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Abstract- Pulsed-Power-Loads (PPLs) are becoming prevalent 
in medium-voltage naval DC micro-grids. To alleviate their 
effects on the system, energy storages are commonly installed. 
For optimal performance, their interface converters need to have 
fast dynamics and excellent disturbance rejection capability. 
Moreover, these converters often need to have voltage 
transformation and galvanic isolation capability since common 
energy storage technologies like batteries and super-caps are 
typically assembled with low voltage strings.  In order to address 
these issues, a Moving-Discretized-Control-Set Model-Predictive-
Control (MDCS-MPC) is proposed in this paper and applied on a 
Dual-Active-Bridge converter. Fixed switching frequency is 
maintained, enabling easy passive components design. The 
proposed MDCS-MPC has a reduced prediction horizon, which 
allows low computational burden. The operating principle of the 
MDCS-MPC is introduced in development of a cost function that 
provides stiff voltage regulation. Resonance damping and 
sampling noise resistance can also be achieved with the proposed 
cost function.  An adaptive step is introduced to enable fast 
transition.  Assessments on the performance of the proposed 
MDCS-MPC are conducted. Comparisons with other control 
methods are also provided.  Experimental validations on a 
300V/300V 20kHz 1kW Dual-Active-Bridge converter are carried 
out to verify the theoretical claims. 

Index Terms— Isolated DC/DC converter, Dual-Active-Bridge 
(DAB), Model Predictive Control (MPC). 

I.  INTRODUCTION 

The early electrification attempt on a small electric 
propelled boat dates back to late 1830s [1]. Since then, there 
has been a great evolution of the technologies developed for 
marine vessels [2]. After more than 100 years of research on 
shipboard electrical power system, with the recent 
advancement in power electronics, DC on-board micro-grids 

becomes a prevailing choice for naval vessels [3]–[6].  
In a typical shipboard power system shown in Fig. 1, there 

exists some particular loads like radars, sonars and 
electromagnetics weapons which intermittently draw a large 
amount of power from the power system [7]. Collectively, 
they are referred to as Pulse-Power-Loads (PPLs). A dual 
DC/DC converter structure is usually preferred as the direct 
interface supplying high power PPLs [8]. The dual DC/DC 
provides mainly reactive power required by PPLs while the 
active power is soured from the DC bus. The existence of the 
PPLs poses potential danger for the operation of the naval on-
board DC micro-grids. The behavior of repeatedly large 
variation of load current presents challenges in DC bus voltage 
regulation. DC bus voltage sag and overshoot may cause shut-
down of propulsion system, combat weapons and other 
sensitive loads. Therefore, dedicated Energy Storage Systems 
(ESS) have been usually integrated to coexist with PPLs in the 
micro-grids through the interface of Dual-Active-Bridge 
(DAB) converters [6]. Admittedly, DAB topology and its 
relevant derivatives [9], [10] have drawn considerable 
attention in the application of DC micro-grids for their salient 
merits in high frequency galvanic isolation, high voltage step 
up/down ability and high power conversion efficiency [11]. 
Apart from that, dynamic performance of the interface 
converters is also instrumental for powering the PPLs, and this 
is largely dependent on the control algorithm applied to the 
interface converters.  
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Fig. 1. A simplified diagram of the naval shipboard DC micro-grids. 
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Predictive control is often considered in power electronics 
converters for several advantages it can provide, such as fast 
dynamics, easy inclusion of constraints, and simple digital 
implementation. In particular, Finite-Control-Set Model-
Predictive-Control (FCS-MPC) has been investigated in AC 
power conversion [12]–[14]. However, the application of 
predictive control in DC/DC converters has not been so 
intensively explored; FCS-MPC methods proposed for use in 
the boost converter with receding horizon by P. Karamanakos 
et al. [15] and B. Wang et al. [16] demonstrated fast dynamics. 
However, these approaches resulted in variable switching 
frequency and demanded heavy computation. F. M. Oettmeier 
et al. [17] proposed  a Continuous-Control-Set Model-
Predictive-Control (CCS-MPC) also for boost converters 
which effectively avoided voltage transition overshoot. Above 
approaches [15]–[17] are not applicable in DAB converters in 
presence of high frequency transformer.  

