αAC Nonexistent MLE 0
αAB, αBC Nonexistent MLE 0
αAC, αBC No error 6
αAB, αAC, αBC Unidentifiable 6

NOTE: For the model containing all three two-list effects, there are finite values of
the Poisson means μω that maximize the likelihood, so smax > 0, but these do
not correspond to unique values of parameters in the model.

The results show that there is no immediate hierarchical rela-
tionship between models that do or do not satisfy the criterion
for estimates to exist. For example, the linear program result is
zero for the model including AB and AC, but either adding the
third effect BC, or removing AB, will yield a model for which
the result is strictly positive. This issue is elucidated further in
Section 2.7.

2.7. Checking All Models

Given a particular dataset, it is useful in certain contexts to
check that the estimates exist no matter which two-list terms
are included in the model. An appropriate algorithm allows
the Fienberg–Rinaldo conditions to be confirmed much more
quickly than the brute force approach of simply checking the
criteria for every possible model. It will be assumed throughout
that the model contains the intercept parameter α∅ and the
main effect parameters αi for i = 1, . . . , t. The model choice
to be made is which, if any, of the two-list parameters αij also
to include. Because there are 1

2 t(t − 1) pairs {i, j}, the number of
possible models is 2t(t−1)/2, which rapidly becomes very large as
the number of lists increases.

Suppose that {i, j} is an overlapping pair of lists, in that N∗
ij >

0, and that the parameter αij is in the current parameter set
�. Consider the effect of removing this parameter from the
model. Because {i, j} is an overlapping pair, this will not change
the set �†, but because {i, j} is removed from � it will also be
removed from �† (again defining �† and �† as in Section 2.4).
In the linear programming problem (4), this will remove one
column from the matrix A and the corresponding element of
t. Hence, one constraint will be removed, and therefore the
maximum value of s cannot decrease. Therefore, if the estimate
exists for parameter set � it will necessarily exist for subsets of
� obtained by removing overlapping pairs. It follows that, to
confirm whether all models satisfy the conditions for estimates
to exist, it is only necessary initially to test parameter sets � that
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include all overlapping pairs, together with a subset (possibly
empty) of the nonoverlapping pairs. If there are M nonoverlap-
ping pairs in the data, then the number of such models is 2M ;
solving the linear programming problem for all these models
is now feasible for a much larger range of datasets than if all
2t(t−1)/2 models have to be considered explicitly. If the estimates
exist for all such models, then they will exist for all models.

These checks were carried out for all the datasets discussed in
this article. For the full UK and Netherlands data, the number of
models to be checked by solving a linear programming problem
is reduced by a factor of 8192. Details for two other datasets are
given in Sections 4.1 and 4.2. In every case, in contrast to the
example set out in Table 2, the extended maximum likelihood
estimate exists and is unique for every possible choice of model.

In the event that there are models for which the estimate
does not exist, the approach can be extended to find a list of all
such models efficiently. Let �1 be the set of parameter indices
corresponding to the empty capture history and all capture
histories of order 1, and let �over

2 and �non
2 be those correspond-

ing to overlapping and nonoverlapping pairs, respectively. The
initial search is over all models containing both �1 and �over

2 .
Suppose it yields a subset �̃non

2 with the property that there is no
maximum likelihood estimate within the model with parameter
set �1 ∪ �over

2 ∪ �̃non
2 . We then perform a hierarchical search,

retaining �1 ∪ �̃non
2 , over models where overlapping pairs are

removed. At the first stage, parameters in �over
2 are removed

individually and each resulting model checked. If any such
model yields a zero result in the linear program, that is recorded,
and the possibility of removing a second overlapping pair is
investigated, and so on. At each stage, if the linear program
yields a positive result so that the estimate exists, there is no need
to investigate that branch of the hierarchy any further.

