
EREMENKO’S CONJECTURE FOR FUNCTIONS WITH REAL
ZEROS: THE ROLE OF THE MINIMUM MODULUS

D. A. NICKS, P. J. RIPPON, AND G. M. STALLARD

Abstract. We consider the class of real transcendental entire functions f
of finite order with only real zeros, and show that if the iterated minimum
modulus tends to ∞, then the escaping set I(f) of f has the structure of a
spider’s web, in which case Eremenko’s conjecture holds. This minimum mod-
ulus condition is much weaker than that used in previous work on Eremenko’s
conjecture. For functions in this class we analyse the possible behaviours of
the iterated minimum modulus in relation to the order of the function f .

1. Introduction

Let f be a transcendental entire function and denote by fn, n = 0, 1, 2, . . . , the
nth iterate of f . The escaping set

I(f) = {z : fn(z)→∞ as n→∞}
plays a key role in complex dynamics with much recent work motivated by Ere-
menko’s conjecture that all the components of the escaping set are unbounded.
This work has led to a much better understanding of the structure of I(f).

It is known that for many families of transcendental entire functions, including
the exponential family, I(f) has the structure of a Cantor bouquet consisting of
uncountably many unbounded curves – see, for example, [26]. We have shown,
however (for example in [22]), that there are many families of functions for which
I(f) has the structure of an infinite spider’s web; that is, I(f) is connected and
there exist bounded simply connected domains Gn, n ∈ N, such that

Gn ⊂ Gn+1 and ∂Gn ⊂ I(f), for n ∈ N, and
∞⋃
n=1

Gn = C.

If I(f) is a Cantor bouquet or a spider’s web, then Eremenko’s conjecture holds.

Many results on I(f) have been obtained by studying the fast escaping set A(f),
introduced in [3], which can be defined as follows; see [22]. First put

(1.1) AR(f) = {z : |fn(z)| ≥Mn(R), for n ∈ N},
where M(r) = M(r, f) = max{|f(z)| : |z| = r}, r > 0, Mn(r) = Mn(r, f)
denotes the nth iterate of r 7→M(r, f), and R > 0 is so large that M(r) > r for
r ≥ R, and then put

A(f) = {z : for some ` ∈ N, f `(z) ∈ AR(f)}.
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Indeed, major progress on Eremenko’s conjecture was made by showing that for
many large classes of functions AR(f) is a spider’s web, from which it follows
that I(f) is a spider’s web, so Eremenko’s conjecture holds (in a particularly
strong way). These were the first transcendental entire functions for which it
was known that I(f) is connected; see [20], [22].

Subsequently, other methods of proving that I(f) is connected were found. For
example, Rempe-Gillen [19] showed that for the exponential function f(z) = ez

the set I(f) is connected, though it is known not to be a spider’s web [17],
whereas Evdoridou [6] showed that for Fatou’s function f(z) = z + 1 + e−z the
set I(f) is a spider’s web but AR(f) is not. Other functions for which I(f) is a
spider’s web but AR(f) is not were given in [25].

Most proofs that AR(f) is a spider’s web rely on the function f enjoying some
form of classical relationship between the minimum modulus

m(r) = m(r, f) = min{|f(z)| : |z| = r}

and the maximum modulus M(r), which implies that there exist r > R > 0 such
that

(1.2) mn(r) > Mn(R) and Mn(R)→∞ as n→∞,

from which it follows that AR(f) is a spider’s web; see [16].

Here we give a new approach which enables us to obtain a large family of func-
tions f for which I(f) is a spider’s web, based only on the iterated minimum
modulus. Recall that the order ρ(f) of a transcendental entire function f is

ρ(f) = lim sup
r→∞

log logM(r, f)

log r

and f is said to be real if

f(z̄) = f(z), for z ∈ C.

Theorem 1.1. Let f be a real transcendental entire function of finite order with
only real zeros, and suppose

(1.3) there exists r > 0 such that mn(r)→∞ as n→∞.

Then I(f) is a spider’s web and hence is connected.

Remark The property (1.3) was introduced in [16], where it was shown to imply
that a certain superset of I(f) is always connected. It is also shown there that
many examples of entire functions satisfy (1.3), including all functions of order
less than 1/2. Note that there are functions of order less than 1/2, and even of
order 0, that do not satisfy the stronger condition (1.2); see [24].

The proof of Theorem 1.1 is in two parts depending on the genus of the function,
a non-negative integer closely related to the order of the function, to be defined
shortly. First, in Section 2 we prove Theorem 1.1 for all functions satisfying the
hypotheses of the theorem with genus at most 1. In this case we show that I(f)
contains a spider’s web consisting of points that escape to infinity at a uniform
rate related to the minimum modulus. In particular, as we show in Section 3,
for real functions of order less than 1/2 with real zeros, a certain subset of I(f)
called the quite fast escaping set, Q(f), contains a spider’s web.
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Then, in Section 4 we consider transcendental entire functions f of finite order
with only real zeros and of genus at least 2. We use results from the value
distribution theory of entire functions to show that in this case there is no value
of r for which mn(r) → ∞ as n → ∞, and so the hypotheses of Theorem 1.1
cannot be satisfied. In fact we prove the stronger result that, for such functions,
there exists a ray from 0 on which f(z)→ 0 as z →∞. This result, which is of
independent interest, completes the proof of Theorem 1.1.

The genus of a function is defined as follows. Recall that any finite order entire
function has a Hadamard representation

(1.4) f(z) = zneQ(z)

∞∏
k=1

E(z/ak,m),

where Q is a polynomial, the ak are the non-zero zeros of f , the Weierstrass
primary factors are

E(z, 0) = 1− z and E(z,m) = (1− z)ez+
z2

2
+···+ zm

m , m ≥ 1,

and m is the smallest integer for which
∑∞

k=1 |ak|−(m+1) is convergent. The genus
of f is

(1.5) max{m, degQ}.
The genus is thus an integer and it satisfies the inequalities

ρ(f)− 1 ≤ genus of f ≤ ρ(f);

see [8, pp. 24–29] or [27, pp. 250–253], for example.

In Section 5, we study real entire functions with only real zeros, and of genus
less than 2 and order at least 1/2. We construct examples of such functions for
which property (1.3) holds, so Theorem 1.1 applies, and examples for which it
does not hold.