P. Akter et al. [18] presented a model predictive control 
for the bidirectional isolated DC-DC converters which were 
operated at 100kHz switching frequency with only 4kHz 
nominal transformer current. This fell into the category of 
application of MPC in AC power conversions [12] where 
switching frequency was much higher than fundamental 
current. In this paper, the control approach is investigated for 
DAB converters operating with a transformer current 
frequency close to the switching devices. 

A dead beat control was proposed for DAB converters by 
S. Dutta et al. [19], [20]. They have used high bandwidth 
current sensors to accurately sample instant high frequency 
transformer current, therefore fast transition was obtained. 
Semi-predictive approaches were also investigated by 
researchers. Z. Shan et al. [21] proposed a method with 
feedforward loop to improve the dynamic performance. The 
feedforward loop shared similarity to [19] with respect to the 
requirement in instant high frequency current sampling. 
Above methods [19]–[21] have limitations in DAB converters 
operating in high power/high switching frequency as the 
sampling of the instant transformer current becomes more 
challenging. To the best knowledge of authors, no mature 
product are available in the market for current sensing with 
bandwidth above 2MHz and current rating higher than 100A.  

A virtual direct power control scheme for  DAB 
converters that prescribed less for current sensors was 
proposed by W. Song et al. [22]. This method calculated the 
control output from the expression of power. However, this 
method still relies on the PI controller and demonstrated 
limited load current disturbance rejection.  

A Moving-Discretized-Control-Set Model-Predictive-
Control (MDCS-MPC) is proposed in this paper with the aim 
of controlling the voltage on the PPLs. MDCS-MPC requires 
low bandwidth current sensing compared to [19]–[21]. 
Therefore it is potentially more suitable for high power/high 
frequency DAB converters. Performance merits are 
summarized as follows:  

1. Low computational burden. The proposed MDCS-MPC 
demands much less computational power compared to the 

approach introduced in [15]. MDCS-MPC is implemented in a 
commercial control platform TMS320F2837xD in this paper. 

2. Fixed switching frequency. This eases passive 
components design; 

3. Fast dynamics. An adaptive step has been implemented 
in MDCS-MPC for fast transition; 

4. Voltage deviation suppression. A term with the voltage 
slope constraint is proposed in the cost function. It can achieve 
resonance damping and increase resiliency to sampling noise. 

This paper is organised as follows: in Section II, the 
proposed MDCS-MPC is introduced. In Section III, 
performance of the MDCS-MPC is evaluated and compared 
with other existing control methods for DAB converters. 
Finally, experimental results are presented for a 300V/300V 
20kHz 1kW DAB converter in Section V.  

II. PROPOSED MDCS-MPC 

The schematic of the DAB converter is shown in Fig. 2. 
H-bridges at each side of the high frequency transformer 
generate voltages vac1 and vac2, as shown in Fig. 3. Voltages 
vac1 and vac2 have a fundamental frequency of fs. They are 
exerted on power transferring inductor Lp, producing 
transformer current iac1. Ts denotes one switching period. The 
phase shift value (DφTs) between vac1 and vac2 is controlled to 
transfer the power from the DC bus to PPLs.  

Various modelling methods such as reduced order model 
[23], [24], improved reduced order [25], generalized average 
model[26] and discrete time model [27] have been proposed 
for DAB and the reduced order model [23], [24], presented in 
Fig. 4 and (1) has a good compromise in complexity and 
accuracy, and are utilized in this work. Prediction error due to 
inaccurate model may occur, however, like in all other model 
predictive control, tracking error compensation can be 
implemented [19], [28]. A proportional prediction error 
compensation loop has been implemented to address this issue. 
This will be discussed later in Section II.C. 
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In this paper, we assume the scenario where ESS is the 
only available power source in the system. The main objective 
of the designed control in this case is to regulate voltage VHV2 
suppling PPLs. The dynamic equation of the output voltage is 
developed as follows: 
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Discretizing (2) using forward approximation yields: 
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Assuming load current does not vary drastically in one 
sampling period: 
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The prediction for output voltage at time instance k+2 is: 
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Substituting VHV2[k+1] in (3) to (5), yields  

2 2
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 (6) 

, where iHV2[k+1] and iHV2[k] can be easily derived from (1). 
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Fig. 2. The schematic of a Dual-Active-Bridge (DAB) converter. 

vac1

vac2

iac1

DφTs

VHV1

VHV2

t

t

 
Fig. 3. Conceptual transformer voltage and current waveforms 
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Fig. 4. The averaged model of a DAB converter [23], [24]. 

