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Abstract
This literature review investigates the integration of machine learning (ML) into optical
metrology, unveiling enhancements in both efficiency and effectiveness of measurement
processes. With a focus on phase demodulation, unwrapping, and phase-to-height conversion,
the review highlights how ML algorithms have transformed traditional optical metrology
techniques, offering improved speed, accuracy, and data processing capabilities. Efficiency
improvements are underscored by advancements in data generation, intelligent sampling, and
processing strategies, where ML algorithms have accelerated the metrological evaluations.
Effectiveness is enhanced in measurement precision, with ML providing robust solutions to
complex pattern recognition and noise reduction challenges. Additionally, the role of parallel
computing using graphics processing units and field programmable gate arrays is emphasised,
showcasing their importance in supporting the computationally intensive ML algorithms for
real-time processing. This review culminates in identifying future research directions,
emphasising the potential of advanced ML models and broader applications within optical
metrology. Through this investigation, the review articulates a future where optical metrology,
empowered by ML, achieves improved levels of operational efficiency and effectiveness.

Keywords: machine learning, artificial intelligence, neural networks, optical metrology

Nomenclature

AFS-SVM Angle-frequency domain synchronous analysis
with support vector machine

AF Auto-focus

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

AU Area under curve
AIA Advanced iterative algorithm
BPNN Back-propagation neural network
BUT Branch-cut
CC Cross correlation
CSI Coherence scanning interferometry
CDIF Central difference information filtering
CDLP Composite fringe projection machine learning

profilometry
CF3DNet Circular fringe-to-3D reconstruction network
CGANs Conditional generative adversarial networks
CMM Coordinate measuring machine
CNN Convolutional neural network
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CUE-NET Convolution U network
CVT Curvelet transform
DCAHINet Deformable convolution-based HINet with

attention connection
DCGAN Deep convolutional GAN
DLCDIFPU Deep learning central difference information

filtering for phase unwrapping
DL-TPU Deep learning for temporal phase unwrapping
DLPU-Net Deep learning phase unwrapping
DOF Depth-of-field
DNN Deep neural networks
DRPL Deep regression pair learning
DSMNet Domain-invariant stereo matching network
DSC Digital speckle correlation
DSIFT Dense scale invariant feature transform
DTCWT Dual-tree complex wavelet transform
DYnet++ Deep learning based single-shot

phase-measuring deflectometry
FL Federated learning
FPGAs Field programmable gate arrays
FOV Field of view
FPP Fringe projection profilometry
FrANet Fringe analysis network
FT Fourier transform
FTP Fourier transform profilometry
FVM Focus variation microscopy
gAIA Parallelised GPU-based advanced iterative

algorithm
GAN Generative adversarial network
GPU Graphics processing unit
GWCNet Group-wise correlation stereo network
HT Holographic tomography
IFCNN Image fusion framework based on the CNN
ILS Iterative least-square
InSAR Interferometric synthetic aperture radar
InSAS Interferometric synthetic aperture sonar
IoU Intersection over union
I-Net Inception-v3 net
LS Least squares
ML Machine learning
MAE Mean absolute error
MCF Minimum cost flow
MCNet-PU Mask cuts network phase unwrapping
MFF-GAN Unsupervised generative adversarial network

with adaptive and gradient joint constraints
MIoU Mean intersection over union
MIMONet Multi-input multi-output network
MPI Message passing interface
MPCAM Multi-point spread function camera system
MSE Mean squared error
MW-Net Multi-wavelength network
OpenMP Open multi-processing
PA Pixel accuracy
PCA Principal component analysis
PC Pseudocorrelation
PCTNet Parallel CNN-transformer network
PG Phase gradient
PhysenNet Physics-enhanced deep neural network
PI-FPA Physics-informed deep learning method for

fringe pattern analysis
PS Phase shifting

PSF Point spread function
PSNR Peak signal-to-noise ratio
PU-GAN One-step 2D inSAR phase unwrapping based on

conditional GAN
PV Phase derivative variance
PSMNet Pyramid stereo matching network
QGPU Quality guided phase unwrapping
RP Ratio of low-pass pyramid
RCNN Recurrent classification neural network
RMSE Root mean square errors
RU-Net Resblocks based U-Net
Rsm Mean profile element spacing
SAPR-DL Single-shot multi-frequency absolute phase

retrieval based on deep learning
SAR Synthetic-aperture radar
SCAPU Spatial and channel attention network phase

unwrapping
SL Structured light
SNAPHU Statistical-cost, network-flow algorithm for

phase unwrapping
SSGAN Self-supervised generative adversarial network
SSIM Structural similarity index
SSMNet Shape-aware speckle matching network
SFPP Single fringe-pattern processing
SwinFusion Swin transformer
TPDNet Texture-guided phase to depth networks
U2-Net Two-stage nested U-shaped structure
U-GauNet U-Net global attention upsample
UKFPU Kalman filtering phase unwrapping
TPU Temporal phase unwrapping
U2Fusion Unsupervised end-to-end image fusion network
VGG Very deep convolutional networks
VRNet VGG and RefineNet based network
VUR-Net VGG, U-net, and Resnet based network
WFT Windowed Fourier transform
µDLP Micro deep learning profilometry

1. Introduction

Optical metrology has traditionally relied on physics-based
methods to interpret interactions between light and matter
for accurate dimensional assessment [1, 2]. Optical met-
rology is critical for ensuring the quality and accuracy of
products in sectors ranging from engineering and manufactur-
ing to biomedicine and cultural heritage conservation [3–5].
Despite the effectiveness of the physics-based methods, the
evolving demands of modern manufacturing and quality con-
trol necessitate enhanced measurement speed, accuracy, and
adaptability [6, 7]. ML, emerging as a pivotal technological
advancement, offers potential avenues to overcome inher-
ent limitations in traditional optical metrology through data-
driven approaches, enabling enhanced efficiency and effect-
iveness in measurement processes [8, 9].

Optical metrology, essential for ensuring the dimensional
accuracy and quality of products across various industries,
faces challenges that demand advanced computational solu-
tions. ML techniques, with their ability to learn from data,
adapt to new scenarios, and make predictive analyses, stand

2



Meas. Sci. Technol. 36 (2025) 012002 Topical Review

at the forefront of these new demands, offering solutions to
enhance measurement efficiency and effectiveness [10].

This review discusses the integration of ML in optical met-
rology, emphasising advancements in phase demodulation,
phase unwrapping, and phase-to-height conversion. By har-
nessing the power of ML algorithms, optical metrology can
overcome traditional limitations, achieving improved data pro-
cessing speeds, accuracy, and adaptability to complex meas-
urement scenarios. The synergy of ML with parallel com-
puting, particularly GPUs and FPGAs, further exemplifies
a leap in computational efficiency, enabling real-time data
analysis and broadening the application spectrum of optical
metrology. As we navigate through the convergence of ML
and optical metrology, this introduction sets the stage for a
comprehensive exploration of this integration, highlighting
advancements on measurement processes, and the envisioning
of a future where optical metrology improves efficiency and
effectiveness.

Figure 1 illustrates the structure employed in this literat-
ure review, delineating two distinct components. Section 2
(white colour) is dedicated to efficiency improvement by
ML, while section 3 (grey colour) addresses effectiveness
improvement by ML. Each rectangle signifies parts of the
sections in this article. Within section 2, we elucidate four
ML approaches designed to enhance efficiency: data gener-
ation (section 2.1), sampling strategies (section 2.2), and ML-
basedmetrology (section 2.3). Furthermore, we introduce end-
to-end ML methodologies specifically applied to optical met-
rology (section 2.4). Additionally, the incorporation of parallel
acceleration (section 2.5) is introduced, demonstrating poten-
tial contributions to amplifying the efficiency of ML method-
ologies. In section 3, we discuss methodologies for improving
effectiveness through ML, focusing on phase demodulation
(section 3.1), phase unwrapping (section 3.2), and phase-to-
height conversion (section 3.3).

1.1. Motivation for applying ML to optical metrology

Themotivation behind applyingML techniques in optical met-
rology comes from the limitations and challenges encountered
by physics-based approaches, highlighting the necessity for
efficient and effective solutions in the face of challenges posed
by approaches and real-world environments. Unlike physics-
based approaches, the data-driven nature of deep-learning-
enabled optical metrology has offered alternative solutions
to numerous challenging problems in the field, demonstrat-
ing superior performance. For example, when reliant on
physics-based models mapping user-desired sample paramet-
ers to simulate images and investigate the influence of uncer-
tainty sources cannot be ignored. Defining prior information
enhanced user-dependent models can be intricate and time-
consuming. Additionally [11], the intricate, multi-step meas-
urement processes involved in optical metrology could lead to
error accumulation. Moreover, the sensitivity of optical meas-
urement to the environment, usually defined in laboratory set-
tings, faces challenges in harsh factory environments due to
physical and knowledge limitations [12–15].

The review is also motivated by several considerations:

• ML, while identifying patterns in training datasets, may
not always yield provably correct solutions, posing risks in
optical metrology where traceability, reliability, and repeat-
ability are prioritised. That is a difference from many com-
puter vision tasks [16]. In surface defect inspection, overfit-
ted DNNs may smooth out irregularities, potentially leading
to defective production runs [17].

• High-risk scenarios in optical metrology involve challenges
such as noisy, inaccurate, uncertain, vague, and incomplete
datasets [18], heightening the risk of prediction failure due
to the inherent unexplainability and incomprehensibility of
ML [19].

• Current ML approaches in optical metrology often learn
solutions from massive training datasets without signific-
ant reliance on prior knowledge, contrasting with traditional
physics-based methods that integrate engineered domain
knowledge. Incorporating partial knowledge of physics laws
into ML models is recommended to optimise training data
and network parameters [20].

• The effectiveness of ML depends on the reliability of the
provided training data, especially in optical metrology.
Challenges in collecting high accuracy ground truth data
for optical metrology, coupled with the highly customised
nature of systems, resulting in few publicly available data-
sets, hindering fair and standardised algorithm comparisons
[21].

1.2. Optical measurement technologies

Before exploring advances facilitated by ML, acknowledging
the significance of established optical technologies for the
measurement of surface texture and coordinates is imperat-
ive. These measurement technologies includes CSI [22–27],
FVM [28], confocal microscopy, and others. Optical coordin-
ate measurement technologies [29–31], including FPP [32–
34], photogrammetry [35, 36] and laser triangulation, focus on
the three-dimensional (3D) measurement of an object’s phys-
ical geometry.

Although various publications have contributed to
advances in surface and coordinate metrology techniques
[37–44], this review emphasises ML-based optical metrology.
Given the substantial advances and widespread application
of optical metrology, this literature review does not delve
extensively into these well-established techniques. Instead, it
focuses on the synergy between ML and optical metrology,
aiming to highlight the importance of data-driven models in
improving key aspects of optical metrology.

2. Efficiency improvement by ML and parallel
acceleration

The advent of ML and parallel computing technologies
has improved the landscape of optical metrology, offering
enhancements in efficiency. In this section, we discuss the
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Figure 1. Structure of this literature review. Each rectangle signifies an individual section within this literature review. The presence of a
dashed line signifies the prospect that parallel acceleration might also contribute to enhancing the efficiency of other sections.

role that ML methods and parallel computing frameworks
play in optimising and accelerating various facets of optical
metrology.

ML, with its ability to process and learn from big data,
has emerged as a catalyst for improvement in optical met-
rology, particularly in the realms of data generation in
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Table 1. Section 2.1.1: summary of methods for efficiency improvement in training with small data.

Authors Method Pros Potential cons
Potential efficiency
improvement

Olson et al [47], 2018 Ensemble of low-bias
sub-networks

Smaller number of
training examples

Binary classifiers focus Reduction in variance
and overfitting

Qi and Luo [48], 2020 Survey on unsupervised
and semi-supervised
methods

Broad analysis of
methods

Limited practical
application depth

Future directions for
applying unsupervised
and supervised learning

Bornschein et al [49],
2020

Empirical analysis of
model performance

Robust signal for model
selection

Requires large model
sizes

Training on smaller
subsets for
computational savings

Wang et al [50], 2020 U-Net based model with
physical model

Improved image quality
and training stability

Focused on facial
images

Reduced average error
rates and faster image
generation

Kokol et al [51], 2022 Synthetic knowledge
synthesis

Comprehensive
overview of ML
challenges

Publications indexed in
Scopus only

Data pre-processing and
model choices for
efficiency

Han et al [52], 2023 U-Net based
self-supervised GAN
model

Improved image quality
on small data

Image data focus issues The image quality is
improved with a small
data

section 2.1, sampling strategies in section 2.2, phase ana-
lysis in section 2.3, end-to-end ML in section 2.4 and parallel
computing in section 2.5. Its application ranges from enhan-
cing data generation methodologies to overcoming limitations
posed by small data and synthetic data challenges, thereby
boosting the metrological process’s efficiency. Moreover,
intelligent sampling strategies empowered by ML algorithms
have improved the way measurements are conducted, optim-
ising them for speed while ensuring adaptability to diverse
measurement scenarios.