A summary of our results relating the property (1.3) to the growth of real tran-
scendental entire functions with only real zeros is given in the following theorem.

Theorem 1.2. (a) Let f be a real transcendental entire function of finite
order with only real zeros.
(i) If 0 ≤ ρ(f) < 1/2, then property (1.3) always holds.
(ii) If the genus of f is at least 2 (which includes the case that ρ(f) > 2),

then property (1.3) never holds.
(b) For any ρ ∈ [1/2, 2] there are examples of real transcendental entire func-

tions with real zeros that have order ρ for which property (1.3) holds, and
also examples of such functions for which (1.3) does not hold.

Remark In relation to Theorem 1.2 (a)(ii), note that any transcendental entire
function f of at least order 2 mean type has genus at least 2; see [8, proof of
Theorem 1.11], for example.

2. Spiders’ webs in I(f)

We begin our proof of Theorem 1.1 by letting f be a real transcendental entire
function of genus at most 1 with only real zeros for which there exists r > 0
such that mn(r) → ∞ as n → ∞. We show that, for such a function, I(f) is a
spider’s web. In fact we prove the following stronger result.
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Theorem 2.1. Let f be a real transcendental entire function of genus at most 1
with only real zeros and suppose that there exists r > 0 such that

(2.1) mn(r) is a strictly increasing sequence with mn(r)→∞ as n→∞,
and m(r)1/3 ≥ |f(0)|. Then I(f) contains a spider’s web in

{z : |fn(z)| ≥M−1(mn(r)1/3) for all n ∈ N}.

This result is sufficient to show that Theorem 1.1 holds for functions of genus at
most 1. Indeed, whenever I(f) contains a spider’s web, I(f) must be a spider’s
web, by [25, Lemma 4.5], and whenever (1.3) holds there exists r > 0 such that
(2.1) holds, by [16, Theorem 2.1], which is stated as Lemma 3.1 in this paper.

The proof of Theorem 2.1 uses the sequence of closed sets

IN = {z : |fn(z)| ≥M−1(mn+N(r)1/3) for all n ∈ N}, N = 0, 1, 2, . . . ,

and we show that IN contains a spider’s web, for all N = 0, 1, . . . , using proof by
contradiction. The basic idea of the proof is that if IN does not contain a spider’s
web for some N , then we can take a suitably long curve γ0 in its complement. We
then show that successive images of this curve must either experience repeated
radial stretching escaping to infinity, or they must eventually wind round the
origin meeting a component of the fast escaping set. In either case we are able
to deduce that the curve γ0 contains a point in IN which is a contradiction.

The proof requires several results from earlier papers. To state these, we need the
following notation. For r > 0, we write C(r) = {z : |z| = r} and, for 0 < r1 < r2,
we write

A(r1, r2) = {z : r1 < |z| < r2} and A(r1, r2) = {z : r1 ≤ |z| ≤ r2}.

If γ is a plane curve that lies in a simply connected domain containing no zeros
of f , then, for any pair of distinct points z0, z

′
0 in γ, we denote the net change in

the argument of f(z) as z traverses γ from z0 to z′0 by ∆arg(f(γ); z0, z
′
0).

The main tool that we use to obtain winding is Theorem 2.2 below. This was
originally stated for a continuum [15, Theorem 2.1] but here we only need to
apply the result to a curve.

Also, although our original theorem was stated for certain entire functions of
order less than 2, the proof only required f to be in the Laguerre–Pólya class
(see [15, discussion in Section 5]). This class is the closure of the set of real
polynomials with real zeros and, by the Laguerre–Pólya theorem ([11] and [18]),
it consists of functions of the form

f(z) = ±zneb2z2+b1z+b0
∞∏
k=1

E(z/ak,m),

where the ak are real, m = 0 or 1, b0, b1 ∈ R and b2 ≤ 0. In particular, all real
entire functions with real zeros and genus at most 1 belong to this class.

Theorem 2.2. Let f be a real transcendental entire function of genus at most 1
with only real zeros. There exists R0 = R0(f) > 0 such that, if s and a are
positive real numbers with

(2.2) s ≥ R0 and log s ≥ 64

a2
+

80π

a
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and γ is a curve in {z : Im z ≥ 0} that meets both C(s) and C(s1+a) with

(2.3) 1/M(s) ≤ |f(z)| ≤M(s), for z ∈ γ,
then there exist a curve Γ ⊂ γ ∩ A(s, s1+a) and z0, z

′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥

1

10π
logM(s) log sa.

We need the following corollary of Theorem 2.2.

Corollary 2.3. Let f be a real transcendental entire function of genus at most 1
with only real zeros. There exists R1 = R1(f) ≥ R0(f) such that, if t and ε are
positive real numbers with

(2.4) t1−ε ≥ R1 and ε ∈ [10/
√

log t, 1),

and γ is a curve in {z : Im z ≥ 0} that meets both C(t1−ε) and C(t) with

(2.5) 1/M(t1−ε) ≤ |f(z)| ≤M(t1−ε), for z ∈ γ,
then there exist a curve Γ ⊂ γ ∩ A(t1−ε, t) and z0, z

′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ 2π.

Proof. We claim that we can apply Theorem 2.2 to the curve γ with s = t1−ε

and s1+a = t. It follows from (2.5) that (2.3) holds. To show that (2.2) holds,
we note that a = ε/(1− ε) and so, by (2.4),

64

a2
+

80π

a
=

64(1− ε)2

ε2
+

80π(1− ε)
ε

<

(
64

100
log t+

80π

10

√
log t

)
(1− ε)

=

(
64

100
+

8π√
log t

)
(1− ε) log t

< (1− ε) log t = log s,

provided
√

log t > 200π/9. Thus (2.2) holds, provided R1 is sufficiently large.

So it follows from Theorem 2.2 that there exist a curve

Γ ⊂ γ ∩ A(s, s1+a) = γ ∩ A(t1−ε, t)

and z0, z
′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥

1

10π
logM(t1−ε) log tε

≥ 1

10π
logM(t1−ε) log(10

√
log t)

≥ 1

10π
log(10

√
log t) ≥ 2π,

by (2.4), provided R1 is sufficiently large. �

We also use the following result about the fast escaping set, proved in [25,
Lemma 4.4].