3. Inference and Model Choice

We now consider how to assess the significance of any particular
two-list parameter, and develop a forward stepwise approach
to model choice. We also develop the bootstrap procedure for
evaluating confidence intervals, and present simulation results
comparing the bootstrap with an approach that carries out
inference conditional on the model actually selected.

3.1. Calculating Significance

Given any model defined by parameter set �, for any ω define

μ̂ω[�] = exp

⎛
⎝ ∑

θ⊆ω,θ∈�

α̂θ

⎞
⎠ ,

where the α̂θ are the maximum likelihood estimates of the αθ .
Further, define

μ̂∗
ω[�] =

∑
ψ⊇ω,ψ �=∅

μ̂ψ [�].

Under these definitions, μ̂ω[�] and μ̂∗
ω[�] are the estimated

expected values of Nω and N∗
ω, respectively. The notation [�]

makes explicit the dependence on the parameter set �.

First, consider how to deal with nonoverlapping pairs within
the data. Suppose that for some θ ∈ � that N∗

θ = 0. Should we
actually include θ in the model? We test the null hypothesis that
αθ = 0, which is equivalent to saying that θ is not in the model.
We fit the model without θ and then consider the p-value of a test
statistic. A natural test statistic is N∗

θ , because of the results on
sufficient statistics in Section 2.3. Recall that this is also a Poisson
random variable since it is the sum of independent Poisson
random variables (see (1) and (2)). Hence, we test whether 0 is a
surprising value to observe for a Poisson distribution estimated
from the data but leaving out the parameter indexed by θ . If θ

is in the model, then the observed value has probability one if θ

takes its estimated value.
Hence, proceed as follows:

1. Fit the model leaving out the parameter αθ , in other words
using just the parameter set � \ θ . For the resulting fitted
model, find the estimate μ̂∗

θ [� \ θ].
2. The estimated parameter has p-value exp(−μ̂∗

θ [� \ θ ]). This
is the estimated probability that N∗

θ = 0 in the model defined
by � \ θ .

Unless we have already checked that the parameter set � \ θ

passes the linear program test for the existence of the maximum
likelihood estimate, that should be done; if the model fails that
test then the effective p-value is zero because the parameter αθ
cannot be removed from the model.

This approach can be generalized to construct a (one-sided)
p-value for any parameter θ ∈ � whether or not N∗

θ =
0. The p-value is the minimum of FPoiss(N∗

θ , μ̂∗
θ [� \ θ ]) and

F̃Poiss(N∗
θ , μ̂∗

θ [� \ θ ]). Here FPoiss(n, λ) is the lower tail prob-
ability that a Poiss(λ) random variable X satisfies X ≤ n, while
F̃Poiss(n, λ) is the probability that X ≥ n.

An alternative approach is to use the sufficient statistic N∗
θ for

αθ evaluated against its distribution conditional on the observed
values of the sufficient statistics in the model with parameters
indexed by � \ θ , rather than, as we have, against its uncon-
ditional distribution on the estimated model. The conditional
distribution does not seem to be easily tractable, but this is an
interesting avenue for future research.

3.2. Model Fitting

The model-fitting procedure is detailed stepwise, as follows:

• Step 1: Set a threshold value for the p-value and fit the model
with the main effects parameters only.

• Step 2: Consider in turn each two-list parameter not already
added to the model, and check that adding it to the model
would not lead to a nonexistent estimate (or to nonidentifia-
bility if the full two-way model is proposed).

• Step 3: Among those parameters that pass the checks, find the
one with the smallest p-value, using the approach set out in
Section 3.1. If that p-value is less than or equal to the given
threshold, add the parameter to the model, and go back to
Step 2. If the p-value is greater than the threshold, finish.

Note that in Step 2 all two-list parameters not already
included are considered, whether the pairs they correspond
to are overlapping or nonoverlapping. The method is akin to
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forward stepwise regression. Note also that if the algorithm set
out in Section 2.7 has already demonstrated that nonexistence
and nonidentifiability cannot arise for any model for the dataset
in question, then the check in Step 2 is not necessary.