A. The operating principle 
The proposed MDCS-MPC controls the converter output 

voltage VHV2 based on the discretized average model of the 
DAB in (6). A preliminary cost function is proposed as in (7) 
with the only purpose of regulating voltage VHV2 to reference 
VHV2_ref. It is worth mentioning that (7) is not the finalized cost 
function, but a simple one meant to help illustrate the 
operating principle of the proposed MDCS-MPC. 

2
2 _ 2( [ 1])HV ref HVct V V k    (7) 

The variable Dφ in (1) is continuous in nature. However, in 
digital control, Dφ needs to be discretized. The discretization 
precision is subjected to the control platform applied. Δf is 
defined as the finest phase shift value that can be achieved in a 
digital control platform. For unidirectional power flow, DAB 
works predominately in the range: 

[0, . ] 0 5D   (8) 

(8) is further discretized into µm (=0.5/Δf+1) parts as 
described in (9). 

{0, , 2 , , 0.5}f fD      (9) 

In order to realize a control algorithm that is feasible on 
standard commercial microcontrollers, the proposed MDCS-
MPC evaluates a reduced number of values in each sampling 

period. In one sampling period, µ (µ≤µm) number of points are 
assessed. They are centered at the previous working point.  

An intuitive mechanism illustration of the proposed 
MDCS-MPC is depicted in Fig. 5. In the control interval k to 
k+1, µ=3 points are evaluated centred at the previous working 
point a. The current Discretized-Control-Set (DCS) is {a-Δf, a, 
a+Δf}. Value a+Δf results in the smallest cost function (ct), 
therefore, apply this value at time instance k+1. In the next 
control interval k+1 to k+2, the same process is repeated, and 
the DCS moves to {a, a+Δf, a+2Δf}. The DCS is moving with 
the working point within the domain of (9). In this control 
interval, value a+2Δf results in the smallest cost function (ct), 
therefore, this value is applied at the time instance k+2. This 
process goes on. 
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Fig. 5. The operating principle of the proposed MDCS-MPC for DAB. µ is set 
to be 3 in this illustration. 

B. The proposed cost function & adaptive step 
Taking into account the computational delay, MDCS-

MPC has a prediction horizon of two sampling periods. 
Therefore, the cost function is proposed as follows: 

1 1 2 2ct G G    (10) 

where, 
2
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The first term G1 is responsible for regulation of the 
output voltage VHV2 to reference value VHV2_ref while the 
second term G2 takes charge of voltage deviation reduction. 
This can thus achieve resonance damping and resistance 
enhancement to sampling noise. When VHV2 is far from the 
reference value, G1 plays a dominant role in the cost function. 
However, when VHV2 reaches close to VHV2_ref, G2 starts to take 
effect. G2 limits the variation of VHV. This essentially prevents 
VHV2 from dithering due to analogue to digital sampling noise. 
G2 also alleviates the oscillation during load transition. Tuning 
of weighting factors α1 and α2 is crucial to the performance of 
the proposed controller. T. Dragicevic et al. [29] proposed an 
artificial neural network approach to best tune the weighting 
factors in MPC. This approach is also used in this paper. 

Larger values of µ can increase the transition dynamics, 
but it aggravates the computational burden to the real-time 
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digital controller. Therefore, an adaptive step is adopted 
instead of the finest search step Δf. Define the adaptive step as: 

2 _ 2 2 _ 2

2 _ 2

[ ] ,   [ ]

                        ,   [ ]
HV ref HV HV ref HV m

m HV ref HV m

V V k V V k V
V

V V V k V
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 

 
 (12) 

(1 )adp f V      (13) 

where Vm is the saturated voltage. λ is a coefficient determined 
according to the requirement of transition performance. λ and 
Vm are set as 1 and 20V respectively in the following 
simulation and experiment validations. 