Lemma 2.4. Let f be a transcendental entire function. There exists R2 =
R2(f) > 0 such that if R ≥ R2, then there is a component of AR/2(f) that meets
{z : |z| < R} and is unbounded.
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The next result we need concerns uniform rates of escape of quite a general form.
This result was proved in [6, Theorem 1.4]. Note that, although the statement
of [6, Theorem 1.4] assumes that the sequence (an) satisfies an+1 ≤ M(an),
for n ∈ N, the proof there only uses the consequence of this assumption that
an ≤ Mn(R) for n ∈ N and some R > 0, and we now state the result in that
more general form.

Lemma 2.5. Let f be a transcendental entire function and let (an) be a positive
increasing sequence with an →∞ as n→∞, an ≤ Mn(R) for n ∈ N and some
R > 0, and a1 sufficiently large that the disc D(0, a1) contains a periodic cycle
of f . Let

I(f, (an)) = {z : |fn(z)| ≥ an for all n ∈ N}.
If I(f, (an))c has a bounded component, then I(f, (an)) contains a spider’s web.

We also use the following result on the convexity of the maximum modulus
function; see [21, Lemma 2.2].

Lemma 2.6. Let f be a transcendental entire function. There exists R3 =
R3(f) > 0 such that if r > R3 and c > 1 then

M(rc) ≥M(r)c.

Finally, we use the following technical lemma.

Lemma 2.7. Let rn be a sequence satisfying

(2.6) r0 ≥ exp(1600) and rn+1 ≥ rn, for n ≥ 0.

Suppose further that there exists a subsequence rnk such that

(2.7) rnk+1
≥ r16nk , for k ∈ N.

Now let (Ln) be a sequence such that

(2.8) L0 = 3, Lnk+1 = Lnk(1− δnk), for k ∈ N, and Ln = 3 otherwise,

where

(2.9) δnk = 10/
√

log rnk , for k ∈ N.
Then Ln ≥ 2 for all n ∈ N.

Proof. It follows from (2.8) that

(2.10) Ln ≥ 3
∏
k∈N

(1− δnk), for n ∈ N.

Also, it follows from (2.6) and (2.7) that

log rnk ≥ 16k−1 log rn1 ≥ 16k−1 log r0 ≥ 100× 16k, for k ∈ N.
Together with (2.9), this implies that

(2.11) δnk ≤
10√

100× 16k
=

1

4k
, for k ∈ N.

It follows from (2.10) and (2.11) that

Ln ≥ 3
∏
k∈N

(
1− 1

4k

)
≥ 3

(
1−

∑
k∈N

1

4k

)
= 2, for n ∈ N,

as claimed. �
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We now prove the main result of this section.

Proof of Theorem 2.1. First recall that r > 0 satisfies (2.1) and m(r)1/3 ≥ |f(0)|.
As stated earlier, we shall show that, under the given hypotheses, all the sets

(2.12) IN = {z : |fn(z)| ≥M−1(mn+N(r)1/3) for all n ∈ N}, N = 0, 1, 2, . . . ,

contain a spider’s web, which is sufficient to prove Theorem 2.1.

We assume then that there exists some positive integer N0 such that the set
IN0 does not contain a spider’s web, and show that this assumption gives a
contradiction. Since, by (2.1), the sets IN have the property that

(2.13) IN2 ⊂ IN1 , for N2 > N1 ≥ 0,

our assumption implies that, for all N ≥ N0, the set IN does not contain a
spider’s web.

We now choose N ≥ N0 so large that

(2.14) the disc D(0,M−1(mN+1(r)1/3)) contains a periodic cycle of f,

(2.15) mN+2(r)1/3 ≥ max{R1, R3,M(R2),M(1), exp(1600)}
and

(2.16) M(s) ≥ s32, for s ≥
(
mN+2(r)

)1/2
.

Next we choose R so large that if an = M−1(mn+N(r)1/3), then an ≤Mn(R) for
n ∈ N. Indeed, if we choose R ≥ mN−1(r), then for all n ∈ N we have

mn+N(r) = mn+1
(
mN−1(r)

)
≤Mn+1(R), so an ≤Mn(R).

Thus such a choice of R is possible. Also, by (2.14), the disc D(0, a1) contains a
periodic cycle of f .

Then the hypotheses of Lemma 2.5 are satisfied for this sequence (an). Therefore,
since IN does not contain a spider’s web, IcN must have at least one unbounded
component and hence there must be an unbounded curve Γ0 ⊂ IcN .

Next note that if we increase N , then (2.14)–(2.16) remain true, as does the
statement that Γ0 ⊂ IcN by (2.13).

We now increase N if necessary to ensure that the curve Γ0 meets both the circles
C(M−1(mN+2(r)1/3)) and C(mN+2(r)). We can then choose a subcurve γ0 of Γ0

such that
γ0 ⊂ A(M−1(mN+2(r)1/3),mN+2(r))

and
γ0 meets both C(M−1(mN+2(r)1/3)) and C(mN+2(r)).

The idea of the proof is to show that if such a curve γ0 exists, then we can
construct a sequence of curves γn ⊂ fn(γ0) and positive sequences (rn) and (Ln)
such that, for n ≥ 0, we have

(2.17) f(γn) ⊃ γn+1,

(2.18) γn ⊂ A(M−1(r1/Lnn ), rn), and γn meets both C(M−1(r1/Lnn )) and C(rn),

where

(2.19) rn ≥ mN+n+2(r) and 2 ≤ Ln ≤ 3,
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and also

(2.20) Ln+1 = 3 or Ln+1 ≥ Ln(1− 10/
√

log rn) and rn+1 ≥M(r1/2n ) ≥ r16n .

(These conditions formalise what we mean by saying that the images of the
curve γ0 experience ‘repeated radial stretching’.)

We can then deduce from (2.17), (2.18), (2.19), and (2.20), that there is a point
z0 ∈ γ0 such that, for n ≥ 0,

(2.21) fn(z0) ∈ γn, so |fn(z0)| ≥M−1(r1/3n ).

By (2.12) and (2.19), this implies that z0 ∈ IN which is a contradiction since
z0 ∈ γ0 ⊂ IcN .