Together, ML and parallel computing can improve optical
metrology, enhancing the field’s efficiency and applicability.
The following sections will explore these advances in detail,
illustrating the impact of these technologies on the evolution
and future trajectory of optical metrology.

2.1. ML addresses data challenges in optical metrology

We have already discussed the challenges in processing data in
optical metrology in the Motivation section 1.1, as also men-
tioned in [11, 45, 46]. Catalucci et al [11] pointed out prob-
lems with measurement speed and data bottlenecks, which are
important in production when measurements need to be real-
time or close to real-time. These problems, usually caused
by limitations in software and hardware, slow down inspec-
tions and make it hard to do real-time measurements using
optical metrology. ML helps by improving how we analyse
and collect data. The following sections will explore how
ML helps with small data (section 2.1.1), transfer learning
(section 2.1.2), and creating synthetic data (section 2.1.3).
Finding better ways to create and process data makes data-
driven methods more efficient.

2.1.1. Training with small data. As noted in the motivation
section, challenges in collecting ground truth data for optical
metrology and the customised nature of the systems lead to few

publicly available datasets. Although there is a lot of research
onML with big data, interest is growing in how these methods
work with small data. These papers present various methods
and demonstrate how to use ML even when data is limited. We
focused on identifying high-quality studies on small data in
ML from the past six years, selecting only peer-reviewed art-
icles and seminal works published in English. After reviewing
the full texts, we chose six papers that represent small data in
ML and its potential to be applied in optical metrology. Table 1
shows the pros and potential cons of each method.

Firstly, Olson et al [47] use a linear program to break down
well-trained neural networks (NNs) into groups of low-bias
sub-networks. They found that these low-bias sub-networks
are not closely related, similar to a random forest. They apply
large NNs, with hundreds of parameters per training sample, to
small data and found that these networks still performed well
without overfitting. Subsequently, Qi and Luo [48] focused
on the challenges of using small labeled datasets in the era
of big data, particularly in representation learning. They dis-
cussed unsupervised and semi-supervised methods, including
generative models such as auto-encoders, GANs, flow-based
models, and autoregressive models. They compared the dis-
entanglement of unsupervised and semi-supervised represent-
ations for factorised and interpretable networks. They made a
review of current methods and future potentials in efficiently
utilising small amounts of labeled data for ML, emphas-
ising the connection of unsupervised and semi-supervised
techniques to enhance learning processes and model
performance.

In a related context, Bornschein et al [49] studied how well
large NNs perform across different sizes of training sets. They
found that training with smaller subsets of data can not only
save computational resources but also lead to more accurate
decisions when choosing models. This result suggests that big
NNs can keep their performance consistent with the small data
set. Recent research on ML with small data, as examined by

5



Meas. Sci. Technol. 36 (2025) 012002 Topical Review

Table 2. Section 2.1.2: summary of methodologies for efficiency improvement in transfer learning with small data.

Author Method Pros Potential cons
Potential efficiency
improvement

Ng et al [56], 2015 Transfer learning with
CNNs for emotion
recognition

Utilises pre-trained
networks to overcome
small data issues

May not generalise well
to vastly different data

Enhanced model
performance with small
data

Cao et al [57], 2018 Preprocessing-free gear
fault diagnosis with
CNN-based transfer
learning

Simplifies the diagnostic
process by eliminating
preprocessing steps

Specific to gear fault
diagnosis, limiting
broader application

Improved fault detection
speed

Brodzicki et al [58],
2020

Transfer learning
methods in computer
vision with small data

Offers a framework for
applying transfer
learning in vision tasks

Requires substantial
computational resources
for retraining

Improve classification
efficiency in
image-related tasks

Wang et al [50] introduced an approach with their PhysenNet
for computational imaging in optics, specifically in the context
of single-beam phase imaging. By incorporating a complete
physical model, PhysenNet was shown to reduce the need for
extensive training labeled data; this could potentially improve
computational imaging without training beforehand.

Additionally, Kokol et al [51] focus on reducing dimen-
sions, augmenting data in ML, and statistical learning on
small data. This underscores the importance of complex ML
approaches, due to the high cost of sampling. Finally, Han
et al [52] introduced a training method that uses PCA and a
SSGAN. This method improves image quality and stability
when using small data compared to a DCGAN [53]. The pro-
posed method includes a U-Net based structure and a modi-
fied training approach. The results show that this method can
achieve the same or even better image quality and lower error
rates with small datasets than with large datasets.

The six studies reviewed adapt ML techniques for
small data, enhancing image quality and stability in optical
metrology [47, 48, 51, 52]. Moreover, these findings promote
a first-step for a data-driven approach to use ML methods in
optical metrology, ensuring efficiency with limited datasets
[49, 50].

2.1.2. Transfer learning with small data. Transfer learning
[54] is a method in ML that involves transferring knowledge
from one area (source domain) to another (target domain).
This is particularly useful when the target domain does not
have enough data for effective model training on its own. This
technique is popular because it uses models already trained
on big data, adapting them to new tasks with small data [55].
In optical metrology, where precise measurements are crucial,
there often are not enough big, labeled datasets for training.
Transfer learning offers a solution by using models trained on
extensive datasets from similar tasks or fields. This method
speeds up the training process and improves performance in
environments with small data, such as in specialisedmetrology
tasks. We focused on identifying high-quality studies on trans-
fer learning with small data from the past nine years, selecting
only peer-reviewed articles and seminal works published in
English. After reviewing the full texts, we chose three papers

that represent transfer learning with small data and its poten-
tial to be applied in optical metrology. Table 2 shows the pros
and potential cons of each method.

Ng et al [56] used transfer learning with deep CNNs for
recognising emotions in facial expressions, specifically for
a 2015 competition about emotion recognition. They star-
ted by using a network that was pre-trained on a big data
called ImageNet, and then further trained it on the compet-
ition’s dataset. This approach improved their results com-
pared to the initial ones. This highlights the importance of
using big, additional datasets of facial expressions to train
DNNs in this field. Building on this perspective, Cao et al [57]
developed an approach using deep CNN and transfer learn-
ing for preprocessing-free diagnosing gear faults. Unlike tra-
ditional methods that rely on extracting features specific to
the domain, this method performed better even with a small
training dataset. It was more efficient in classifying faults than
other methods like local CNN and AFS-SVM. This success
could be widely used for fault diagnosis in optical metrology.
Furthermore, Brodzicki et al [58] explored transfer learning
as a way to overcome the problems caused by small data in
machine vision tasks. Their research highlighted two main
approaches of transfer learning: feature extraction and fine-
tuning, which showed good results in various computer vision
tests. These results demonstrate the method’s wide applicabil-
ity in tasks like measuring thickness, detecting anomalies, and
classifying objects. However, they pointed out an issue known
as negative transfer, where solutions from previous problems
can make later tasks more complicated.

Transfer learning is a potential method for improvingmeas-
urement systems in optical metrology, especially when deal-
ing with small data. By applying ML, and specifically trans-
fer learning, optical metrology can address the challenges of
small data, opening up possibilities for efficiency. These stud-
ies support the use of ML in optical metrology and show
how these methods can improve measurement and analysis
across different scientific and industrial areas. Transfer learn-
ing allows optical metrology to use pre-trained ML models
for data analysis and feature extraction, even with small data.
This approach not only makes optical metrology more effi-
cient but also saves time and resources in model training and
development.
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Table 3. Section 2.1.3: summary of methodologies for efficiency improvement in synthetic data generation.

Author Method Pros Potential cons
Potential efficiency
improvement

Fonseca and Bacao [59],
2023

Unified taxonomy for
synthetic data
generation in tabular and
latent spaces

Consolidates
understanding and
categorisation of
synthetic data
techniques

May overlook emerging
or newest generation
methods

Guides development of
targeted algorithms,
enhancing synthetic data
application

Little et al [61], 2023 FL for synthetic data
generation

Enhance privacy and
data utilisation from
multiple sources

Limited by FL’s
computational
complexity

Improves data
availability and security

Kim et al [62], 2023 GANs and
meta-learning for
wireless data generation

Reduces dataset
requirements and
enhances data realism

Efficiency depends on
initial training data
quality

Reduces overhead in
wireless system data
preparation

Park et al [63], 2023 CGANs for virtual
optical image generation

Mitigates limitations of
cloud coverage in image
acquisition

Dependent on the
quality of source SAR
and optical images

Enhances crop
classification and
monitoring efficiency

2.1.3. Synthetic data generation. This subsection discusses
how synthetic data generation is applied in optical metro-
logy, particularly when real datasets are small or incomplete.
In optical metrology, creating synthetic data allows for train-
ing ML models for tasks such as measurement and analysis.
Gathering large, real datasets in this field is often difficult due
to various constraints [59, 60]. Synthetic data, which simu-
lates realistic optical measurements or features, helps enhance
the performance of MLmodels by overcoming challenges like
privacy and limited data access, often found in sensitive indus-
trial settings. Table 3 shows the pros and potential cons of each
method.

Fonseca and Bacao [59] conducted a review of synthetic
data generation, focusing on tabular data, a common format
in industry that is often not given enough attention. The study
outlined and categorised 70 algorithms used for six different
ML problems. It organised different methods of generating
data, discussed how to evaluate these methods, and pointed out
areas needing more research. This provides useful information
for researchers who want to improve their use of synthetic data
across various fields. The study emphasised the importance of
synthetic data in protecting privacy and preparing data for ML
uses. It identified gaps in current research and suggested direc-
tions for future studies, highlighting the role of synthetic data
in modern research.

Moving to a related field, FL [64], known as collaborative
learning, is a unique ML method. Unlike traditional central-
ised learning, FL trains an algorithm through many separate
sessions, each using a different dataset. This approach does
not assume that the data in all locations are the same, which is
a departure from usual methods. In this area, Little et al [61]
reviewed how FL can be used to create synthetic data. They
pointed out its ability to combine data from multiple clients
without risking privacy and effectively deal with issues of data
access and diversity. Although this approach of federated syn-
thesis is new and its practical value is still being evaluated,
the research indicates it has potential in optical metrology.
This encourages further investigation, especially in assessing

privacy risks and agreeing on how to measure the risks and
benefits of synthetic data.

Furthermore, Kim et al [62] introduced a way to collect
wireless data for ML systems using a GAN and meta learn-
ing. This method creates realistic data samples, reducing the
need for collecting many real samples. Their tests show that
this approach efficiently trains ML models, achieving results
comparable to those trained with real data. This method using
meta learning is particularly relevant as we move towards the
6G era, preparing for a timewhen data from various but related
wireless environments will increase. Similarly, Park et al [63]
studied how to use SAR images and CGANs to create vir-
tual, cloud-free optical images for early crop mapping. Their
research shows that a two-stage CGAN method, which uses
various types of input data, can classify crops as accurately
as real cloud-free optical images. This highlights the potential
of CGANs to overcome the common problem of cloud cover
in optical images, leading to new possibilities in early crop
mapping.

In this section, we have looked at how creating synthetic
data is a crucial tool in ML, especially when there are not
enough real datasets available [59]. The studies we discussed
show how synthetic data can be used in various fields, such
as optical metrology, to improve model training and predic-
tion efficiency [61]. By creating realistic data, researchers can
address issues like limited sample sizes, privacy concerns, and
varied data types, thus advancing ML applications in fields
that require high precision, like optical metrology. The use
of ML in generating synthetic data, as shown in these papers,
improves analysis, protects data privacy, and makes models
more widely applicable in optical metrology. By creating real-
istic and specific datasets, ML not only fills the gaps where
actual data is lacking but also potentially makes optical met-
rology more reliable. The findings from these studies sug-
gest an increase in efficiency, where insights are derived with
less reliance on traditional data collection, which is often
expensive, time-consuming, and influenced by external factors
[62, 63]. Ultimately, incorporating ML into synthetic data
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Table 4. Section 2.2.1: summary of methodologies for efficiency improvement in data-driven and model-driven intelligent sampling
strategy.