A diagram of the calculation of the adaptive step is 
depicted in Fig. 6. The adaptive step Δadp changes with the 
deviation of the output voltage to the reference. When VHV2 is 
far from the reference, Δadp grows large. In contrast, when 
VHV2 equals to the reference, Δadp becomes Δf.. Such that, the 
control accuracy remains. 
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VHV2[k]
-

λ

+
+
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Fig. 6. A diagram of the adaptive step. 

C. The compensation loop for error corrections 
There are generally two ways of improving the prediction 

accuracy. The first approach is to use a more precise 
mathematical model of the DAB converter as investigated [25], 
[30]. However, those high order models increase the 
computational burden. The second resort involves the 
feedback compensation. Methods commonly seen in other 
predictive controls can be well suited in the proposed MDCS-
MPC [19], [28], [31], [32]. This paper presented a method 
similar to the one proposed by K. Shen et al. [28]. 
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Fig. 7. Prediction error compensation loop. 

Additional compensation loop to correct the modeling 
error is depicted in Fig. 7. VHV2_p is the predicted output 
voltage (VHV2) value using the ideal DAB model in (6). 
VHV2_p[k+2] is the voltage prediction during control period k to 
k+1 with MDCS. VHV2_s is the sampling voltage value. The 

voltage error compensation value is the weighted sum of the 
error between voltage sampling VHV2_s and prediction VHV2_p 
values in previous two steps.   

It is worth mentioning that parameters k1 and k2 can be 
designed to ensure the Lyapunov stability [32]. However, this 
paper focused on the MDCS-MPC concept, the impact study 
of k1 and k2 has not been carried out. Weighting factors k1 and 
k2 are tuned empirically here as 0.5 and 0.25, respectively. 

D. The flow chat of MDCS-MPC 
The flow chat of the proposed MDCS-MPC is presented 

in Fig. 8. It shows the calculation process of MDCS-MPC in 
the control period k to k+1. The output of the control is the 
optimal control variable in MDCS to be applied at time 
instance k+2. µ (=3) elements are utilized in the MDCS for 
illustration purpose. It can be expanded on request of the 
particular applications.  

The evaluation process starts with the calculation of the 
adaptive step Δadp (12). It determines the step distance between 
two near values in MDCS. MDCS slides in the range 
described in (8) centered at the control value Dφ[k+1] which is 
going to be applied at time instance k+1. Then the iteration 
starts for MDCS-MPC. The bus voltage is predicted (VHV2_p) 
with three elements in MDCS. Each voltage prediction is 
corrected by the compensation loop illustrated in Fig. 7. 
Finally, cost functions (10) are calculated with each corrected 
voltage prediction value (VHV2_c) for comparison of minimal. 
The element achieving minimal ct is then stored in Dφ[k+2] 
which is going to be applied at time instance k+2. 
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Fig. 8. The flow chat of the proposed MDCS-MPC. 
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III. PERFORMANCE EVALUATIONS 

Evaluations for the proposed MDCS-MPC controller have 
been carried out in this section in both time and frequency 
domain using simulation software PLECS/Simulink. 
Controllers demanding the same sampling requirement are 
considered for fair comparisons. The proposed methodology 
has been compared with a “PI controller” [33], “hybrid phase 
shift control” [24] and a “Virtual Direct Power Control 
(VDPC) scheme” [22]. The specification of the DAB 
converter under evaluation is listed in Table I.  