To construct the sequences (Ln), (rn) and (γn), we proceed as follows. Start by
putting r0 = mN+2(r), so γ0, r0 and L0 = 3 have the required properties. Next,
suppose that, for k = 0, 1, . . . , n, we have chosen curves γk and positive numbers
rk and Lk such that (2.18) and (2.19) are satisfied with n replaced by k and, in
addition, (2.17) and (2.20) hold, with n replaced by k for k = 0, 1, . . . , n − 1.
We then show that we can choose a curve γn+1 and positive numbers rn+1 and
Ln+1 so that (2.17) and (2.20) hold, and (2.18) and (2.19) hold with n replaced
by n+ 1.

We begin by putting

(2.22) rn+1 = max
z∈γn
|f(z)|

and let q be the largest integer such that mq(r) ≤ rn. It follows from (2.19) that
q ≥ N + n+ 2. Also, it follows from (2.18) that γn must meet C(mq(r)), since

mq(r) ≥M−1(mq+1(r)) > M−1(rn) ≥M−1(r1/Lnn ).

Thus

(2.23) rn+1 ≥ mq+1(r) ≥ mN+n+3(r),

so rn+1 satisfies the first inequality in (2.19).

Next we suppose that there exists z ∈ γn with |f(z)| ≤ M−1(r
1/3
n+1). Then it

is clear that there exists a curve γn+1 having the properties (2.17)–(2.20), with
Ln+1 = 3.

If such a z does not exist, then we must have

(2.24) |f(z)| > M−1(r
1/3
n+1), for z ∈ γn.

We now put

(2.25) εn = 10/
√

log rn

and note that, by (2.15) and (2.19), we have

(2.26) εn ≤ 1/2.

We consider two cases. First suppose that

(2.27) rn+1 ≥M(r1−εnn ).

In this case we have rn+1 > M(r
1/2
n ) ≥ r16n , by (2.26), (2.19) and (2.16). We put

(2.28) Ln+1 = Ln(1− εn)
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and note that rn+1 and Ln+1 satisfy (2.20). Also, by (2.15), it follows from
Lemma 2.7 that Ln+1 ≥ 2. Thus Ln+1 satisfies the second inequality in (2.19).

We can now show that there exists a curve γn+1 with the required properties.
First, it follows from (2.18) that there exists z ∈ γn with

(2.29) |f(z)| ≤ r1/Lnn .

Also, it follows from (2.27), Lemma 2.6 (in view of (2.15) and (2.19)), and (2.28)
that

(2.30) rn+1 ≥M(r1−εnn ) ≥M(r1/Lnn )Ln(1−εn) = M(r1/Lnn )Ln+1 ,

so r
1/Ln
n ≤ M−1(r

1/Ln+1

n+1 ). Together with (2.29) and (2.22), this is sufficient to
show that there exists a curve γn+1 satisfying (2.17) and (2.18) with n replaced
by n+ 1.

It remains to consider the case when

(2.31) rn+1 < M(r1−εnn ).

We show that this leads to a contradiction and so cannot occur. A key fact
needed to obtain this contradiction is that f has the symmetry property

(2.32) f(z) = f(z), for z ∈ C.

We will obtain a contradiction by applying Corollary 2.3, with

t = rn and ε = εn,

to a curve γ′n meeting C(r1−εnn ) and C(rn), chosen such that γ′n ⊂ {z : Im z ≥ 0}
and

(2.33) γ′n ⊂ γn ∪ γ∗n,
where ∗ denotes reflection in the real axis.

We check that the hypotheses of Corollary 2.3 are satisfied. First we have

r1−εnn ≥ r1/2n ≥ R1,

by (2.15) and (2.19). Next, it follows from (2.22), (2.31), (2.32) and (2.33) that

|f(z)| ≤M(r1−εnn ), for z ∈ γ′n,
and, from (2.24), (2.32), (2.33), and also (2.23) and (2.15), that

(2.34) |f(z)| ≥M−1(r
1/3
n+1) > 1 > 1/M(r1−εnn ), for z ∈ γ′n.

Therefore, by Corollary 2.3, there exists a curve Γ ⊂ γ′n and points z0, z
′
0 ∈ Γ

and such that

(2.35) ∆arg(f(Γ); z0, z
′
0) ≥ 2π.

We also have, from (2.34), that

|f(z)| ≥M−1(r
1/3
n+1), for z ∈ Γ.

Together with (2.35), (2.15), (2.32) and Lemma 2.4, this implies that

f(Γ) ∩ A
M−1(r

1/3
n+1)/2

(f) 6= ∅.

So, by (2.32) and (2.33), there exists zn ∈ γn such that

(2.36) |f(zn)| ≥M−1(r
1/3
n+1) and f(zn) ∈ A

M−1(r
1/3
n+1)/2

(f).
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From the construction of the curves γk, for 1 ≤ k ≤ n, it follows that there exists
z0 ∈ γ0 such that fk(z0) ∈ γk, for 0 ≤ k ≤ n, and fn(z0) = zn. Therefore, by
(2.18), (2.19) and (2.23), we have

|fk(z0)| ≥M−1(r
1/3
k ) ≥M−1(mN+k+2(r)1/3), for 0 ≤ k ≤ n+ 1,

and, by (2.36), (1.1), (2.16) and then (2.23), we have

|fn+2(z0)| = |f 2(zn)| ≥M(M−1(r
1/3
n+1)/2) ≥M−1(r

1/3
n+1) ≥M−1(mN+n+3(r)1/3).

By similar reasoning, we have, for k > n+ 2,

|fk(z0)| = |fk−n−1(f(zn))| ≥Mk−n−1(M−1(r
1/3
n+1)/2) ≥Mn+k−2(M−1(r

1/3
n+1))

≥Mk−n−2(M−1(mN+n+3(r)1/3)) = M−1(Mk−n−2(mN+n+3(r)1/3)),

and hence, by (2.16),

|fk(z0)| ≥M−1(Mk−n−3(mN+n+3(r))) ≥M−1(mN+k(r)) > M−1(mN+k(r)1/3).