Author Method Pros Potential cons
Potential efficiency
improvement

Yang et al [65], 2021 Data-driven intelligent
sampling

Adapts to surface
complexities

Requires big data for
training

Reduction in
measurement time and
resources

Lu et al [66], 2019 Uncertainty-guided
sampling with free-knot
B-splines

Enhances efficiency in
uncertain areas,
optimises for complex
surfaces

Computational intensity
for spline model
optimisation

Improved sampling
efficiency

Ren et al [67], 2021 Generative model-driven
strategy

Use generative models
for informed sampling,
efficient in complex
surfaces

Dependent on generative
model accuracy

Reduction in
unnecessary sampling,
enhanced speed

generation provides better efficiency, scalability, and adapt-
ability in optical metrology.

2.1.4. Discussion about section 2.1: ML for data generation.
The use ofML in different aspects of data generation in optical
metrology shows amove toward advanced and informedmeas-
urement practices. By incorporating ML in areas like small
data and synthetic data generation, the field improves its abil-
ity to analyse data efficiently and flexibly. From the studies
we reviewed, it is clear that ML is key to overcoming tradi-
tional data challenges, opening additional ways to gain deeper
insights into measurements. This could lead to a shift where
data science and optical metrology together enhance how we
understand and manage measurements. Thus, optical metro-
logy is ready to benefit from ML in tackling the complexities
of data generation and analysis.

2.2. ML in sampling strategy

In optical metrology, using ML to improve how samples are
taken is an improvement in measurement techniques. The
research we reviewed shows a trend towards using ML to
make sampling in complex surface measurements more effi-
cient. This introduction compares traditional static methods
with dynamic, intelligent ML approaches, showing how they
have improved the field. These developments are crucial for
overcoming the complex challenges in modern manufactur-
ing, and they provide a look at how ML strategies can speed
up optical metrology.

The following discussion discusses sampling methods
used in 3D surface measurement for smart manufactur-
ing. It includes an analysis of data-driven and model-driven
approaches [65] (section 2.2.1), which use existing data to
improve the sampling process. The discussion also covers
model-driven strategies [66, 67], where predictive models help
guide sampling methods, useful in dealing with uncertain-
ties when reconstructing surfaces. Additionally, the review
looks at the influence of the measurement area [68], high-
lighting how space considerations affect sampling decisions
(section 2.2.2).

2.2.1. Data-driven and model-driven intelligent sampling
strategy. The use of ML in optical metrology marks a
change towards efficient measurements. The three papers
we reviewed explore both data-driven [65] and model-driven
[66, 67] approaches. These studies show that ML can improve
sampling strategies, enhance measurement processes, and
adjust to different surface shapes and complexities. Table 4
shows the pros and potential cons of each method.

In their study, Yang et al [65] gave a review of data-driven
methods, focusing on how these methods can interpolate and
plan sampling for 3D surface measurements. This research
highlights the increasing role of data analytics in manufactur-
ing, especially how it helps overcome the high costs and long
times needed for acquiring detailed surface data. The paper
also points out key areas for future research to better connect
academic studies with real-world industrial use in the grow-
ing field of smart manufacturing. Lu et al [66] developed a
sampling strategy based on uncertainty of under-defined areas
for efficient surface measurement. They used a smart model
based on free-knot B-splines, which showed good perform-
ance in their tests on both simulated and real surface data.
This method is particularly suitable for surfaces with sparse
and sharp features and reduces computing time. Ren et al [67]
introduced a new generative model-based strategy for CMMs,
aimed at more efficiently checking machining errors on com-
plex surfaces. Their approach, which uses sparse sampling
and ML model, cuts down sampling time while maintaining
accuracy.

2.2.2. Measurement complexity-based and adaptive
sampling strategy. In optical metrology, the efficiency of
different sampling methods affects the accuracy and reliability
of measurements. It’s important to explore various sampling
strategies to improve the efficiency of optical metrology. This
review introduces two methods: one examines how the size of
the measurement area affects metrological results [68], and the
other uses a NN-based adaptive sampling technique for sur-
faces with high uncertainty [69]. This introduction highlights
how sampling strategies have evolved from static to dynamic
models to meet the needs of optical metrology. Table 5 shows
the pros and potential cons of each method.
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Table 5. Section 2.2.2: summary of methodologies for efficiency improvement in measurement complexity-based sampling and adaptive
sampling strategy.

Author Method Pros Potential cons
Potential efficiency
improvement

Bazan et al [68], 2023 Analysis based on the
SCR and Rsm
parameters to determine
the measurement area

Introduces parameters to
optimise measurement
area selection

The method’s
effectiveness may be
influenced by material
properties

Optimising the
measurement area can
lead to faster
measurements

Gao et al [69], 2023 Adaptive sampling using
BPNN to predict
responses and select the
next best point

Enhances surface
reconstruction efficiency
by dynamically adapting
sampling points

May require large
computational resources
for NN training

By intelligently adapting
sampling points, the
method could reduce the
number of
measurements needed

Bazan et al [68] studied how the measurement area size
affects the topography of samples made through additive
manufacturing. Using the focus variation method, they com-
pared large and small measurement areas and found differ-
ences in measurements from random-type samples, show-
ing the importance of choosing the right measurement area
size. They suggested that using multiple smaller areas could
provide better insights into variability for samples with direc-
tional textures. The study calls for more research on select-
ing measurement areas in surface topography analysis, espe-
cially focusing on the usefulness of the Rsm parameter and
other potential solutions. Similarly, Gao et al [69] developed
an adaptive sampling strategy that uses a BPNN to predict
the geometric features at potential measurement points. This
method combines predictions with theMaxCWVar criterion to
choose the most effective next measurement point. It proved
useful strategy for modelling complex surfaces with high
uncertainty.

Overall, the studies reviewed show a possibility to apply
adaptive techniques in optical metrology [68, 69]. Using NN-
based adaptive sampling marks an advancement, improving
efficiency in dealing with uncertain surfaces. This change
enhances our understanding of measurement efficiency and
expands the possibilities for applying optical metrology in
complex situations. Future research should explore how ML
can be integrated into optical metrology to open up new pos-
sibilities for efficiency.

2.2.3. Discussion about section 2.2: ML in sampling
strategy. The use of ML in optical metrology represents a
change towardsmore advanced and smartmethods. The papers
reviewed show how the industry is moving from fixed ways
to flexible strategies that better suit the detailed and complex
surfaces being measured. ML plays a role in this change by
quickly processing and analysing big data, which helps make
the sampling process more efficient and specific. This pro-
gress is an important development in the field, leading to more
efficient and adaptable ways of working in the future. These
studies highlight how ML can improve sampling strategies,
setting the stage for smarter and more efficient optical
metrology.

2.3. ML based optical metrology

In this section, we discuss how combining ML with optical
metrology improves measurement efficiency. The studies
show a shift from traditional methods to more dynamic, intel-
ligent strategies that enhance efficiency. ML speeds up oper-
ations, cuts costs, and improves data interpretation in optical
metrology. For example, Eastwood et al [29, 70] highlighted
the role of high-performance computing in integrating ML,
which has contributed to faster 3D imaging and more efficient
phase unwrapping techniques. In this context, this section
highlights how the optical metrology is evolving, particu-
larly in areas such as phase demodulation (section 2.3.1),
phase unwrapping (section 2.3.2), phase demodulation plus
unwrapping (section 2.3.3), and phase-to-height conversion
(section 2.3.4). It emphasises how ML can simplify and
improve these aspects of optical metrology, making the pro-
cesses more efficient.

2.3.1. Efficiency improvement in phase demodulation. In
this subsection, we discuss how ML improves the process of
phase demodulation, a step in optical metrology that affects
the speed of 3D surface measurement. Table 6 shows the pros
and potential cons of each method.

The integration of ML and physics-informed algorithms in
phase demodulation is illustrated by Feng et al [71] developed
a method called µDLP, a fast 3D surface imaging technique
that uses ML. This method stands out for its efficiency and
ease of use compared to other high-speed imaging methods,
like those based on Fourier-transform. The results show that
µDLP could advance 3D imaging for fast-moving objects and
may help merge high-speed 3D imaging with high-rate 2D
photography. In a related vein, Yin et al [72] introduced a
method called PI-FPA, which uses physics-informed ML to
quickly reconstruct phases from single shots in optical met-
rology. By combining traditional methods with ML, PI-FPA
achieves fast phase demodulation and adapts well to new types
of samples. This approach is beneficial for speeding up pro-
cesses in optical metrology by blending physics-based meth-
ods with ML. Furthurmore, Nguyen et al [73] have developed
DYnet++, a MLmethod for real-time 3D shape measurement
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Table 6. Section 2.3.1: summary of methodologies for efficiency improvement in phase demodulation.

Author Method Pros Potential cons
Potential efficiency
improvement

Feng et al [71], 2019 µDLP for 3D surface
imaging

High-speed imaging,
rapid phase extraction

May require extensive
training data

Reduces acquisition
time via quick
profilometry

Yin et al [72], 2023 PI-FPA Computationally
efficient phase
reconstruction,
interpretability

Higher computational
complexity

Balances efficiency with
physical insights

Nguyen et al [73], 2023 DYnet++ for
single-shot
phase-measuring
deflectometry

Efficient single-shot
measurements

Handling non-specular
surfaces

Measure different
free-form surfaces with
high speed and even in
real-time

in deflectometry. This method makes the phase demodulation
process fast and automated for measuring complex surfaces
with low reflectivity, ideal for industrial use in real-time.

In conclusion, using ML in phase demodulation enhances
efficiency in optical metrology [71–73]. These techniques
handle big data and integrate physical principles to refine
the phase demodulation process and address more complex
optical metrology challenges. As these technologies evolve,
they are expected to boost the efficiency of optical metrology
systems, leading to faster and more reliable optical metrology
analyses and applications.

2.3.2. Efficiency improvement in phase unwrapping. We
explore how ML can make phase unwrapping faster and more
reliable. Phase unwrapping is a step in optical metrology that
can be time-consuming. Table 7 shows the pros and potential
cons of each method.

Yin et al [74] used ML for TPU (DL-TPU) not only makes
the process more reliable, even with complex patterns, but also
speeds up 3D surface imaging. Interestingly, their study sug-
gests that DL-TPU could also be used in other types of 3D
surface imaging, expanding its usefulness in optical metro-
logy. Additionally, Li et al [75] developed a quick 2D phase
unwrapping algorithm that uses a NN to predict errors and
adjust gradients. This method is designed to be fast and accur-
ate, which makes it useful for techniques such as InSAR and
InSAS, where quick processing is essential. At the same time,
Liu et al [76] tackled the challenge of efficient 3D shape meas-
urement with a phase unwrapping method based on ML. This
method combines composite fringe coding and stair phase
coding to allow quick 3D reconstructions from a small number
of images, effectively handling issues like defocus and noise.

Together, these studies show how ML can enhance phase
unwrapping in 3D imaging processes. They have improved
efficiency and simplified the computational work involved,
showing potential for the use of ML in this field. Future
research could further enhance these methods, leading to more
efficient phase unwrapping techniques.

2.3.3. Efficiency improvement in phase demodulation plus
unwrapping. The integration of ML in optical metrology,

particularly in the context of phase demodulation plus unwrap-
ping, represents an advancement in this field. Table 8 shows
the pros and potential cons of each method.

Nguyen et al [77] developed a 3D reconstruction method
that combines SL techniques with a deep learning NN. Their
method uses a single SL image and a dual-output network
to create multiple phase-shifted fringe patterns and a coarse
phase map quickly. Following this, Yang et al [78] introduced
a NN called a RCNN to tackle the challenges of reconstructing
complex scenes. This network, which is both robust and effi-
cient, simplifies the process by using only two fringe patterns.
It turns the complicated steps of phase recovery and unwrap-
ping into a simpler task of phase classification. This change
makes it easier to perform real-time 3D reconstructions.

In conclusion, these studies show that ML enhances the
efficiency of phase demodulation plus unwrapping in optical
metrology. These improvements not only make the measure-
ment processes more reliable but also expand the possibilities
for real-time and on-site monitoring.

2.3.4. Efficiency improvement in phase-to-height
conversion. Recent improvements in phase-to-height con-
version have highlighted the role of ML in enhancing effi-
ciency. The move from traditional methods to those using
ML and mixed network structures marks a change towards
advanced techniques. ML models, especially those that com-
bine CNNs and transformers, have potential in making the
phase-to-height conversion processes in optical metrology
more efficient [79–81]. Table 9 shows the pros and potential
cons of each method.