It remains to choose the threshold p-value. We conduct a
detailed simulation study in Section 4.3 that points to the choice
p = 0.02, and that is the value which we would suggest, but users
might wish to explore the sensitivity of the result to adjusting the
parameter.

3.3. Bootstrapping to Find Confidence Intervals

In general, current approaches find confidence intervals for the
population size conditional on the terms actually included in
the model, either for the Poisson log-linear model itself, or for
modifications such as the multinomial model considered by
Sandland and Cormack (1984). Because the choice of model
itself depends on the observed data, it is preferable to construct
confidence intervals that take account directly of the effect
of model selection. A natural way of doing this is to use a
bootstrap approach, which will also take account of any biases
that the model selection approach may introduce. The BCa
methodology of DiCiccio and Efron (1996) gives second-order
accuracy and does not depend on any transformation of the
scale on which the data are observed and the estimate of the total
population made.

The observed data in our case are the original m observed
capture histories (ξ 1, ξ 2, . . . , ξm). To construct each bootstrap
sample, we could draw a random sample (ξboot

1 , ξboot
2 , . . . , ξboot

m )

of size m, with replacement, from the original data. If we denote
by Nboot

ω the number of times the capture history ω occurs
in the bootstrap sample, then the Nboot

ω have a multinomial
distribution corresponding to m trials and probabilities propor-
tional to the original Nω. In practice, therefore, the ξboot

i are not
actually constructed, but we sample direct from the multinomial
distribution of the capture history totals. The parameter for the
number of trials in the multinomial distribution is the number
m of capture histories actually observed and does not depend on
any estimate of the dark figure.

For each bootstrap sample, we carry out the stepwise fitting
procedure and obtain an estimate (bootstrap replication) of the
population size. There is no constraint on choosing the same
model. The BCa confidence intervals use percentiles of the
bootstrap distribution of the population size, but they adjust
the percentile actually used. The adjusted percentiles depend
on an estimated bias parameter ẑ0, defined so that �(ẑ0) is the
proportion of the bootstrap estimates that fall below the estimate
from the original data, and an estimated acceleration factor â,
whose derivation depends on a jackknife approach.

The jackknife requires the population size to be estimated
from every sample constructed from the original data by leav-
ing out one of the data points ξ i. However, the number of
jackknife estimates that need to be evaluated can usually be
dramatically reduced, making for considerable computational
savings, because the number of distinct values taken by the ξ i,
the number of different capture histories actually observed, is in
general much smaller than m. If there are K capture histories
for which Nω > 0, only K jackknife estimates actually have

to be calculated. These are then weighted in the calculations by
the number of times Nω that the value ω appears in the original
sample. To be explicit, let θ̂(i) be the estimate of the population
size constructed from the original sample leaving out capture
history ξ i. The effect of leaving out that capture history is to
reduce Nξ i by one, and so θ̂(i) = θ̂

(−1)

ξ i
, where, for each capture

history ω actually observed in the data, θ̂
(−1)
ω is the estimate

of the population size from the original sample but with Nω

replaced by Nω−1. Only the K values θ̂
(−1)
ω have to be calculated.

To calculate the acceleration factor, let θ̂(·) be the average of
the jackknife estimates θ̂(i). Then

θ̂(·) = m−1
∑
ω

∑
i:ξ i=ω

θ̂(i) = m−1
∑

ω:Nω>0
Nωθ̂ (−1)

ω .

Applying a similar weighting argument to the defining equa-
tions (6.6) and (6.7) of DiCiccio and Efron (1996), the estimated
acceleration factor â is then given by

â = 1
6

⎧⎨
⎩

∑
ω:Nω>0

Nω(θ̂(·) − θ̂ (−1)
ω )3

⎫⎬
⎭

×
⎧⎨
⎩

∑
ω:Nω>0

Nω(θ̂(·) − θ̂ (−1)
ω )2

⎫⎬
⎭

−3/2

.