Together these three estimates show that z0 ∈ IN , which is a contradiction since
z0 ∈ γ0 ⊂ IcN . It follows that the case considered in (2.31) cannot occur and this
completes the proof. �

3. Spiders’ webs in V (f) and Q(f)

In this section we prove two results which follow from Theorem 2.1 and which
show that, for many classes of real transcendental entire functions with only real
zeros, the sets V (f) and Q(f) each contain a spider’s web. These subsets of
the escaping set were considered in earlier papers in connection with Eremenko’s
conjecture and a conjecture of Baker. In particular, we show here that for all
real entire functions of order less than 1/2 with only real zeros, the quite fast
escaping set Q(f) contains a spider’s web.

The set V (f), introduced in [16], is the set of points whose iterates grow at least
as fast as the iterated minimum modulus; that is,

V (f) = {z : there exists L ∈ N such that |fn+L(z)| ≥ m̃n(R) for all n ∈ N},

where

m̃(r) = max
0≤s≤r

m(s), r > 0,

and R > 0 is any number such that m̃(r) > r for r ≥ R. The existence of such
an R follows from (1.3) by a result about escaping points of real functions [16,
Theorem 2.1], which we have already used at the start of Section 2 and which
we state here in full for the reader’s convenience.

Lemma 3.1. Let ϕ : [0,∞)→ [0,∞) be continuous and put ϕ̃(t) = max0≤s≤t ϕ(s),
t > 0 . Then the following statements are equivalent.

(a) There exists t > 0 such that ϕn(t)→∞ as n→∞.
(b) There exists t′ > 0 such that the set {ϕn(t′) : n ∈ N0} is unbounded.
(c) There exists T > 0 such that ϕ̃(t) > t, for t ≥ T (or equivalently there

exists t > 0 such that ϕ̃n(t)→∞ as n→∞).
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(d) There exist t ≥ T > 0 such that

ϕn(t) and ϕ̃n(T ) increase strictly with n to ∞,
and

ϕn(t) ∈ [ ϕ̃n(T ), ϕ̃n+1(T ) ], for n ∈ N0.

(e) There exists a sequence (tn) of positive real numbers such that tn → ∞ as
n→∞ and

ϕ(tn) ≥ tn+1, for n ∈ N0.

By the equivalence of parts (a) and (c) of Lemma 3.1, property (1.3) holds if
and only if there exists R > 0 such that m̃(r) > r for r ≥ R. Moreover, in this
situation there must exist r > 0 such that mn(r) > m̃n(R) for n ∈ N by part (d).

As mentioned in the introduction, in [16] it is shown that there are large classes
of functions for which there exist r > R > 0 such that

mn(r) > Mn(R) and Mn(R)→∞ as n→∞.
For such functions, V (f) is equal to the fast escaping set A(f) and this set is a
spider’s web. It is known, however, that this equality is not true in general for
functions such that (1.3) holds, even for functions of order less than 1/2. In [16]
it was asked whether V (f) contains a spider’s web for all functions such that
(1.3) holds.

As a consequence of Theorem 2.1, we have the following partial result in this
direction.

Theorem 3.2. Let f be a real transcendental entire function of genus at most 1
with only real zeros. If there exist R > 0 and p ∈ N such that

(3.1) m̃p(s) ≥M(s), for s ≥ R,

then V (f) contains a spider’s web.

Proof. First, it follows from (3.1) that we can assume that m̃n(R) → ∞ as
n → ∞. Hence, by the equivalence of parts (c) and (d) of Lemma 3.1, there
exists r ≥ R such that mn(r) is strictly increasing and mn(r) ≥ m̃n(R) for
n ∈ N.

If we now takeN ≥ 2p+2, sufficiently large thatM(r) ≥ r3 for r ≥M(m̃N−2p(R)),
then, for n ∈ N, we have

M−1(mn+N(r)1/3) ≥M−1(m̃n+N(R)1/3)

≥M−1((M2(m̃n+N−2p(R))1/3)

≥M−1(M(m̃n+N−2p(R))

= m̃n+N−2p(R).

So it follows from Theorem 2.1 that V (f) contains a spider’s web. �

We end this section by showing that, in the special case that f is a real transcen-
dental entire function with only real zeros and order less than 1/2, Theorem 3.2
together with the cosπρ theorem imply that the quite fast escaping set Q(f)
contains a spider’s web. Recall that, for each ε > 0, we define

Qε(f) = {z : there exists L ∈ N such that |fn+L(z)| ≥ µnε (R) for all n ∈ N},
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where

µε(r) = M(r)ε, r > 0,

and R > 0 is so large that µε(r) > r, for r ≥ R, and then put

Q(f) =
⋃

ε∈(0,1)

Qε(f).

In an earlier paper [25], we saw other families of functions of order less than 1/2
for which Q(f) contains a spider’s web. For many of these, Q(f) = A(f) (see
[23]), but there are examples for which Q(f) contains A(f) strictly (see [24]).

We know of no examples of functions of order less than 1/2 for which Q(f) does
not contain a spider’s web, and we make the following conjecture.

Conjecture 3.3. If f is a transcendental entire function of order less than 1/2,
then the quite fast escaping set Q(f) contains a spider’s web, from which it follows
that I(f) is a spider’s web and hence is connected.

We have the following partial result in this direction.

Theorem 3.4. Let f be a transcendental entire function of order less than 1/2.
Then V (f) ⊂ Q(f). If, in addition, f is real with only real zeros, then Q(f)
contains a spider’s web.

Proof. Let f be a transcendental entire function of order less than 1/2. It follows
from the cos πρ theorem (see [1], [2] or [9, page 331]) that there exists ε ∈ (0, 1)
such that, for sufficiently large r > 0,

there exists s ∈ (rε, r) such that m(s) ≥M(rε).

Therefore, for sufficiently large r > 0, we have

(3.2) m̃(r) ≥M(rε) and hence m̃n(r) ≥ (µnε (rε))1/ε ≥ µnε (rε), for n ∈ N.
Hence V (f) ⊂ Q(f). The fact that Q(f) contains a spider’s web now follows
from Theorem 3.2, by using (3.2) with n = 2 and Lemma 2.6. �

4. Functions of genus at least 2

In this section we complete the proof of Theorem 1.1 by showing that if f is a
real transcendental entire function of finite order with only real zeros and genus
at least 2, then its minimum modulus satisfies

m(r)→ 0 as r →∞,
so f does not satisfy (1.3). Actually, we prove the following much stronger result.