Yupeng et al [79] introduced a simulation-driven ML
approach for rapidly correcting slope-dependent errors in CSI
measurements, addressing a challenge in characterising com-
plex engineering surfaces. Importantly, by employing a DNN
trained on simulated surface topography measurements from
a physics-based virtual CSI, the proposed method achieved
slope-dependant error correction for a 1024× 1024 sampling
point surface height map within 0.1 s, covering a FOV
of 178µm× 178µm. Comparative analyses further demon-
strate its accuracy, which is comparable to the traditional
phase inversion method used to correct the slope-dependant

10



Meas. Sci. Technol. 36 (2025) 012002 Topical Review

Table 7. Section 2.3.2: summary of methodologies for efficiency improvement in phase unwrapping.

Author Method Pros Potential cons
Potential efficiency
improvement

Yin et al [74], 2019 Utilises DL for TPU High reliability,
effective against various
error sources

May require substantial
training data

Reduces error rates,
enables high efficiency
3D imaging

Li et al [75], 2023 Combines NN with
path-based algorithm

High computational
efficiency, suitable for
real-time processing

May has integration
complexity

Speeds up unwrapping
process, adaptable to
real-time systems

Liu et al [76], 2023 Applies DL in binocular
SL systems

Enhanced robustness,
simplifies 3D
reconstruction

May dependent on
training data quality

Decreases required
fringe patterns

Table 8. Section 2.3.3: summary of methodologies for efficiency improvement in phase demodulation plus unwrapping.

Author Method Pros Potential cons
Potential efficiency
improvement

Nguyen et al [77], 2023 Single-input dual-output
network

Simplifies the 3D
reconstruction process
using a single image

Depend on specific
configurations

Beneficial for quick,
single-shot analysis

Yang et al [78], 2024 Employs a RCNN for
3D imaging

Reduces data
complexity with only
two fringe patterns
needed

Limited by the RCNN’s
specificity

Enhances efficiency and
simplifies 3D imaging,
suitable for real-time
applications

Table 9. Section 2.3.4: summary of methodologies for efficiency improvement in phase-to-height conversion.

Author Method Pros Potential cons
Potential efficiency
improvement

Yupeng et al [79], 2023 DNN for correcting
slope-dependent errors
in CSI

Fast and maintains
accuracy

May require specific
training data

Speeds up surface height
map correction

Zhu et al [80], 2022 Wavelet-CNN
integration for fringe
pattern analysis

Reduces computational
complexity

May require complex
preprocessing

Improves computational
efficiency in FPP depth
estimation

Zhu et al [81], 2023 PCTNet combining
CNN and transformer
for SL images

Integrates local and
global features
efficiently

Potentially high
computational resource
requirement

Enhances measurement
efficiency, suitable for
real-time applications

error, while exhibiting a remarkable two orders of magnitude
improvement in computational efficiency. Significantly, this
approach holds potential for enhancing measurement effi-
ciency on high slope and discontinuous grating surfaces, con-
tributing to the advancement of online CSI measurements.
Furthermore, Zhu et al [80] introduced a phase-to-height con-
version method using wavelets in ML for converting from a
single pattern in 3D measurements. This method simplifies
the computing process, outperforming traditional ML mod-
els including U-Net [82, 83] and H-Net [84] in both qual-
itative and quantitative assessments. Additionally, Zhu et al
[81] developed a PCTNet, a network that combines CNNs
and transformers for converting phase-to-height conversion
from SL images. PCTNet is efficient and has shown excellent
results in evaluations, improving measurements in complex
scenes.

These studies highlight how ML is applied in phase-to-
height conversion, making it faster and more reliable. The use

of advanced ML techniques and network architectures marks
an improvement in performance. These developments open
possibilities for real-time 3D measurements [79–81].

2.3.5. Discussion about section 2.3: ML based efficiency
improvement. In conclusion, this section shows how using
ML in optical metrology is contributing to more efficient
and advanced measurement processes. ML has not only been
applied in specific studies but has also improved the over-
all efficiency and capabilities of the field. By examining and
comparing the different methods and results from the stud-
ies we reviewed, it is clear that ML is crucial for advancing
optical metrology. Looking ahead, future research may focus
on improving these ML methods, discovering new uses, and
better integrating ML with optical measurement techniques.
This will help ensure ongoing progress and innovation in
optical metrology.
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Table 10. Section 2.4.1: summary of methodologies for efficiency improvement in single-shot fringe analysis through end-to-end.

Author Method Pros Potential cons
Potential efficiency
improvement

Song and Wang [85],
2023

DCAHINet Leverage dual-stage
hybrid network for FPP

Potential complexity and
computational demands

Simplify network
architecture while
maintaining
performance

Ravi and Gorthi [86],
2023

LiteF2DNet Offer a lightweight
framework suitable for
low fringe frequencies

May struggle with
highly complex fringe
patterns

Suitable forreal-time 3D
reconstruction

Ravi and Gorthi [87],
2023

CF3DNet Improve 3D
reconstruction efficiency
with circular fringes

Specificity to circular
fringes may limit
application scope

Improve the
development of a
cost-effective fringe
projection system

Nguyen et al [94], 2022 Different SL patterns
analysis

Conduct further
investigations on
unexplored SL patterns
for broader applications

Less rigorous and
theoretical analysis on
how the 2D-to-3D
network learns

Provide guidelines for
SL pattern selection
enhancing efficiency

Gu et al [93], 2023 High-capacity spatial SL
system

Enhance coding density
for more robust feature
detection

Increased decoding
difficulty due to denser
coding points

Develop more efficient
decoding algorithms to
handle higher coding
densities

Dong et al [92], 2023 Speckle matching
network

Achieve edge-preserved
3D measurements with
speckle correlation

High GPU requirements
for training and
inference

Optimise network to
reduce computational
load

2.4. End-to-End ML to optical metrology

This section focuses on how end-to-endML has enhanced effi-
ciency in 3D reconstruction. It covers a range of strategies,
including DCAHINet [85], LiteF2DNet [86], CF3DNet [87],
CUE-NET [88], and SSMNet [89]. Each of these methods
addresses specific challenges in optical metrology, such as
analysing single-shot FPP and circular fringes (section 2.4.1),
and cross-domain 3D reconstruction (section 2.4.2). These
approaches have not only overcome traditional limitations but
also combined computational power with optical accuracy,
making optical metrology more efficient. We will explore the
details of each method, highlighting how ML has become
essential in improving the efficiency of optical metrology.

In the section 2.4.1 on single-shot fringe analysis,
DCAHINet and CF3DNet two NN methods in enhancing
3D reconstruction, and efficiently handling issues like discon-
tinuous objects. LiteF2DNet offers a fast, lightweight option
for 3D reconstruction. In another section 2.4.2 that looks at
broader applications, CUE-NET excels in multi-scale holo-
gram reconstruction, while SSMNet is noted for its shape-
aware speckle matching, showing how these advances are
useful in various applications. Additionally, the MPCAM [90]
is notable for learning multi-PSFs and performing end-to-end
generative image fusion [91], improving imaging performance
in different contexts.

2.4.1. Single-shot fringe analysis through end-to-end ML.
Adding ML to optical metrology, especially in techniques like
single-shot fringe analysis, has advanced 3D reconstruction
methods. Researchers have shifted from traditional, multi-step
processes to more advanced, end-to-end ML systems. This

change has unlocked new possibilities in FPP and SL meth-
ods, leading to more efficient measurement [85–87, 92–94].
Table 10 shows the pros and potential cons of each method.

Song and Wang [85] introduced a hybrid network called
DCAHINet, a NN designed for FPP. This network has
improved the efficiency of 3D reconstructions, especially in
environments with noise and objects that do not have con-
tinuous surfaces. DCAHINet uses special techniques called
deformable convolution and attention blocks to better extract
and combine features from images, distinguishing it from
other methods like ML models (U-Net [82] and H-Net [84])
and traditional approaches (phase shift method and multi-
frequency heterodyne). These improvements not only enhance
the network’s ability to extract and merge features but also
make it more adaptable and efficient at processing complex
images. This is particularly useful in noisy situations with
many interruptions. Therefore, DCAHINet has become a tool
in industries that need quick and dependable optical metrology
solutions.

Following this, Ravi and Gorthi [86] introduced
LiteF2DNet, a lightweight learning framework end-to-end
DNN designed for fast 3D reconstruction using FPP. This
model is especially efficient because it requires little memory,
making it much faster than traditional FPP methods like FTP
[95] and WFT [96]. Its design helps improve the speed of
optical measurements, particularly in real-time situations. At
the same time, Ravi and Gorthi [87] developed a ML method
called CF3DNet. This network directly connects changes in
the pattern (phase deformations) to phase shifts, leading to bet-
ter performance and lower costs compared to older methods
like FTP, WFT [96, 97] and others. This technique makes
the process of analysing patterns simpler, reduces errors
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Table 11. Section 2.4.2: summary of methodologies for efficiency improvement in other methods through end-to-end.

Author Method Pros Potential cons
Potential efficiency
improvement

Sun et al [101], 2023 Visual Pretraining
Analysis

Investigate the impact of
visual pretraining on
end-to-end reasoning in
ML

Specific visual
pretraining may not
apply to all ML
scenarios

Explore broader
application and
integration of
pretraining

Kou et al [90], 2023 Integrated MPCAM Offer extended DOF in
imaging with high SNR,
integrating AF function
for improved imaging

Performance may rely
on the quality of input
images

Adapt network to
diverse imaging
conditions for
robustness

Wang et al [88], 2023 CUE-NET Faster and higher quality
reconstruction

Possible big data
requirement for training

Reconstruct large FOV
holograms in real-time.

Nguyen et al [102],
2021

MIMONet Enhance 3D
reconstruction efficiency
using SL and ML.

Dependent on
high-quality labeled data
for training

MIMONet allows the
balance of speed and
accuracy

Li et al [103], 2023 Adversarial Attack
Framework

Introduce an adversarial
attack approach in 3D
face recognition,
showcasing end-to-end
attack adaptability

Attack may not
generalise well across
different 3D recognition
systems

Improve the efficiency
of attacks across systems

Dong et al [89], 2024 SSMNet Improved efficiency and
robustness in
cross-domain 3D
reconstruction

Possible overfitting to
specific domains

Enhance domain
variability in training
data

especially in images with gaps or breaks, and improves the
efficiency of the entire system in collecting and processing
measurement data.

In another study, Nguyen et al [94] explored how choos-
ing different SL patterns affects the process of converting 2D
images into 3D models using ML. Their research highlights
the importance of selecting the right light patterns to improve
the entire 3D reconstruction process. They found that high-
frequency fringe and grid patterns work better than others,
making the network more efficient in turning 2D images into
3D models. Choosing the right patterns can lower the comput-
ing needs and speed up the creation of 3D models.

Moreover, Gu et al [93] addressed the challenge of produ-
cing detailed and efficient 3D models using spatial SL. They
introduced a method that creates pseudo-2D patterns and uses
ML to detect corners automatically. This approach speeds up
data processing, making the measurement results faster and
more reliable, which is crucial for high-efficiency require-
ments. Similarly, Dong et al [92] presented a new speckle
matching network that uses DSC [98] to measure 3D shapes
quickly while preserving detail. This network performs bet-
ter than older methods like GC-Net [99] and StereoNet [100],
reducing the time it takes to process data and ensuring high
accuracy, making it suitable for industrial needs.

The use of ML in single-shot fringe analysis methods has
advanced optical metrology, making it more robust and less
complex. These improvements have not only made 3D recon-
struction more efficient, even in noisy environments and at
low fringe frequencies, but they have also made it possible
to develop faster and more cost-effective optical metrology
systems. Looking ahead, future research aims to apply these

methods to more complicated real-world problems, achiev-
ing real-time, dynamic 3D reconstructions, and expanding
their use in both industrial and scientific settings in optical
metrology.

2.4.2. Other methods incorporating end-to-end ML. The
reviewed studies indicate a diverse exploration into enhan-
cing 3D reconstruction and measurement efficiency through
advancedML frameworks. Table 11 shows the pros and poten-
tial cons of each method.