TABLE I 
CONVERTER PARAMETERS 

Description Value Units 

Switching frequency fs 20 kHz 
Dead time td 2.5 µS 
Transformer turn ratio 20:20 / 
Primary power inductor Ls 283 µH 
Primary DC capacitor CHV1

 160 µF 
Secondary DC capacitor CHV2

 160 µF 
Rated power 1 kW 

A. Load disturbance rejection 
Output impedance is selected as the metric of evaluating 

the ability of load current disturbance rejection. In order to 
assess the impedance of a converter, the small signal model of 
DAB converters is often carried out by neglecting the dynamic 
on iac1 [34], but this is insufficient to describe the DAB 
converters especially when power inductance Lp is 
comparatively large as with the DAB under test in this paper. 
T. Dragicevic introduced a describing function approach [35]. 
This approach is well suited for evaluating impedance of DAB 
converters even with non-linear controllers. 

An output impedance evaluation circuit diagram is 
implemented in the PLECS/Simulink software as shown in Fig. 
9. The DAB converter has been simplified as a voltage source 
Vout and an output impedance Zout. Idc represents the full power 
steady-state load current which sets the equilibrium point. iac 
stands for the injected small current which provides small 
signal perturbation. The output voltage VHV2 of the DAB 
converter is measured at each frequency of the injected current 
iac. Therefore, the output impedance can be calculated as: 

2 ( )
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Fig. 9. The output impedance evaluation circuit. 

The output impedance of using the proposed MDCS-MPC, 
PI, hybrid controller and VDPC controllers are illustrated in 

Fig. 10. It is easy to observe from the figure that MDCS-MPC 
can maintain low output impedance for the DAB converter in 
a wide frequency range until it reaches 0dB at 1 kHz. In 
contrast, when the PI controller and VDPC are used, output 
impedances rise above 0dB at 40Hz and 80Hz, respectively. 
The hybrid controller showed similar trend in Zout as with 
MDCS-MPC for frequency range 10Hz to 210Hz. However, 
Zout increases drastically to 0db between 210Hz to 350Hz. 
Conclusively, MDCS-MPC shows smallest Zout below 500Hz 
when compared to PI, hybrid controller and VDPC scheme.  
Therefore, MDCS-MPC has greater load current disturbance 
rejection ability.  

Simulation in time domain has also been carried out 
confirming the conclusion made above as shown in Fig. 11. 
The PPL current poses abundant harmonics/disturbance to the 
DAB converter. The output voltage VHV2 is measured in the 
time domain when the DAB is loaded with pulsed current Iload. 
The result is consistent with the conclusion made from the 
frequency domain, load voltage VHV2 demonstrated descending 
oscillation and variation when PI, VDPC, hybrid controller 
and MDCS-MPC are applied subsequently. 

 
Fig. 10. Output impedance comparisons for PI [33], VDPC scheme [22], hybrid 
controller [24] and  proposed MDCS-MPC. 
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Fig. 11. Time domain load disturbance rejection ability comparison. 
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B. Source voltage disturbance rejection 
Simulations have also been conducted for evaluating 

source voltage disturbance rejection. An evaluation circuit 
diagram is implemented in the PLECS/Simulink software as 
shown in Fig. 12. The source voltage can be decomposed by 
DC component Vdc and AC components Vac. Idc and Vdc set the 
equilibrium point. vac corresponds to the injected voltage 
which provides small signal perturbation. The output voltage 
VHV2 of the DAB converter is measured respectively for each 
injected frequency. Therefore, the source voltage disturbance 
rejection metric Gv is defined as: 

2 ( )
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Fig. 12. The circuit to emulate the voltage drop on supercaps with PPLs. 

 
Fig. 13. GV comparisons for PI [33], VDPC scheme [22], hybrid controller [24] and  
proposed MDCS-MPC. 
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Fig. 14. Time domain source voltage disturbance rejection ability comparison. 

Gv of using the PI, VDPC, hybrid controller and proposed 
MDCS-MPC are illustrated in Fig. 13. When the PI controller 
is used, Gv rises from -48dB to -8dB in the range from 10Hz to 
200Hz. The hybrid controller shows similar performance with 
the VDPC scheme. Gv of using VDPC and hybrid controller 
are well below the one with PI controller. MDCS-MPC shows 
the smallest amplitude of Gv in the low frequency range, 
therefore it holds the best performance for source voltage 
disturbance rejection among all.  