Theorem 4.1. Let f be a transcendental entire function of finite order with only
real zeros and genus at least 2. Then

(a) there exists θ ∈ [0, 2π] such that

f(reiθ)→ 0 as r →∞;

(b) 0 is a deficient value of f .

Either (a) or (b) implies that m(r)→ 0 as r →∞, so f does not satisfy (1.3).



EREMENKO’S CONJECTURE FOR FUNCTIONS WITH REAL ZEROS 13

The conclusion that 0 is a deficient value states that the defect of f at 0,

(4.1) δ(0, f) = 1− lim sup
r→∞

N(r)

T (r)
> 0.

Here,

N(r) = N(r, 0, f) =

∫ r

0

(n(t, f)− n(0, f))

t
dt,

in which n(t, f) is the number of zeros of f in {z : |z| ≤ t} counted according to
multiplicity, and

T (r) = N(r) +
1

2π

∫ 2π

0

log+(1/|f(reiθ)|) dθ,

where log+ t = max{log t, 0}. It is clear that if 0 is a deficient value of f , then
m(r)→ 0 as r →∞, since

lim inf
r→∞

(
1

2πT (r)

∫ 2π

0

log+(1/|f(reiθ)|) dθ
)

= lim inf
r→∞

(
1− N(r)

T (r)

)
> 0,

so
1

2π

∫ 2π

0

log+(1/|f(reiθ)|) dθ →∞ as r →∞.

Theorem 4.1 has the following corollary for functions with only non-negative
zeros.

Corollary 4.2. Let f be a transcendental entire function of finite order with
only non-negative zeros and genus at least 1. Then

(a) there exists θ ∈ [0, 2π] such that

f(reiθ)→ 0 as r →∞;

(b) 0 is a deficient value of f .

Hence m(r)→ 0 as r →∞, so f does not satisfy (1.3).

Proof. The function g(z) = f(z2) has finite order, its zeros all lie on the real
axis, and its genus is at least 2. Hence, by Theorem 4.1, g has limit 0 along a ray
to ∞, and 0 is a deficient value of g. It follows immediately that f has limit 0
along a ray to ∞, and also that 0 is a deficient value of f , since, for r ≥ t > 0,
we have

n(t, g) = 2n(t2, f), so N(r, 0, g) = N(r2, 0, f),

and

1

2π

∫ 2π

0

log+(1/|g(reiθ)|) dθ = 2

(
1

2π

∫ 2π

0

log+(1/|f(r2eiθ)|) dθ
)
. �

The proof of Theorem 4.1 uses the following two lemmas. The first, used in the
proof of part (b), is a major result of Edrei, Fuchs and Hellerstein [4, Corol-
lary 1.2].
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Lemma 4.3. Suppose that f is an entire function with only real zeros, an say,
such that

(4.2)
∞∑
n=1

1

|an|2
=∞ and

∞∑
n=1

1

|an|ξ
<∞,

for some ξ ∈ (2,∞). Then 0 is a deficient value of f .

The second lemma, used in the proof of part (a), concerns the asymptotic be-
haviour of Weierstrass primary factors of the form

E(z,m) = (1− z)ez+
z2

2
+···+ zm

m , m ≥ 2.

Lemma 4.4. Given an integer m ≥ 2, there exists an angle θ such that

• if m is even, then cosmθ < 0 and cos(m+ 1)θ = 0;

• if m is odd, then cos(m− 1)θ < 0, cosmθ = 0 and cos(m+ 1)θ > 0.
(4.3)

Moreover, for such θ and all T ∈ R, we have

(4.4) |E(Teiθ,m)| ≤ 1,

and there exist C, T0 > 0 such that, if T ∈ R and |T | > T0, then

(4.5) log |E(Teiθ,m)| ≤

{
−C|T |m, if m is even,

−C|T |m−1, if m is odd.

Proof. First, for m ≥ 2 and m even, and any angle of the form

θ =
(4k − 1)π

2(m+ 1)
, k = 1, 2, . . . , 1

2
m,

we have

(m+ 1)θ = 2kπ − π

2
and mθ =

(
2kπ − π

2

) m

m+ 1
∈
(

2kπ − 3π

2
, 2kπ − π

2

)
.

The even case of (4.3) follows from this, with m choices of the angle θ ∈ [0, 2π],
by adding π to each of the 1

2
m choices above.

The odd case of (4.3) follows similarly with

θ =
(4k − 1)π

2m
, k = 1, 2, . . . , 1

2
(m− 1),

givingm−1 choices of θ, by adding π to each of these 1
2
(m−1) choices. It is helpful

in the odd case to note that when cosmθ = 0, the conditions cos(m − 1)θ < 0
and cos(m+ 1)θ > 0 are equivalent.

For any integer m ≥ 2, such an angle θ, and T ∈ R, we have

(4.6) log |E(Teiθ,m)| = Re

(
Teiθ +

(Teiθ)2

2
+ · · ·+ (Teiθ)m

m

)
+ log |1− Teiθ|.

Now,

d

dT
log |E(Teiθ,m)| = Re

(
eiθ
(

(Teiθ)m − 1

Teiθ − 1

))
+

T − cos θ

(1− T cos θ)2 + T 2 sin2 θ

=
Tm+1 cosmθ − Tm cos(m+ 1)θ

(1− T cos θ)2 + T 2 sin2 θ
.
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By our choice of θ, this last expression is positive when T < 0 and is negative
when T > 0. It follows that log |E(Teiθ,m)| ≤ log |E(0,m)| = 0 for all T ∈ R.

We also see from (4.6) that, as |T | → ∞,

log |E(Teiθ,m)| = Tm cosmθ

m
+
Tm−1 cos(m− 1)θ

m− 1
+O(|T |m−2).

The final claim of the lemma follows, again using our choice of θ. �

Proof of Theorem 4.1. We first write f in the form (1.4), where the zeros ak are
real and Q is a polynomial of degree dQ. The proof when f has a finite number
of zeros is a simpler version of the proof when f has infinitely many zeros, so we
assume the latter.