Sun et al [101] investigated the role of visual pretraining
[104] in achieving end-to-end visual reasoning using general-
purpose NNs. The results suggested that pretraining is essen-
tial for compositional generalisation in visual reasoning tasks,
challenging the belief that explicit visual abstraction is neces-
sary, and showcasing the feasibility of NN ‘generalists’ for
solving such tasks. The approach can improve the efficiency
of the model’s performance by enabling it to learn more robust
and generalisable representations of visual data. This means
that with appropriate pretraining, the network might achieve
higher accuracy or better reasoning capabilities with less data
or fewer training iterations. By using self-supervised pretrain-
ing, the network leverages unlabelled data, which can be more
abundantly available than labeled data. This approach could
make the learning process more efficient, requiring less manu-
ally labeled data to achieve high performance. In summary, the
techniques improve the efficiency of the model’s learning and
reasoning capabilities, potentially reducing the need for large
labeled datasets and improving the model’s performance on
complex tasks.
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Meanwhile, Kou et al [90] presented an integrated multi-
PSF camera (MPCAM) system with AF functionality that
combines multi-PSF [105] learning and end-to-end generat-
ive image fusion network to achieve large DOF and high
SNR imaging. The results demonstrated that this system out-
performs traditional image fusion methods such as DTCWT
[106], RP [107], DSIFT [108], CVT [109], DRPL [110], unsu-
pervised GAN with adaptive and gradient joint constraints
(MFF-GAN) [111], IFCNN [112], U2Fusion [91] and cross-
domain long-range learning with SwinFusion [113], making it
suitable for optical metrology. The integration of an AF func-
tion driven by ML streamlines the imaging process, making it
more efficient.

Furthermore, Wang et al [88] introduced an end-to-end
reconstruction method called CUE-NET for multi-scale holo-
grams. CUE-NET uses ML to quickly reconstruct the phase
and amplitude of holograms, even when they are out of focus.
It improves the speed of the reconstructed images, performing
better than current methods, such as U-NET. By integrating
ML, the method efficiently recovers phase information from
holograms, addressing challenges like noise and data loss in
traditional approaches. The technique demonstrates enhanced
reconstruction speed, achieving better performance in terms of
PSNR and SSIM compared to conventional methods. The abil-
ity to reconstruct large FOV holograms at different scales in
real-time offers improvements in digital holography, enabling
rapid analyses.

Nguyen et al [102] worked on making 3D shape recon-
structionmore efficient usingML. They integrated SL patterns
into a comprehensive NN, improving the final quality through
a refinement process. Their multi-input multi-output network,
calledMIMONet, showed promising results in tests for robust-
ness and efficiency. By using ML, MIMONet automatically
improves the 3D reconstruction process, making it more effi-
cient. This method has the potential to replace more expensive
and time-consuming traditional measurement techniques in
optical metrology, offering an efficient alternative. Similarly,
Li et al [103] introduced SL attack for 3D face recognition that
incorporates 3D reconstruction and skin reflectance in an end-
to-end optimisation process. This method allows for the per-
turbation to be integrated into the original patterns seamlessly,
enhancing the efficiency of creating adversarial examples in
optical metrology. This approach substitutes the traditional
3D reconstruction algorithm with a differential one, address-
ing the challenge of discrete pixel coordinates and enabling
end-to-end optimisation for adversarial example generation.
The experimental results demonstrated the efficiency of this
method in attacking 3D face recognition systems with higher
success rates and fewer perturbations compared to previous
physical 3D adversarial attacks.

Finally, Dong et al [89] presented an end-to-end SSMNet
that enhances efficiency and completeness in cross-domain
3D reconstruction, outperforming other vision algorithms
including PSMNet [114], GWCNet [115] and DSMNet [116]
in diverse contexts, and achieving highly precise 3D shape
measurement in industrial scenarios. The SSMNet combines
shape-mask information, cascade attention mechanisms [117],
shape-aware modules, multi-scale features, and hybrid loss

functions to improve the network’s performance, demonstrat-
ing state-of-the-art results in cross-domain applications.

The application of ML in optical metrology, suggests a tra-
jectory toward automated and adaptive optical measurement
solutions. The integration of ML not only augments the resol-
ution and speed of optical metrology tasks but also broadens
the scope of their applicability.

2.4.3. Discussion about section 2.4: end-to-end ML to optical
metrology. In conclusion, the insights garnered from the
reviewed studies, it becomes evident that ML’s role in optical
metrology is expansive. The methodologies discussed herein,
from DCAHINet’s dual-stage hybrid approach to SSMNet’s
shape-aware speckle matching, improving the efficiency and
flexibility of 3D reconstruction. By analysing these advance-
ments, one can discern a clear trend toward more integrated,
robust, and adaptable systems that leverage the full potential
of ML. As ML continues to evolve, its integration with optical
metrology is anticipated to yield more efficient and reliable
measurement systems.

2.5. Enhancing efficiency through parallel computing

This section discusses how parallel computing, using tech-
nologies like GPUs and FPGAs, is applied in optical metro-
logy. It explains that these technologies improve how quickly
data can be processed, allowing for analyses to happen in
real-time. The text covers different uses of parallel comput-
ing in areas such as phase demodulation (section 2.5.1), holo-
graphic interferometry (section 2.5.2), and 3D reconstruction
(section 2.5.3). These methods are not only faster but also
easier to access. There are specific sections that go into more
detail on certain topics. For example, one part discusses how
GPUs can rapidly process certain types of light patterns, which
speeds up computations. Another part talks about using GPUs
in a method called holographic interferometry to increase effi-
ciency. There’s also a mention of a system that measures
3D shapes in real-time, which is easy to use and showcases
the broad potential of these computing technologies. Finally,
the review touches on other uses like improving analysis of
light patterns and speeding up algorithms for computer vision,
emphasising how parallel computing makes optical metrology
quicker, more efficient, and less expensive.

2.5.1. Parallel computing in phase demodulation. These
three papers discuss the utilisation of GPU-based parallel
computing for improving the efficiency of phase demodu-
lation in optical metrology. The first paper by Wang et al
[118] introduced a comprehensive and (GPU)-based frame-
work for accelerating SFPP, addressing the increasing com-
putational load posed by high-resolution fringe patterns. The
proposed framework, the first of its kind, showcased spee-
dup compared to CPU-based processing and demonstrated the
importance of GPU-based processing for handling big data
and high-resolution images in SFPP. On the other hand, the
paper by Chen et al [119] addressed the issue of slow com-
putation speed in the AIA for phase extraction by introducing
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Table 12. Section 2.5.1: summary of methodologies for efficiency improvement in phase demodulation through parallel computing.

Author Method Pros Potential cons
Potential efficiency
improvement

Wang et al [118], 2019 Comprehensive
GPU-based SFPP
framework

Framework-level
parallelisation

Potentially less
optimised for specific
algorithms

Framework adaptability
and potential integration
of ML for optimisation

Chen et al [119], 2021 Fully gAIA without
compromising accuracy

Up to 500 times faster
than CPU and 10 times
faster than partial GPU
methods

Possibly limiting
broader applicability

ML could optimise
gAIA’s performance or
broaden its applicability

Zhong et al [120], 2023 Real-time phase
demodulation using
ImageJ plugin and
CUDA streams

Real-time processing,
improved speed for
dual-wavelength
holography

Possibly dependent on
specific software

Improved real-time
phase reconstruction
speed

Table 13. Section 2.5.2: summary of methodologies for efficiency improvement in holographic interferometry through parallel computing.

Author Method Pros Potential cons
Potential efficiency
improvement

Pandey et al [121], 2021 GPU-accelerated state
space approach for rapid
estimation of
interference phase and
its derivatives in digital
holographic
interferometry

Computational
efficiency improvement,
enabling dynamic
metrology applications

Potential limitations
with fringe
abnormalities

Potential integration of
ML for optimising
processing strategies and
enhancing efficiency

Munera et al [122], 2022 Dual-wavelength
acquisition strategy to
avoid numerical phase
unwrapping, using GPU
acceleration for
processing

Optimisation of
dual-wavelength
strategy or ML
integration for improved
computational efficiency

Potential limitations in
FOV

High-speed
measurements by
avoiding numerical
phase unwrapping,
speeding up the
processing time

a fully parallelised GPU-based version (gAIA). gAIA accel-
erated AIA, achieving a 500× speedup compared to CPU
implementation and real-time phase extraction, all without
compromising accuracy. At the same time, the gAIA’s com-
putation speed remained relatively unaffected by the frame
number used. The third paper by Zhong et al [120] presen-
ted an ImageJ plug-in designed for real-time phase recon-
struction in digital holographic interferometry. By utilising
GPU and CUDA architectures and optimising data processing
using CUDA streams, the plug-in improved the reconstruction
speed, making it suitable for real-time applications in digital
holography. Table 12 shows the pros and potential cons of each
method.

In conclusion, the three papers show that using GPU-
based parallel computing can improve the efficiency of phase
demodulation processes in optical metrology. ML could make
these methods even better by optimising the steps in the com-
putation, automating the choice of parameters, and possibly
finding more efficient ways to use GPU capabilities for phase
demodulation.

2.5.2. Parallel computing in holographic interferometry.
These papers focus on improving how fast and efficiently com-
puters can process holographic interferometry. Particularly,

Pandey et al [121] introduced a method that quickly calcu-
lates the phase of interference and its changes using GPU pro-
cessing. This technique speeds up computations, making it
useful for measuring changes in objects without touching them
and for testing materials without damaging them. On a related
note, Munera et al [122] showcased a high-speed micro-
deformation measurement technique. This technique, distinct
in its use of dual-wavelength digital holographic interfero-
metry and the CUDA [123, 124] parallel computing frame-
work. It also quickly reconstructs phasemaps without the extra
step of phase unwrapping. This is especially helpful for real-
timemeasurements, such as vibration analysis. Table 13 shows
the pros and potential cons of each method.

In conclusion, both studies demonstrate the benefits of
using GPU technology to speed up the processing of holo-
graphic data. These improvements could be further advanced
by incorporatingML to refine processingmethods, better man-
age data, and improve efficiency in holographic interfero-
metry. This could lead to possibilities in real-time optical
metrology.

2.5.3. Parallel computing in 3D reconstruction. The integra-
tion of parallel computing in 3D reconstruction has advanced
the field of optical metrology, offering improvements in
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Table 14. Section 2.5.3: summary of methodologies for efficiency improvement in 3D reconstruction through parallel computing.

Author Method Pros Potential cons
Potential efficiency
improvement

Karpinsky et al [125] GPU-based system for
real-time 3D shape
measurement

High-speed 3D shape
measurement with
reduced CPU load

May require specific
GPU compatibility

Potential integration of
ML to adapt processing
strategies.

Zhang et al [126] 2023 Method to accelerate 3D
point cloud derivation
by avoiding matrix
inversion

Use of ML to refine
pre-computation
strategies

May not generalise
across all data types or
hardware

15-fold increase in
computational speed
without additional
memory overhead

processing speeds and data handling capabilities. Table 14
shows the pros and potential cons of each method.

Karpinsky et al [125] introduced a system that can meas-
ure the shape of 3D objects quickly, capturing 30 frames every
second, with each frame containing 480 000 measurement
points. This system is run on a laptop using GPU processing,
which makes it portable and easily accessible to the general
public for 3D shape measurements. On a related note, Zhang
et al [126] developed a method for measuring 3D shapes that
increases the speed of calculations by 15 times without addi-
tional memory. This method avoids complex mathematical
steps (like matrix inversion), is easy to adapt to various 3D
measurement technologies, and can be integrated into differ-
ent software platforms. Additionally, it can be enhanced with
parallel computing tools such as MPI, OpenMP, and CUDA,
and it can be adapted into a format that uses less memory.

In conclusion, both papers showcase how parallel comput-
ing can speed up the process of 3D reconstruction. Integrating
ML could improve these methods further by optimising
algorithms, automating the selection of settings, and even pre-
dicting and fixing errors in real time. This could enhance the
efficiency and range of applications of 3D reconstruction in
optical metrology.

2.5.4. Discussion about section 2.5: enhancing efficiency
through parallel computing. This section discusses the influ-
ence of ML and parallel computing on improving optical met-
rology, a field that deals with precise measurements using
light. It highlights that these technologies are not just addi-
tional tools but are crucial to the ongoing advancements in the
field. They increase the speed of computations and broaden
the scope of what can be achieved with optical metrology.
This emphasises the importance and potential of further integ-
rating these technologies. Future research and developments
in optical metrology will benefit from focusing on optimising
these computational techniques.