These values of the parameters ẑ0 and â are then used to
choose the appropriate percentiles of the bootstrap distribution,
using the standard BCa formulation.

3.4. Some Simulation Results

To compare our method with the standard BIC approach as
implemented within Rcapture (Rivest and Baillargeon 2019), a
simulation study was carried out. The model fitted to the five-list
UK data by the stepwise approach was used as a starting point.
For this model, the predicted probabilities of each of the 32
possible capture histories (including the empty capture history)
were calculated. The overall population size was that estimated
by the model fit. The reason for using this model as a basis
for a simulation is that it is reasonable to suppose that it will
display features likely to be seen when using the methods in the
human trafficking context. An example with five lists was used
so that the repeated use of the BIC method does not become
computationally burdensome.

The population size and the capture history probabilities
were regarded as fixed, and were used as parameters for multi-
nomial sampling to create 500 simulated datasets. For each
simulation, population estimates and confidence intervals were
constructed both using the BIC approach and using the stepwise
method we have set out. For the BIC method, multinomial
confidence intervals using the routine closedpCI.t within
Rcapture were found; the confidence intervals for the stepwise
method were constructed using the BCa approach. Because the
simulations are constructed from a model with known popula-
tion size, it was possible to assess the accuracy of the estimation.
The root mean square error of the estimation was 3057 for the
stepwise approach and 5834 for the BIC method. The root mean
square errors of the estimate of the log of the population size
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were 0.19 and 0.34, respectively, so again, for this example, the
stepwise approach has much better performance.

The coverage rate of the estimated confidence intervals
was also determined. For the stepwise method using the BCa
approach, the nominal 95% confidence interval contained the
true value for 90% of the simulations, while the nominal 80%
intervals had an actual coverage rate of about 70% (346 out
of the 500 replications). While these rates are not perfect, the
corresponding observed coverage rates for the methods using
routines in Rcapture were considerably lower, 61.4% and 42.8%,
respectively.

4. Empirical Applications

In this section, our methods are applied to two datasets relating
to victims of modern slavery and human trafficking in the
USA. Both datasets display the sparseness of overlapping entries
typical of data collected in this field. In addition they are also
typical of data collected in local regions (rather than entire large
countries) in having relatively small counts, with the total num-
ber of observed cases in the hundreds and not the thousands.
The two datasets, together with those discussed in Section 2.5
are then used to construct a simulation study investigating the
appropriate choice of threshold parameter.

4.1. The New Orleans Data

Bales, Murphy, and Silverman (2019) discuss a dataset collated
from a number of sources in New Orleans, given in Table 4.

Altogether there are eight lists, and so the full incidence table
of observable capture histories, including those combinations
for which the actual observed number is zero, has 255 rows.
The null capture history, corresponding to the dark figure, of
course cannot be observed, and estimating it is the task of the
analysis. There are 28 possible pairs of lists, and of these there
are 18 nonoverlapping pairs. Using the threshold p = 0.02
fits a model including one two-list parameter, indexed by the
pair DE. The point estimate of the total population size is 1184.
The BCa bootstrap confidence interval, based on 1000 bootstrap
replications, is (717, 1657). If main effects only are chosen
(which will be the case for the threshold p = 0.01 or smaller),
then the resulting model yields a 95% confidence interval of

Table 4. Victims related to modern slavery and trafficking in New Orleans.

Cases observed Cases observed on Cases observed on
only on one list exactly 2 lists exactly 3 lists

List Number Lists Number Lists Number

A 25 A&C 1 A&C&G 1
B 5 A&D 2 A&D&E 1
C 70 A&E 1
D 33 B&F 1
E 6 C&D 1
F 6 C&E 1
G 6 C&G 1
H 21 D&E 2

E&H 1

NOTE: Numbers of cases on each possible combination of lists, leaving out combi-
nations for which no cases were observed. For reasons of confidentiality the lists
are labelled uninformatively.