We then write

P (z) =
∞∏
k=1

E(z/ak,m), so f(z) = zneQ(z)P (z),

and we recall that m is the least integer for which
∑
|ak|−(m+1) is convergent.

We also recall from (1.5) that the genus of f is max{m, dQ}.
First we prove part (a). The proof splits into two cases depending on whether
or not dQ is greater than m. In some sense, when m ≥ dQ the growth/decay of
P (z) dominates that of eQ(z), while the reverse is true when m < dQ.

Suppose first that m ≥ dQ. Then m ≥ 2 by the hypothesis on the genus of f .

Let θ be as in Lemma 4.4. Then there exists θ0 ∈ {θ, θ+π} and A > 0 such that
for z0 = reiθ0 with r > 1, we have

log |zn0 eQ(z0)| ≤

{
Arm, if m is even,

Arm−1, if m is odd.

To see that this holds when m is odd, note that Re(Q(reiθ0)) is a polynomial
in r of degree at most m. If this degree equals m, then θ0 ∈ {θ, θ + π} can be
chosen to make the leading coefficient of Re(Q(reiθ0)) negative, so in this case
log |zn0 eQ(z0)| < 0 for large r.

Next consider log |P (z0)|. Let C and T0 be as in Lemma 4.4 and write α = 1/T0.
By (4.4) and (4.5),

log |P (z0)| =
∞∑
k=1

log

∣∣∣∣E (reiθ0ak
,m

)∣∣∣∣
≤

∑
|ak|<αr

log

∣∣∣∣E (reiθ0ak
,m

)∣∣∣∣ ≤

−Crm

∑
|ak|<αr

|ak|−m, if m is even,

−Crm−1
∑
|ak|<αr

|ak|−(m−1), if m is odd.

Since these two sums diverge as r →∞, it follows from the estimates above that

log |f(reiθ0)| = log |zn0 eQ(z0)|+ log |P (z0)| → −∞ as r →∞,
as required.

Now suppose instead that dQ ≥ m+ 1. We first observe that

(4.7) log |P (z)| = o(|z|m+1) as z →∞.
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The proof of (4.7) depends only on the fact that
∑
|ak|−(m+1) <∞, and not on

the fact that these zeros are real. Indeed, this convergence implies (see [8, p.17
and Lemma 1.4]) that n(r, P ) is of at most order m + 1 convergence class; that
is, ∫ ∞

0

n(t, P )

tm+2
dt <∞, so n(r, P ) = o(rm+1) as r →∞.

The estimate (4.7) then follows from [8, Theorem 1.11] (see in particular the
antepenultimate sentence of its proof) or alternatively from [14, p. 233, (3.3)].

Since Q is a polynomial, there exist θ ∈ [0, 2π] and c = c(θ) > 0 such that

|eQ(reiθ)| < exp(−crdQ), for sufficiently large r > 0.

In fact an estimate of this type holds for all θ in a union of open subintervals
of [0, 2π] of total length π. We conclude, using (4.7) and the assumption that
dQ ≥ m+ 1, that for such θ we have

|f(reiθ)| ≤ rn exp((−c+ o(1))rm+1)→ 0 as r →∞,

as required.

The proof of part (b) also involves two cases.

First suppose that m ≥ 2. Then we can simply apply Lemma 4.3 to deduce
that 0 is a deficient value of f .

Next suppose that m ≤ 1. Then dQ ≥ 2 by our hypothesis about the genus, so
dQ ≥ m+ 1. Now we argue as in the proof of (4.7) to deduce that

n(r, f) = o(rm+1) as r →∞, so N(r) = o(r2) as r →∞.

Since dQ ≥ 2, the function f has order at least 2 and, moreover,

lim inf
r→∞

T (r)

r2
> 0.

We deduce that N(r) = o(T (r)) as r →∞, and hence

(4.8) δ(0, f) = 1− lim sup
r→∞

N(r)

T (r)
= 1.

Therefore 0 is again a deficient value, in this case with defect 1.

This completes the proof of Theorem 4.1. �

We conclude this section by mentioning another family of transcendental entire
functions for which we can show that m(r) → 0 as r → ∞, and hence that
property (1.3) does not hold.

Theorem 4.5. Let f be a transcendental entire function of infinite order, with
zeros an, n ∈ N, such that

(4.9)
∞∑
n=1

1

|an|ξ
<∞,

for some ξ ∈ (0,∞). Then δ(0, f) = 1, so m(r) → 0 as r → ∞, and hence f
does not satisfy (1.3).
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Proof. It follows from the argument used to prove (4.7) that N(r) has finite
order. On the other hand f has infinite order so we can write

f(z) = zneh(z)P (z),

where n ≥ 0, h is a transcendental entire function, and P is the Hadamard
product associated with f , which has finite order. It follows that f has infinite
lower order; see [10, Proof of Theorem 3], for example. Hence (4.8) holds, so
δ(0, f) = 1 and hence m(r) → 0 as r → ∞ by the reasoning following the
statement of Theorem 4.1. �

In view of Theorems 4.1 and 4.5, it is natural to ask whether it is the case that
(1.3) fails to hold if f is any transcendental entire function of infinite order with
only real zeros. For a general transcendental entire function f of infinite order
with its zeros lying on a finite number of rays from 0, Miles [13, Theorem 1] has
proved that there is a set E ⊂ [0,∞) of zero logarithmic density such that

lim
r→∞,r /∈E

N(r)

T (r)
= 0, so lim

r→∞,r /∈E
m(r) = 0.

On its own, however, this property is not sufficient to show that (1.3) fails to
hold.

5. Functions with order in the interval [1/2, 2]

We have seen that if f is any transcendental entire function of order less than 1/2,
then (1.3) holds, and if f is a finite order function with real zeros of genus at
least 2 (which includes the case that ρ(f) > 2), then (1.3) does not hold. In this
section, we consider entire functions with order in the interval [1/2, 2].

We start by giving examples of real transcendental entire functions with all their
zeros on the positive real axis, all of genus 0 and having all possible orders in the
interval [1/2, 1]. For each order in this interval, we give one example that does
satisfy (1.3) and another example that does not.