3. Effectiveness improvement by ML

This section details how ML improves effectiveness of
optical measurements. It covers areas like phase demodulation
(section 3.1), phase unwrapping (section 3.2), phase-to-height
conversion (section 3.3), showcasing a wide range of ML
strategies used for 3D reconstruction. In phase demodulation
(section 3.1), the discussion includes various strategies like

CNN-based analysis of interference patterns, advanced ana-
lysis of fringe patterns usingML, and cutting-edge single-shot
methods for precise measurements. For phase unwrapping
(section 3.2), the applications in different challenging envir-
onments and presents hybrid methods and models designed
to resist noise, improving accuracy and reliability. Finally, the
section 3.3 on phase-to-height conversion discusses how ML
models help correct errors and recover depth accurately in
practical settings, enhancing the calibration methods used in
FPP.

3.1. ML for effectiveness improvement in phase
demodulation

This subsection discusses a variety of ML techniques that
improve the accuracy of phase demodulation. It covers a
range of methods that use sophisticated technologies, such as
CNNs and transformer-based models. These techniques are
designed to solve complex problems like spurious phase signs
and irregular-shaped apertures (section 3.1.1). The discus-
sion further delves into fringe pattern analysis (section 3.1.2),
and single-shot methodologies (section 3.1.3), showcasing
advancements exemplified by methodologies like CDLP,
SAPR-DL, and speckle matching networks.

3.1.1. Interferometry in phase demodulation. This sub-
section explores how ML is applied in interferometry, to
improve the effectiveness of measurements. By studying dif-
ferent methods, including CNN and transformer-based mod-
els, applied to interferometry, we find ML can improve data
interpretation. These techniques increase resistance to noise
and adapt to complexmeasurement conditions, thus enhancing
the effectiveness of optical metrology [127–129]. Table 15
shows the pros and potential cons of each method.

Sun et al [127] introduced a high-precision, ultra-fast phase
demodulation method called RU-Net for optical surface meas-
urements, enabling simultaneous wrapped phase extraction
from a single interferogram. The study used a Zygo inter-
ferometer to measure two spherical surfaces, capturing sev-
eral interferograms by adjusting the tilt and defocus to con-
trol the shape and density of the fringes. Both the integ-
rated phase-shifting algorithm of the Zygo interferometer
and RU-Net were employed to reconstruct the surfaces from
these interferograms. The performance of RU-Net was quant-
itatively assessed by comparing the peak-to-valley and root
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Table 15. Section 3.1.1: summary of methodologies for effectiveness improvement in interferometry in phase demodulation.

Author Method Pros Potential cons
Potential effectiveness
improvement

Sun et al [127], 2022 RU-Net for phase
demodulation from
single interferogram

High accuracy, effective
in unstable
environments,
simultaneous phase
demodulation

May require large
training datasets

Extension to various
interferograms

Li et al [128], 2023 I-Net for phase
demodulation with focus
on Zernike coefficients
extraction

Robust to noise,
effective for irregular
apertures, precise
Zernike extraction

Low contrast and
uneven fringe

Broader aberration
handling, enhanced
noise robustness

Kuang et al [129], 2024 Swin-ResUnet Effective segmentation,
handles spurious phase
sign

Potential model
complexity

Wider metrology
application, improved
segmentation accuracy

mean square (RMS) values of the residual wavefronts derived
from the measurements. RU-Net demonstrated a RMSE 0.01λ
better than phase-shifting algorithm. These experiment res-
ults demonstrate that RU-Net is capable of achieving high
precision in the real-time measurement of optical surfaces.
The study highlights RU-Net’s feasibility and effectiveness
in optical metrology applications, addressing challenges in
accuracy and robustness that are crucial for advanced metro-
logical tasks.

Following this, Li et al [128] introduced a high-precision
phase demodulation method called I-Net. This method is espe-
cially good at extracting Zernike coefficients from single-
frame interferograms, even when those interferograms have
irregular-shaped apertures. They conducted an experimental
validation of I-Net by comparing its performancewith a Fizeau
interferometer under varied noise conditions. By training net-
works with Gaussian and Gamma noises to demodulate inter-
ferograms shaped as elliptical, hexagonal, and square aper-
tures, the study demonstrated that network compatibility with
the interferometer varied by noise type and aperture shape. For
instance, Gaussian noise training yielded an RMS of 0.0131λ
for elliptical apertures, while Gamma noise was most effective
for hexagonal apertures with an RMS of 0.0096λ. The analysis
of Zernike coefficients showed that I-Net’s predictions closely
matched those of the Fizeau interferometer, affirming its high
accuracy. The results showed that thisML approach is not only
accurate but also robust, making it highly suitable for measur-
ing optical surfaces that have irregular apertures.

Building on these advancements, Kuang et al [129] tackled
a challenge: extracting phase information from single inter-
ferogram that have closed fringes, particularly focusing on
issues with incorrect phase signs. They used a transformer-
based architecture called Swin-ResUnet, which has shown an
improvement in correcting phase sign errors and better seg-
mentation performance. This improvement is notable com-
pared to older methods like U-Net [83], Swin-Unet [130],
and MultiResUnet [131], particularly in handling noise and
achieving effective results in both simulations and practical
experiments. The team utilised MIoU to assess segmentation
accuracy across various wrapped phase images with spuri-
ous signs. Swin-ResUnet demonstrated superior precision,

particularly in handling complex fringe patterns and high
noise levels. For instance, under severe Gaussian noise condi-
tions (SNR of 5 dB), Swin-ResUnet outperformed other mod-
els, maintaining segmentation accuracy and robustness, with
MIoU values exceeding 90% even when images were sub-
stantially corrupted. This robustness is attributed to its self-
attention mechanism, which effectively captures global inter-
actions and refines edge detection in phase sign change maps.

The studies reviewed highlight the impact of ML on
improving interferometry. By using advanced ML models,
researchers have achieved improvements in data accuracy,
robustness, and adaptability under different conditions. These
advancements not only enhance the ability to obtain pre-
cise and reliable measurements from complex data but also
broaden the potential uses of optical metrology in areas where
traditional methods might be inadequate [127–129].

3.1.2. Fringe pattern analysis in phase demodulation. The
integration of ML into optical metrology has improved fringe
pattern analysis, which is essential for precise measure-
ments in various scientific and engineering fields [132]. The
shift from using single-frame techniques to ensemble-based
approaches in fringe pattern analysis represents an advance-
ment in optical metrology [133]. Table 16 shows the pros and
potential cons of each method.

Feng et al [132] developed a method utilises ML for fringe
pattern analysis in optical metrology. This method enhances
the precision of extracting phase information from a single
pattern. The effectiveness of this method was shown through
experiments, and it could be useful in different techniques for
measuring phases. Practical application in optical metrology
were demonstrated through a comparative study involving FT,
WFT, and a proposedML-based method. The study calculated
the MAE against a reference phase map obtained via a 12-
step PS method. Results indicated that FT exhibited the most
significant phase distortion with an MAE of 0.20 rad, while
WFT showed a slightly lower error of 0.19 rad. In contrast,
the ML approach yielded the lowest error at 0.087 rad, show-
casing its ability to minimise phase distortion, especially in
boundary areas or regions with abrupt depth changes. This
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Table 16. Section 3.1.2: summary of methodologies for effectiveness improvement in fringe pattern analysis in phase demodulation.

Author Method Pros Potential cons
Potential effectiveness
improvement

Feng et al [132], 2019 ML with two CNNs High phase demodulation
accuracy

Potential limited
generalisation across
fringe types

Enhance model
generalisation

Feng et al [133], 2023 Ensemble ML with
multiple DNNs

Greater accuracy, reduced
error generalisation

Potential increased
computational load

Implement adaptive
fusion strategies

method eliminated the need for manual parameter adjust-
ments. Additionally, the 3D reconstructions from unwrapped
phase data showed that, unlike the grainy distortions usually
seen with FT or the overly smoothed surfaces typical of WFT,
the ML method created high-quality reconstructions. These
were almost the same as the original models used in the 12-
step PS fringe patterns, clearly demonstrating the method’s
robustness.

Building on this, Feng et al [133] improved their research
by using a method called ensemble ML to analyses fringe-
pattern in optical metrology, which helps make reliable pre-
dictions in different situations. They combined the results from
multiple DNNs using techniques such as K-fold average and
adaptive ensemble strategies, increasing the accuracy and abil-
ity to generalise. This method is much better than single-
DNN-basedmethods, such as U-Net [82],MPDNN [132], and
Swin-Unet. This study shows the benefits of using a group of
models together, called ensemble learning, to improve tech-
niques in optical metrology. These models were trained using
a seven-fold average ensemble on three untrained scenarios:
statues, an aluminium alloy industrial part, and a plastic desk
fan. The ensemble approach outperformed individual models,
demonstrating a reduction inMAE across various complex and
smooth areas. For instance, theMAE improved from 0.085 rad
in initial measurements to 0.061 rad, 0.054 rad and 0.059 rad
in the three scenarios, respectively. The study illustrated that
while individual DNNs showed varied performance across dif-
ferent scenarios, the ensemble method effectively leveraged
their collective strengths, reducing phase errors, particularly
around complex depth variations and edges. This method not
only improved the accuracy by up to 26% but also showcased
enhanced robustness and scalability.

The 2023 [133] paper builds on the 2019 [132] work by
introducing ensemble learning, which uses multiple models
to overcome the limitations of a single DNN. This approach
addresses problems like overfitting and improves the model’s
ability to perform well across different situations and its
robustness. This evolution marks a shift from relying on a
single network to using a combined approach with multiple
networks, enhancing fringe pattern analysis.

3.1.3. Single-shot methods in phase demodulation. The
single-shot methods in optical metrology, particularly FPP,
benefit from ML’s ability to handle complex data patterns
and improve measurement accuracy. These advancements

are crucial for applications that require precise 3D surface
measurements, such as quality control in manufacturing or
dynamic scene analysis [134]. The following comparative ana-
lysis explores three studies that use ML to enhance single-
shot optical metrology. Each study presents unique approaches
and contributions to the optical metrology [134–136]. Table 17
shows the pros and potential cons of each method.

Li et al [135] introduced the CDLP, which merges ML with
spatial frequency multiplexing to achieve precise and clear
single-shot 3D shape measurement. Experiments involved
projecting custom-designed composite fringe patterns onto
diverse objects, including statues and moving figures, to
capture single-shot 3D images. The CDLP approach effect-
ively minimised spectrum aliasing [137] and handled high-
frequency shifts, challenges commonly faced with traditional
methods [138]. Notably, the method demonstrated high pre-
cision in static scenarios, achieving a MAE lower than tradi-
tional FT methods. In dynamic scenarios, such as rotating or
moving objects, CDLP’s single-shot capability proved essen-
tial for capturing accurate 3Dmeasurements without the errors
typically induced by object motion. These tests showcased
CDLP’s robustness and adaptability, confirming its suitability
for high-resolution, real-time 3D surface imaging.

Expanding on this idea, Xu et al [136] tackled the chal-
lenge of accurately retrieving absolute phase for isolated
objects using single-shot FPP. They introduced a method
called SAPR-DL, which can accurately measure the 3D shape
of complex objects in one shot, showing potential applications
in science and engineering. The method’s performance was
assessed against ground truth in four scenarios involving dis-
continuous objects, where it displayed superior phase retrieval
capabilities with minimal errors primarily at object edges.
The MAE ranged from 0.08 rad to 0.15 rad across these tests,
showcasing its precision. In comparison to the Fringe-Depth
method, SAPR-DL achieved lower depth errors, with RMSE
values better across all tested scenarios (0.77, 0.43, 0.88, and
0.78 respectively for SAPR-DL versus 1.47, 1.02, 0.95, and
1.42 for Fringe-Depth). These results highlight SAPR-DL’s
robustness and its ability to handle phase and depth ambigu-
ities effectively.

Additionally, Wan et al [134] introduced FrANet, a method
for single-shot 3D measurement using a DNN with three spe-
cialised subnetworks: phase demodulation, phase unwrapping,
and refinement. Notably, their two-stage training strategy,
starting with unsupervised learning and then fine-tuning with
supervised learning, reduced the need for ground truth phase
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Table 17. Section 3.1.3: summary of methodologies for effectiveness improvement in single-shot methods in phase demodulation.