(644, 1618) with a point estimate of 997. Arguably, with as many
as 28 possible two-list parameters, there is some merit in using
a smaller threshold.

Because some of the list counts are so small, the effect of
combining the four smallest lists into one, to give a five-list
version of the data, was also investigated. If this is done, none
of the two-list parameters is significant even at the 5% level,
and the BCa confidence interval is (589, 1703) with a point
estimate of 1034, a result very close to that yielded by the eight-
list data with the smaller threshold. As a further illustration of
the issues discussed earlier in the article, and the need to handle
nonoverlapping lists in the way we have developed, the Rcapture
routine closedpMS.t was used to fit every possible choice
of model with two-list effects. There are 1024 such models, and
in only 124 of these was the fit successful without generating a
warning. In the majority of cases there was a warning that the
asymptotic bias is large.

Return to the full data as an example for the methodology
set out in Section 2.7. There are 228 possible models, and 18
nonoverlapping pairs. To check every possible model for exis-
tence of the maximum likelihood estimate, there are 218 linear
programming problems to solve. This check, which would have
been impossible if all 228 models had to be considered explicitly,
only takes a few minutes on a standard PC. Neither of the
problems identified in Section 2.7 arises for any model for these
data.

4.2. The Western Site Data

One of two datasets considered by Farrell et al. (2019) is collated
from a number of sources in the Western site of a research study
in the USA. The data are given in Table 5.

Altogether there are 5 lists, and so the full incidence table
including those combinations for which the observed number is
zero has 31 rows. There are 10 possible pairs of lists, and of these
there are 2 nonoverlapping pairs. It is very quick to check that all
possible models lead to estimates that exist and are identifiable.

The threshold of p = 0.02 yields a model including the two-
list effect AE, with a point estimate of 2483. The BCa confidence
interval is (1293, 3670).

It should also be noted that the application ofclosedpMS.t
to this dataset again generated warnings in more than half of the
1024 possible models. In both this dataset and the New Orleans
five-list dataset, warnings were generated among the top 10

Table 5. Victims related to human trafficking in the Western site of a research study
in the USA.

Cases observed Cases observed on Cases observed on
only on one list exactly 2 lists exactly 3 lists

List Number Lists Number Lists Number

A 52 A&C 4 A&C&E 1
B 90 A&D 2 B&C&D 1
C 114 A&E 5
D 45 B&C 6
E 21 B&D 1

D&E 3

NOTE: Numbers of cases on each possible combination of lists, leaving out combi-
nations for which no cases were observed. For reasons of confidentiality the lists
are labeled uninformatively.
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models according to the BIC that closedpMS.t displays by
default, but not, as it happens, by the very top model. For the
Netherlands data considered earlier, 6 out of the 10 top models
generates a warning.

4.3. Choosing the Threshold: A Simulation Study

To gain insight into the appropriate choice of threshold, a simu-
lation study was carried out. To make this relevant to the context
of human trafficking, the models considered are all based on the
datasets referenced in this article, in an attempt to ensure that
the simulation study is based on datasets that have the kinds of
characteristics likely to be encountered. The datasets considered
were the UK, Netherlands, New Orleans and Western site data;
in the case of the UK, Netherlands and New Orleans data, both
the full and the five-list versions were included, giving seven
datasets in all. For each of these, four different models were
fitted; the “full” model with all two-list effects included, the
model based on main effects only, and the models chosen by
the method we set out, using thresholds 0.001 and 0.05, to give
a more parsimonious and a less restrictive fit. In every case, the
model fit gives an estimate of the total population and of the
probabilities of all possible capture histories.