We can then adapt these examples to construct examples of functions of genus 1
with only real zeros. Indeed, for real transcendental entire functions f with only
positive zeros, of genus 0 and order ρ say, the function g(z) = f(z2) is real with
all real zeros, of genus 1 and having order 2ρ, and (1.3) holds for g if and only if
it holds for f . Therefore, for each possible order in [1, 2], we obtain one example
of this type that does satisfy (1.3) and another example that does not.

First, for order 1/2 we have the following examples mentioned in [16, Exam-
ple 8.4]:

• property (1.3) does not hold for the function f(z) = cos
√
z,

• property (1.3) holds for the functions g(z) = 2z cos
√
z.

Both these functions are real and have their zeros on the positive real axis, and
are of order 1/2 and genus 0.

Next, we give functions of genus 0 and all orders in (1/2, 1) for which (1.3) does
not hold. Consider the family of functions

(5.1) fσ(z) =
∞∏
n=1

(
1− z

nσ

)
,
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where σ = 1/ρ and 1
2
< ρ < 1. Then fσ is a real transcendental entire function

of genus 0 and order ρ, with zeros at nσ, n ∈ N. Hardy [7] showed that

fσ(z) ∼ 2√
2πz

sin(πzρ) exp(π cot(πρ)zρ),

as z tends to ∞ within a domain that contains the positive real axis. In partic-
ular, since cot(πρ) < 0 for 1

2
< ρ < 1, we have m(r, fσ)→ 0 as r →∞, so (1.3)

fails for these functions.

For an example of a real transcendental entire function f of order 1 and genus 0
with only positive zeros for which (1.3) fails, we note that Lindelöf [12] showed
that the functions

fα(z) =
∞∏
n=1

(
1− z

n(log n)α

)
, where 1 < α < 2,

satisfy

fα(z) = exp

(
1 + o(1)

1− α
z(log(−z))1−α

)
,

as z tends to∞ within any set of the form {z : | arg z| < π− δ}, δ > 0. It is easy
to deduce from this estimate that each such fα, 1 < α < 2, is bounded on all
rays of the form {z : arg z = θ}, where θ ∈ (0, π/2). Hence m(r, fα) is bounded,
so (1.3) fails for these functions.

The zeros of all the functions considered so far in this section are distributed very
evenly on the positive real axis. With a more uneven distribution of positive
zeros, we can construct real transcendental entire functions given by infinite
products for which (1.3) does hold.

In the proof of the following result we show that (1.3) holds for the constructed
function f by again using the fact that (1.3) is equivalent to the existence of
R = R(f) > 0 such that

(5.2) m̃(r) = max
0≤s≤r

m(s) > r, for r ≥ R;

see Lemma 3.1.

Theorem 5.1. Given any ρ, 0 < ρ ≤ 1, we can construct a function of the form

(5.3) f(z) =
∞∏
k=1

(
1− z

ak

)mk
,

where ak > 0 and mk ∈ N for k ∈ N, such that f has order ρ and genus 0, and
(1.3) holds.

Proof. We first assume that 0 < ρ < 1. We shall construct the sequence of zeros
(ak) to be strictly increasing, with multiplicity (mk), and have several other
properties. Let n(r) be the number of such zeros in {z : |z| ≤ r}, counted
according to multiplicity. One condition we require is that the sequence (mk) is
chosen in such a way that

n(ak) =
k∑
j=1

mj = [aρk], k ∈ N,

where [.] denotes the integer part function. This ensures that the infinite product
in (5.3) is convergent and f has order ρ by [8, Theorem 1.11 and Lemma 1.4].
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We now describe how to choose (ak). First we estimate m(rk) = |f(rk)|, where
rk = 3ak. We have

(5.4)

∣∣∣∣∣
k∏
j=1

(
1− rk

aj

)mj ∣∣∣∣∣ ≥
k∏
j=1

2mj = 2[aρk],

and we shall choose the sequence (ak) so large that

(5.5)

∣∣∣∣∣
∞∏

j=k+1

(
1− rk

aj

)mj ∣∣∣∣∣ ≥ 1

2
.

This can be achieved by choosing (ak) such that

(5.6)
∞∑

j=k+1

mjrk
aj
≤ 1

2
.

Since mk ≤ aρk for k ∈ N, we have

∞∑
j=k+1

mjrk
aj
≤ rk

∞∑
j=k+1

aρ−1j .

If we take

(5.7) a0 = 1, ak+1 = (12aρk)
1/(1−ρ), k = 0, 1, . . . ,

then

aj ≥ (12aρk)
(j−k)/(1−ρ) ak = T

(j−k)/(1−ρ)
k ak, for j ≥ k + 1,

say, where Tk = 12aρk. Hence

rk

∞∑
j=k+1

aρ−1j ≤ rka
ρ−1
k

∞∑
j=k+1

(
1

Tk

)j−k
=

3aρk
Tk − 1

≤ 1

2
,

which proves (5.6), and also shows that f has genus 0. On combining (5.4) and
(5.5), we obtain

m(rk) = |f(rk)| ≥ 2[aρk]−1, for k ≥ 1.

Finally, we prove that (5.2) holds. Given r we choose k such that rk ≤ r < rk+1.
Then

m̃(r) ≥ m(rk) ≥ 2[aρk]−1 > 3(12aρk)
1/(1−ρ) = 3ak+1 = rk+1 > r,

provided that k is sufficiently large, as required.

The proof when ρ = 1 is a modification of the argument above in which f remains
of the form (5.3) but we take

n(ak) =
k∑
j=1

mj = [a1−εkk ], where εk =
1

k
, for k ∈ N,

which implies that f has order 1, and we replace (5.7) by

a0 = 1, ak+1 = (12ak)
1/εk+1 , k = 0, 1, . . . .

Then ak ≥ 12k for k ∈ N, so

a
εj
j ≥ 12j−kak ≥ 4j−krk, for j ≥ k + 1,
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where rk = 3ak as before. It readily follows, by splitting the product as above,
that

m(rk) = |f(rk)| ≥ 2[a
1−εk
k ]−1, for k ≥ 1.

Hence, for rk ≤ r < rk+1 and k sufficiently large,

m̃(r) ≥ m(rk) ≥ 2a
1/2
k > 3(12ak)

1/εk+1 = 3ak+1 = rk+1 > r,

since ak ≥ 12k for k ∈ N, and so (1.3) holds. �
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