Author Method Pros Potential cons
Potential effectiveness
improvement

Li et al [135], 2022 CDLP, ML-based
frequency multiplexing
coded method

High precision in 3D
imaging, suitable for
dynamic objects

Potential complexity
computational resource
requirement

Retrieve robust and
unambiguous phases
information

Xu et al [136], 2023 SAPR-DL method using
ML

Precise 3D shape
reconstruction with one
fringe image

Possible limitations NN
training data quality

Improve the ML
framework for better
generalisation

Wan et al [134], 2023 Single-shot 3D
measurement by FrANet

High accuracy in 3D
reconstruction, effective
for dynamic scene
measurements

Potential complexity of
the network architecture

Enables the accurate 3D
shape measurement of
moving or vibrating
objects

maps. Experimental results from a FPP system showed the
method’s accuracy in 3D measurements, achieving a RMSE
of 0.67mm. Ablation studies further validate the effectiveness
of this approach, highlighting its potential for precise 3D shape
measurement in industrial applications, especially for dynamic
or vibrating objects.

In summary, incorporatingML into single-shot optical met-
rology has shown improvements in measurement accuracy.
Although each paper introduces a unique approach with its
own benefits and potential drawbacks, the overall advance-
ments highlight the impact of ML in optical metrology [134–
136]. Future research should aim to overcome the identi-
fied challenges, such as data dependency and generalisation
issues, to fully utilise ML’s potential in enhancing single-shot
optical metrology techniques for a wider range of challenging
applications.

3.1.4. Discussion about section 3.1: ML for effectiveness
improvement in phase demodulation. In conclusion, this
review highlights the progress made in applying ML to phase
demodulation. It presents a variety of methods that improve
measurement accuracy. The studies discussed show a clear
trend: using ML not only overcomes traditional challenges in
phase demodulation but also opens up new possibilities and
methods. Future research should aim to improve these ML
techniques, explore how they can be scaled up, and combine
them further with new optical metrology technologies. The
ongoing collaboration between ML and optical metrology is
likely to lead to new opportunities, making optical metrology
more effective and wide-ranging.

3.2. ML for effectiveness improvement in phase unwrapping

This subsection examines the multiple applications of ML
in the complex process of phase unwrapping, address-
ing different scenarios within interferometry (section 3.2.1),
InSAR (section 3.2.2), FPP (section 3.2.3), and challenging
noisy environments (section 3.2.4). A synthesis of hybrid
methodologies, advanced ML frameworks, and anti-noise
models collectively drives the field forward, contributing to

improvements in phase unwrapping across various contexts of
optical metrology.

3.2.1. Interferometry in phase unwrapping. This literature
review introduced some studies that use ML to improve the
accuracy [139] of interferometric measurements. These stud-
ies highlight a shift towards using ML to solve issues in
phase unwrapping and quality map creation, thereby increas-
ing the precision and reliability [140, 141] of optical met-
rology. Table 18 shows the pros and potential cons of each
method.

Zhao et al [140] addressed the challenge of phase unwrap-
ping in optical phase measurements under heavy noise condi-
tions. The proposed method combined Zernike polynomial fit-
ting with a Swin-Transformer network, treating phase unwrap-
ping as a regression task. This method demonstrated robust-
ness to noise, offering potential applications in quantitative
phase measurement, particularly in scenarios characterised by
severe noise like speckle interferometry. The proposedmethod
consistently outperformed traditional methods, with RMSE
values substantially lower, such as 0.0407 rad and 0.0627 rad
in typical scenarios, and even lower in noise-intensive tests.
Comparative analyses against methods like D-Net and DZPF
under varied noise levels further highlighted its superior per-
formance, with the model maintaining low error rates (as low
as 0.0153 rad) where others failed, particularly in high-noise
environments.

Building on this, He et al [142] introduced UN-PUNet, a
CNN designed for phase unwrapping from single wrapped
phase patterns with uneven grayscale and noise in electronic
speckle pattern interferometry (ESPI). Tested against 1224
uneven noisy phase patterns, UN-PUNet outperformed com-
peting methods (DLPU-Net [144], VUR-Net [145], and PU-
M-Net [146]) across many metrics including AU, PSNR,
SSIM, and CC, indicating its enhanced accuracy, noise reduc-
tion, and structural preservation capabilities. Notably, UN-
PUNet achieved the lowest MSE, highlighting its precision in
phase retrieval.

Furthermore, Li et al [141] introduced a three-wavelength
phase unwrapping approach using a MW-Net to predict the
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Table 18. Section 3.2.1: summary of methodologies for effectiveness improvement in interferometry in phase unwrapping.

Author Method Pros Potential cons
Potential effectiveness
improvement

Zhao et al [140], 2023 ML-based phase
unwrapping

High accuracy and
performance with
different types of noise
and fringe shapes

May struggle with
extremely noisy data

Improve noise handling
and robustness to
different data types

He et al [142], 2023 UN-PUNet for phase
unwrapping

Improved feature
extraction and
multi-scale information
fusion, effective on
uneven and noisy
wrapped patterns

Specific performance on
very high-density noise
patterns

Eliminating speckle
noise, and addressing
uneven gray scale

Li et al [141], 2023 MW-Net for
multi-wavelength phase
unwrapping

Increases measurement
range without additional
noise, effective for
complex samples

Performance may
degrade with extremely
low SNR images

Enhance robustness and
extend applicability

Han et al [143], 2023 NN-based phase quality
map generation

Improves path-based
and network-based
phase unwrapping
algorithms

May require big data for
training and validation

Identify the residuals
and generate a reliable
gradient quality map

Jiaying and Xianming
[139], 2023

ML-based CDIF phase
unwrapping

Combines ML with PG
estimation for robust
results

Possible
time-consuming optimal
path search in the entire
interferogram

Optimise path-searching
algorithms to improve
accuracy

illumination wavelength from a single-wavelength interfero-
gram. In simulations, the network accurately predicted dif-
ferent wavelength interferograms from a single-wavelength
input, closely matching the ground truth with minimal error, as
evidenced by a RMSE of 0.0407 rad. This accuracy was main-
tained across various experimental setups, including complex
biological samples like Jurkat cells, where traditional meth-
ods struggled with noise and inaccuracies. Particularly note-
worthy is the network’s ability to extend the measurement
range effectively under single-wavelength illumination, show-
casing an improved SNR and precise height distribution in
complex samples.

Subsequently, Han et al [143] focused on the genera-
tion of a quality map for phase unwrapping in interfero-
metric signal processing. It introduced a method based on
CNNs to create quality maps, which used in path-based and
network-based phase unwrapping algorithms, outperformed
BUT method [147], PC, PV, PG, SNAPHU [148], DLPU-
Net [144], PhaseNet 2.0 [149], QGPU [150] and MCF [151].
For example, the method was validated using TerraSAR-
X/TanDEM-X data for a 768 × 768 pixel interferogram over
Ningxia, China, challenging due to its dramatically varying
terrain. The proposed method demonstrated the lowest norm-
alised NRMSE of 0.0223, outperforming conventional meth-
ods like SNAPHU and other ML approaches like PhaseNet2.0
and DLPU.

Finally, Jiaying and Xianming [139] introduced a ML
method called CDIF for phase unwrapping (DLCDIFPU).
They combined this method with a ML-based region seg-
mentation model to make phase unwrapping more accurate.
Experimental results on synthetic and measured data showed

the robustness of this method compared to commonly used
algorithms, such as Goldstein’s BUT [152], the QGPU [150,
152, 153], the ILS [154], the improved unscented UKFPU
[155].

The studies discussed how ML is making advancements
in interferometry within optical metrology. These approaches
provide solutions to challenges like phase unwrapping and
quality assessment. These improvements not only increase the
accuracy [139] of measurements but also open up new possib-
ilities for future research and applications in this area, estab-
lishing ML as a component in the development of optical
metrology.

3.2.2. Interferometric InSAR in phase unwrapping. These
studies demonstrate how ML improves the accuracy of
InSAR phase unwrapping processes [156–159]. They focus on
improvements in data interpretation, reduction in error rates,
and better performance across various terrains and conditions.
Table 19 shows the pros and potential cons of each method.

Vijay et al [156] presented a two-stage ML frame-
work inspired by U-Net for InSAR phase unwrapping and
denoising. The proposed method demonstrated superior noise
immunity and accuracy, with consistently lower RMSE and
UFR, and higher SSIM values. The proposed U-Net based
model effectively maintained correct phase boundaries and
minimised noise distortions, producing outputs with fewer
errors and higher quality, even in challenging scenarios. This
robust performance, particularly in handling noise and main-
taining accurate unwrap boundaries, underscores the pro-
posed method’s enhanced capability and scalability in prac-
tical optical metrology settings
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Table 19. Section 3.2.2: summary of methodologies for effectiveness improvement in interferometric InSAR in phase unwrapping.

Author Method Pros Potential cons
Potential effectiveness
improvement

Vijay et al [156], 2023 U-Net for denoising and
unwrapping

Integrates denoising and
unwrapping, reducing
error propagation

May reduced
performance in
extremely
high-coherence regions

Better anti-noise
behaviour

Zhang et al [157], 2023 Pu-pix2pix for one-step
unwrapping

Handles varied noise
conditions well

May require substantial
data diversity for better
generalisation

Broaden dataset variety
and enhance network to
deal with SAR phase
unwrapping

Yang et al [159], 2023 Deep-learning-based
mask-cut method

Accurate MC
deployment without
quality map guidance

May struggle with dense
fringe wrapped phases

Improve the phase
unwrapping success
ratio

Chen et al [158], 2023 U-GauNet for InSAR
phase unwrapping

Handles error gradient
distribution effectively

May not perform well in
extremely
low-coherence areas

Enhance training with
diverse datasets

Zhang et al [157] presented a robust InSAR phase unwrap-
ping method that used an improved pix2pix [160] network
model, called pu-pix2pix. The proposed method integrated the
concept of quality map guidance [161] and showed super-
ior unwrapping accuracy and robustness to phase noise when
compared to other InSAR phase unwrapping algorithms, such
as QGPU [150, 152, 153], LS [154], MCF [151], U-Net [162,
163], and pix2pix. Quantitative evaluations revealed the low-
est RMSE for pu-pix2pix, substantially improving other meth-
ods. In addition, its computational efficiency was highlighted,
with faster processing times compared to traditional wrapping
methods.

Furthermore, Yang et al [159] introduced MCNet-PU, a
ML method for mask-cuts deployment [164], which is essen-
tial for phase unwrapping in InSAR. MCNet-PU improved
the phase unwrapping success ratio by about 4%–15%, offer-
ing an accurate approach for InSAR data processing. The
method’s robustness, accuracy, and scalability were quantit-
atively assessed using metrics such as PA, IoU, and RMSE
across varied noise conditions. Initial experiments demon-
strated that MCNet-PU outperformed other methods like the
quality guide, LS, and both older and contemporary NN mod-
els. Specifically, in high-noise scenarios, MCNet-PU main-
tained lower RMSE values and demonstrated superior unwrap-
ping accuracy, with minimal phase information loss even in
complex terrain conditions.

Subsequently, Chen et al [158] introduced a two-stage
InSAR phase unwrapping method using the U-GauNet and
L1-norm, where the first stage estimates the phase ambigu-
ity gradient with a loss function related to error distribu-
tion, and the second stage minimised the difference between
the estimated and true ambiguity gradient. U-GauNet was
assessed using simulated data derived from the SRTM DEM,
with coherence values ranging from 0.5 to 1. The method’s
stability and accuracy were demonstrated by its consistently
low RMSE, particularly when the coherence dropped to 0.5,
where it outperforms traditional 2D phase unwrapping meth-
ods including branch cuts (BCs) [165], Quality Map [166],

MCF [151], and LS [167], but it may face challenges when
the coherence of the simulated data is very low.

These ML-based methods have proven effective in hand-
ling complex and noisy data environments [156, 157], showing
improvements over traditional phase unwrapping techniques
[158, 159]. Future developments are expected to further
utilise the adaptability and learning capabilities of NNs,
potentially incorporating knowledge [156] from related fields
such as optical physics, signal processing, and computational
intelligence.

3.2.3. FPP in phase unwrapping. Recent advancements in
FPP have been enhanced by the integration of ML [168–172].
These methods aim to overcome challenges typically found in
traditional FPP, such as sensitivity to noise, error buildup in
phase unwrapping, and difficulties with complex surface geo-
metries. The ability of ML to learn from data improves the
accuracy and robustness of phase recovery, offering a possible
direction for refining FPP methods. By recognising complex
patterns and relationships within the data, these models enable
better phase unwrapping and surface reconstruction, even in
difficult conditions. Table 20 shows the pros and potential cons
of each method.