Above conclusion has also been confirmed with the 
simulation results in Fig. 14. A 50% duty cycle, 15V pulse 
voltage vac has been placed in series with 300V Vdc. The 
largest variation in VHV2 is 0.2V when using MDCS-MPC, 
VDPC and hybrid controller. The difference is that the voltage 
waveform with MDCS-MPC presents least oscillation. In 
contrast, when PI controller is utilized. Large variation and 
oscillation in VHV2 occurs. 

C. Remarks on the evaluated controllers 
According to the evaluations in load/source disturbance 

rejection abilities, MDCS-MPC shows the best performance. 
The hybrid controller ranks the second, then comes the VDPC, 
and PI controller shows the least capability for both 
disturbance rejections. However, the hybrid controller and 
VDPC demonstrated issues in the practical implementation 
described as follows;  

1) The hybrid controller requires load estimation. H. Bai 
[24] assumed resistive loads for the DAB converter. However, 
in the naval DC micro-grid, load impedance is not always 
resistive especially when long power cable and power 
electronics converters on the DC bus are taken into account. 
The estimation of load could be erroneous. 

2) The VDPC scheme demonstrated issues at low output 
current and low output voltage. The PI gain has to be 
adaptable with the output current, otherwise instability could 
happen at light load. 

In conclusion, although VDPC and hybrid controls 
demonstrated better performance compared to the PI controller 
in simulations, they are not considered in practice due to the 
major issues described above. In the following experiment 
section, comparisons are only carried out between MDCS-
MPC and the PI controller. 

IV. EXPERIMENT 

The proposed methodology has been validated on a 1kW 
20kHz 300V/300V laboratory prototype. The experiment test 
circuit diagram is depicted in Fig. 15 where the PPLs are 
emulated by a solid-state circuit breaker (SSCB) and resistive 
loads R. When S is on, bench power supply EA-PS 9360-40 
3U (1 Output, 0 V-360 V, 0 A-40 A) is connected directly to 
the DAB providing stiff input voltage Vs. When S is off, an 
inductor Lsrc (1mH) is inserted in series with the power supply. 
Lsrc could represent long cable inductance. Lsrc will cause VHV1 
voltage variation when the DAB is loaded with PPLs.  

The experiment prototype is shown in Fig. 16. A 
TMS320F2837xD evaluation board from Texas Instruments 
has been adopted as the digital control platform which 
communicates with a host computer. µ is set to 7, and the 
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weighting factors are set as α1=1 and α2=5 in the experiment, 
otherwise specified. The main components used in the 
prototype are listed in Table II. 

The computation time of the proposed MDCS-MPC is 
evaluated as shown in Fig. 17. The PI controller takes 1.16us 
to run while, in contrast, the time to run MDCS-MPC varies 
with µ. In the experiment, µ=7 has already demonstrated good 
performance against PI controller, and it only takes 7.8us. 
Since 20 kHz switching frequency is utilized, 50us is available 
in one sampling period. Therefore, there is sufficient 
headroom for implementing A/D sampling, digital filters, 
MODBUS communication, protections etc. 

TABLE II 
HARDWARE COMPONENTS 

Component Description Parameters 

Switching devices SKM75GB128D 
VCES=1200V; 

Ic=100A 
Pri/Sec capacitor bank 1848S MKP 700V; 20uF * 8 

Magnetic components Ferrites; litz wire 
Lm=3mH; 

Lp=0.28mH 
Voltage sensors LV 25-P tr=40us 

Current sensors LA 55-p 
BW(-1dB) 

200kHz 

 

+
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Iload
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-
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Fig. 15. The experiment test circuit diagram. 
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Fig. 16. The experiment setup. 
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Fig. 17. Computation time comparison between MDCS-MPC and PI control. 

The effectiveness of G2 and adaptive step has been 
verified in the experiment. Results are shown in Fig. 18 and 
Fig. 19. Enhancement on sampling noise resistance is proofed 
by Fig. 18. It is clearly shown that the steady state dithering is 
alleviated when G2 is enabled. The acoustic noise from 
transformer has also been alleviated. The comparison between 
Fig. 19 (a)(b) and (c)(d) verifies the resonance damping effect 
with G2. The comparison between Fig. 19 (c) and (d) verifies 
the dynamic improvement using the adaptive step Δadp. 