For each of these 28 test cases, 1000 realizations of the capture
history totals were simulated, by drawing from a multinomial
distribution with the given population size and capture his-
tory probabilities. Each realization can be conceptualized as an
example of a multiple systems sample from a population of
known size, with characteristics similar to those likely to be
observed in the human trafficking context. For each realization,
estimates of the total population were obtained using a range of
thresholds (0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1), as well as
for the main effects model and the model with all two-list effects
included, corresponding to thresholds 0 and 1, respectively. The
estimates of the total population size were, as one would expect
given the log-linear nature of the modeling, asymmetrically
distributed around the true value for each simulation scenario,
and a log transformation is appropriate. With this in mind the
measure of accuracy used for each of the 28 sets of simulations,
for each threshold parameter, was the mean square error of the
logarithm of the estimate of the dark figure.

The general level of mean square error varied quite substan-
tially across the 28 models considered. To take account of this
variation, for each threshold, the mean, over the 28 models,
of the logarithm of the mean square error was calculated to
give an overall score for that threshold. The threshold with the
minimum score is p = 0.02. Further details of the simulation
study are given in Section 5 of the supplementary materials to
this article.

5. Concluding Remarks

The R software package SparseMSE (Chan, Silverman, and Vin-
cent 2019) includes implementations of all the methodology
described in this article. In particular, it contains programs
to check whether a particular model leads to either of the
estimability issues set out in Section 2.6, and it incorporates
these checks within a routine to fit any particular model, or to

make the model choice using the stepwise procedure described
in Section 3.2. It also allows for the possibility of checking all
possible models using the approaches discussed in Section 2.7.
Full details are given in the package documentation.

To conclude, in this article we have investigated inference
for multiple systems estimation using Poisson log-linear models,
taking proper account of the possibility that the underlying data
tables contain nonoverlapping lists, as commonly arises when
the data are collected in the context of studies on modern slavery
and human trafficking. We have also set out an approach to
model choice and demonstrated the utility and practicality of
our approach on real datasets. This area is especially challenging
for methodological development because there is no “ground
truth” against which methods can be assessed, and frequently
there are no details of the data available beyond anonymized
list data of the form presented in the tables above. Nevertheless,
reliable and stable methods are important for applications in
public policy, even if they are conditional on assumptions that it
may not be possible to verify.

For simplicity and clarity, the procedure has been discussed
and detailed in full for models that only include terms indexed
by individual lists and pairs of lists. In principle, the model
fitting and inference aspects can easily be extended to consider
models including higher order terms, though it seems unlikely
that any datasets collected in the contexts of human trafficking
would merit this. For example, if a three-list parameter α123 were
a candidate for inclusion within the model, then the estimate of
α123 would be −∞ if the three-list overlap N∗

123 were empty, and
to fit the other parameters one would then remove all capture
histories including all three lists 1, 2, and 3 from the glm stage.

Similarly, another possible extension is to the case where
there is covariate information rather than just presence/absence
on various lists. As in our main discussion suppose there is a
pair (or larger set) of lists whose interaction parameter is in the
model but for which no overlapping cases are observed for any
value of a covariate. Then the right approach (depending on the
exact details of the modeling) would be to set the corresponding
interaction parameter to −∞ and then remove various zero
cells containing the nonoverlapping set of lists from the fitting
procedure for the other parameters including those relevant to
covariates.

One possible topic for future research is the combination
of our insights with those of International Working Group for
Disease Monitoring and Forecasting (1995), which explores the
effect of heterogeneity. Some of the approaches suggested in
that article may not be available. For example in the human
trafficking context we may not be able to stratify the popu-
lation, nor may the statisticians analyzing the data have any
information about the lists themselves to evaluate the possibility
of heterogeneity. On the other hand, if one is in a position to
implement the proposals, then the possibility of effects of the
kind we have explored has to be taken into account.

Supplementary Materials

The supplementary materials for this article contain additional informa-
tion and details for the simulation carried out to investigate aspects of
the asymptotic likelihood theory discussed in Section 2.5; the UK and
Netherlands datasets; the statement and proof of a proposition that justifies
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the conditions stated in Section 2.6 under which a model is nonidentifiable;
and further details of the simulation study, described in Section 4.3, carried
out to inform an appropriate choice of p-value threshold for the stepwise
algorithm.
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