α2=0 α2=5

vac1 [500V/div]

iac1 [2A/div]

VHV2 [10V/div]

Iload [1A/div]

Time [10ms/div]

Time [10us/div] Time [10us/div]

300V

 
Fig. 18. Sampling noise resistance of the proposed MDCS-MPC. 
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(a) α2=0 with Δf 

Time [4ms/div]
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iac1 [5A/div]
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Iload [2A/div]

300V

 
(b) α2=0 with Δadp 
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Time [4ms/div]

vac1 [500V/div]

iac1 [5A/div]

VHV2 [10V/div]

Iload [2A/div]

300V

 
 (c) α2=5 with Δf 

Time [4ms/div]

vac1 [500V/div]

iac1 [5A/div]

VHV2 [10V/div]

Iload [2A/div]

300V

 
(d) α2=5 with Δadp 

Fig. 19. Verification on effectiveness of G2 and adaptive step Δadp. (a) α2=0 
with Δf; (b) α2=0 with Δadp; (c) α2=5 with Δf; (d) α2=5 with Δadp 

The experiment results with PPLs are provided in Fig. 20. 
The PI controller is designed and tuned referring to the design 
approach described in the chapter 6.7 of [36]. The voltage 
waveforms verify that the proposed MDCS-MPC provides 
stiff voltage regulation in presence of PPLs while PI controller 
has limitations on voltage dip and overshoot. 

vac1 [500V/div]

iac1 [5A/div]

VHV2 [20V/div]

Iload [2A/div]

Time [20ms/div]

300V

 
(a) MDCS-MPC 

Time [20ms/div]

vac1 [500V/div]

iac1 [5A/div]

VHV2 [20V/div]

Iload [2A/div]

300V

 
(b) PI control 

Fig. 20. Comparison between (a) proposed MDCS-MPC, (b) PI control 
when the DAB converter is loaded with PPLs @20Hz. 

Experiments in presence of Lsrc have also been conducted 
for both MDCS-MPC and the PI controller. Results are shown 
in Fig. 21. DAB regulated with the PI controller is not affected 
by Lsrc when comparing Fig. 20(b) and Fig. 21(b). However, 
VHV1 in Fig. 21(a) has larger variation compared to Fig. 21(b) 
due to faster transition of input source current with MDCS-
MPC. And due to the variation in VHV1, the transition with 
MDCS-MPC is marginally deteriorated as concluded from 
comparison of Fig. 20(a) and Fig. 21(a).  

VHV1 [20V/div]

iac1 [5A/div]

VHV2 [20V/div]

Iload [2A/div]

Time [20ms/div]

300V

300V

 
(a) MDCS-MPC 

Time [20ms/div]

VHV1 [20V/div]

iac1 [5A/div]

VHV2 [20V/div]

Iload [2A/div]

300V

300V

 
(b) PI control 

Fig. 21. Comparison between (a) proposed MDCS-MPC, (b) PI control in 
presence of Lsrc with the DAB loaded with PPLs @20Hz. 

V. CONCLUSIONS 

In this paper, a Moving-Discretized-Control-Set Model-
Predictive-Control (MDCS-MPC) is proposed to Dual-Active-
Bridge converters supplying Pulsed-Power-Loads (PPLs) in 
shipboard naval DC micro-grids. The principle of MDCS-
MPC is intuitively introduced, based on which a cost function 
is proposed. The cost function, on one hand, provides 
resonance damping for load voltage; On the other hand, it 
enhances the sampling noise resistance. The adaptive step is 
also proposed in this paper for MDCS-MPC. It drastically 
increases the transition dynamic of the converter. 

Performance evaluations on load/source disturbance 
rejection have also been carried out. The proposed MDCS-
MPC prevails all other control methods with similar sampling 
requirements. Experiments are carried out to further verify the 
salient performance of the MDCS-MPC. MDCS-MPC 
provides stiff voltage regulation when DAB is loaded with 
PPLs and in the presence of input voltage disturbance. 
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