Luo et al [168] addressed the challenge of robust spa-
tial phase unwrapping in complex scenes, focusing on the
FPP system. It proposed a hybrid method that combines ML-
enabled invalid-point removal with traditional path-following.
Experiment result shows its ability to handle 514 simple phase
maps without any failures and maintaining a lower num-
ber of failures across 1137 phase maps with motion blur or
low reflectivity, and 890 phase maps with phase discontinu-
ities, demonstrating better robustness than traditional quality-
guided methods includingMODU-sort [173], FSPU [174] and
WFT-sort [96, 97], and better interpretability than end-to-end
ML approach HiPhase [175].

Subsequently, Zhu et al [169] presented a single-input
triple-output NN structure with a physical prior to improve the
accuracy of deep-learning-based unwrapped phase methods in
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Table 20. Section 3.2.3: summary of methodologies for effectiveness improvement in FPP in phase unwrapping.

Author Method Pros Potential cons
Potential effectiveness
improvement

Luo et al [168], 2023 ML enhanced FPP Improves phase
unwrapping accuracy,
handles noise better

Requires extensive
training data

Enhanced robustness,
interoperability, and
generality

Zhu et al [169], 2023 Single-input
triple-output NN with
physicalprior

Enhanced resolution,
better surface detail
capture

Complexity may
increase with additional
frequencies

Structure could be
extended to other NN
models in phase
unwrapping

Wang et al [170], 2023 VRNet for phase
unwrapping

Accurate and
single-frequency phase
unwrapping without
extra cameras

May be less accurate
compared to multi-shot
methods

Improve accuracy
through advanced
network architectures

Huang et al [171], 2023 Pixel-wise ML for FPP High precision in phase
unwrapping at a pixel
level

High computational load Exhibit superb
resistance to severe
noise

Guo et al [172], 2023 Unifying the ML
framework for TPU

Generalises across
different TPU methods,
improved noise
resistance

Complex training
process

Potential for robust and
accurate phase
unwrapping

FPP. It has been shown that the proposed U-Net based net-
work enhances the accuracy of unwrapped phase prediction.
With a dataset comprising 640× 480 pixel fringe patterns, the
proposed model was trained, validated, and tested in an 8:1:1
ratio, leveraging stochastic gradient descent with a momentum
of 0.9 and a polynomial decay learning rate. Performance eval-
uations highlighted themethod’s enhanced capability to accur-
ately predict unwrapped phases.

Meanwhile, Wang et al [170] introduced a network with
the encoder-decoder structure for phase unwrapping (VRNet),
a CNN for single-frequency and accurate phase unwrapping in
FPP, eliminating the need for additional cameras. In compar-
ative tests, VRNet consistently achieved the lowest MSE and
the highest SSIM and absolute unwrapping scores, surpassing
0.99, indicating an almost perfect match with reference data.
VRNet is capable of achieving high-accuracy phase unwrap-
ping even in complex real scenes. It can process data with res-
olutions greater than the training data, making it an advance-
ment in FPP applications.

Additionally, Huang et al [171] introduced a ML-based
approach for pixel-wise phase unwrapping in FPP, which
was crucial for high-precision optical metrology. The method
maintained high accuracy and low MSE even when noise
levels were increased significantly, showcasing its robustness
compared to traditional methods like the three-wavelength
heterodyne method, which displayed substantial error rates
under similar conditions. Further, the DL-PWPU was tested
against large depth discontinuities, a common challenge in
phase unwrapping, where it consistently outperformed other
methods by accurately predicting fringe orders even at depth
discontinuities.

Finally, Guo et al [172] addressed TPU for FPP, which
is important for achieving unambiguous phase recovery in
optical metrology. The proposed approach usedML to create a
unified framework for TPU across different TPU algorithms,

enhancing phase unwrapping reliability while mitigating the
impact of noise. The experimental setup comprised a high-
contrast camera and a DLP projector, testing fringe patterns
at frequencies from 1 to 64, which demonstrated FOA-Net’s
adaptability across a spectrum of measurement scenarios. The
network was implemented on a powerful computing platform,
optimising its structure over 200 training cycles, leading to a
prediction rate that outpaced traditional methods by 20%.

The integration of ML into FPP marks an improvement in
optical metrology, enhancing the method’s ability to provide
precise and reliable measurements [170, 172]. A comparative
analysis of recent studies shows a trend towardmore sophistic-
ated, data-driven approaches that overcome the limitations of
traditional algorithms. This provides a framework for address-
ing various metrological challenges [168]. As ML algorithms
continue to develop, their use in FPP is expected to further
enhance the accuracy and usefulness of optical metrology.

3.2.4. Noisy environments in phase unwrapping. The use
of ML for phase unwrapping in noisy environments, marks an
improvement in measurement accuracy [176] and robustness
[177, 178]. Recent studies have used various ML frameworks
to address the challenges caused by noise and other distort-
ing factors, showing advancements over traditional methods.
These approaches utilise the abilities of NN to learn com-
plex patterns and relationships, enablingmore precise and reli-
able phase unwrapping. The incorporation of ML not only
enhances the effectiveness of optical metrology under challen-
ging conditions but also creates new opportunities for research
and application in this field. Table 21 shows the pros and
potential cons of each method.

Chen et al [179] introduced the nested U2-Net for solv-
ing a common problem in optical metrology called 2D
phase unwrapping. Their study tested how well different
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Table 21. Section 3.2.4: summary of methodologies for effectiveness improvement in noisy environments in phase unwrapping.

Author Method Pros Potential cons
Potential effectiveness
improvement

Chen et al [179], 2023 U2-Net with U-shaped
structure

Deep network without
increasing too many
parameters, performs
well in noise
environments

May require big data for
training to achieve
generalisation

Potential for a wide
applicability with
respect to PU

Gontarz et al [177],
2023

CNN based pipeline Pipeline makes possible
the phase unwrapping of
highly irregular, noisy,
and complex
experimental phases
captured in HT

May requires extensive
training data and
computational resources

Incorporation of ML to
enhance robustness and
adaptability in complex
conditions

Li and Xie [178], 2023 SCAPU method Demonstrates
robustness, effective in
PU for interferograms

May need compare more
methods

SCAPU method can
effectively suppress
phase noise from noisy
interferograms

Zhu et al [176], 2022 Hformer model Combines advantages of
CNN and transformer,
enhances global
dependency for fringe
order prediction

May requires extensive
training data and
computational resources

Extended to two frames
wrapped phase in
stereo-based PU

advanced network models perform in noisy conditions The
real-sample tests involved 421 dynamic candle flame images
with complex geometries, where U2-Net and its variant U2-
Netp showed significant resilience, maintaining high structural
integrity and unwrapping accuracy. Quantitative evaluations
usingMSE, PSNR, and SSIMmetrics further underscored U2-
Net’s enhanced performance, particularly in maintaining high
SSIM values close to 1. The results showed that the U2-Net
was effective at dealing with noise, maintaining structure, and
working well in various situations. This performance was bet-
ter compared to other models like U-Net [82, 180], DLPU-Net
[144], VUR-Net [145], and PU-GAN [181], especially when
facing real-world scattered noise.

On a related note, Gontarz et al [177] focused on improv-
ing phase unwrapping in HT, a technique that faces issues
with high noise and irregular phase images. They proposed
a method using a CNN to make the process more robust, reli-
able, and automated. This method involves steps for reducing
noise and unwrapping the phase, and it has shown effective
results in managing the complex and noisy images typically
produced by HT. The method effectively handles the complex-
ities of real-world data, indicated by consistent phase details
post-denoising and accurate unwrapping even in the absence
of noise-free GT images. Although performance metrics such
as MSE, RMSE, and SSIM show degradation post-processing
due to noise removal steps, the overall integrity and visibility
of structures within measured specimens are maintained.

Additionally, Li and Xie [178] developed introduced the
SCAPU for phase unwrapping, using a ML network. This
method works well on interferograms, even with different
levels of noise. The results from their experiments are impress-
ive. Because SCAPU performs better than other known meth-
ods QGPU [150] and ILS [154] method, especially in terms of

robustness. This marks an advancement in phase unwrapping
technology. Lastly, Zhu et al [176] explored the complex topic
of phase unwrapping in 3D fringe projection using ML. They
pointed out the limitations of traditional methods, like CNNs,
especially their difficulty in correctly identifying the order of
fringes in wrapped phase patterns, which depend on continu-
ity and overall characteristics. They introduced a new model
called Hformer, which combines CNNs with transformer tech-
nology. This model has proven to be more effective in identi-
fying fringe order than older CNN models such as U-Net and
PhaseNet 2.0 [149]. This method offers a way to use ML for
phase unwrapping in 3D fringe projection.

The integration of ML into optical metrology, particu-
larly for phase unwrapping in noisy environments, has shown
advancements. These new methods improve upon traditional
techniques by offering better accuracy [176], noise resili-
ence, and adaptability. Future research should continue to
develop these approaches, focusing on refining the mod-
els, enhancing their real-world applicability, and deepen-
ing our understanding of the mechanisms that drive these
improvements.

3.2.5. Discussion about section 3.2: ML for effectiveness
improvement in phase unwrapping. In conclusion, the
assessment of various ML applications in phase unwrapping
highlights a trend towards increased accuracy [139, 157, 159,
169–172, 176], robustness [139–141, 168, 172, 177, 178], and
adaptability. ML effectively addresses challenges like noise
and data complexity [176–179]. Future research should focus
on fully harnessing the potential of ML by exploring architec-
tures and real-world applications to further enhance the effect-
iveness of optical metrology.
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Table 22. Section 3.3: summary of methodologies for effectiveness improvement in phase-to-height.

Author Method Pros Potential cons
Potential effectiveness
improvement

Feng et al [182], 2021 Review of calibration
methods in FPP

Comprehensive insights,
covers a range of models

Does not focus on a
single innovative
solution

Comparative overview
on the accuracy and the
implementation details
of calibration

Li and Li [183], 2023 TPDNet: texture-guided
phase to depth networks

Repairs shadow-induced
errors

Performance affected by
ambient light

Enhance model
robustness to lighting
conditions

3.3. ML for effectiveness improvement in phase-to-height
conversion

This subsection discusses two papers to the phase-to-height
conversion: a ML model for error correction in review of cal-
ibration techniques [182] and shadow-affected measurements
[183]. It explores a spectrum of methodologies, including
comprehensive calibration techniques in FPP, the integration
of a phase-to-height conversion ML model for mitigating
shadow-induced errors, and the introduction of a practical
depth recovery approach founded on pixel cross-ratio invari-
ance, all aimed at augmenting the precision of phase-to-height
conversion. Table 22 shows the pros and potential cons of each
method.

Feng et al [182] provided a review that includes compar-
ative experiments and discussions. This review helps in eval-
uating different calibration methods. Crucially, the insights
gained from this analysis are useful for choosing the right
methods for phase-to-height conversion. Subsequently, Li and
Li [183] introduced a TPDNet. This model is designed to cor-
rect errors caused by shadows in FPP used for 3D shape recon-
struction. Notably, the model uses texture images to help cor-
rect these shadow-related errors [184], showing encouraging
results in improving the accuracy of FPP, especially in diffi-
cult situations where shadows are present. Utilising the tex-
ture image and unwrapped phase map, the pre-trained TPDNet
successfully predicted the depth map and 3D geometry. For
areas not covered by shadows, the model achieved an RMSE
of 1.5031mm, indicating high accuracy in depth prediction.
The model effectively filled holes in the 3D geometry, though
minor discontinuities were noted in some shadowed regions,
highlighting the model’s capability to handle shadow-induced
discrepancies effectively.

Recent advancements in optical metrology have used ML
and new computational methods to overcome challenges in
phase-to-height conversion. This subsection examines two
contributions to the field: error correction in shadow-affected
measurements [183] and a review of calibration techniques
[182].

4. Conclusion

This literature review highlights the impact of ML on optical
metrology, revealing improvements in both efficiency and
effectiveness across various measurement processes. ML has
been applied to enhance data generation, sampling strategies,
and to optimise processes like phase demodulation, phase
unwrapping, and phase-to-height conversion, increasing the
speed and accuracy of optical metrology. The review also
details progress in end-to-end 3D reconstruction, pointing to
future opportunities for further advancements and innovations
in optical metrology. Parallel computing has boosted these
developments by speeding up computations, enabling real-
time processing and analysis that were not possible before.

Some studies utilise CNNs for better phase demodulation
and unwrapping, while others use ML frameworks for com-
plete 3D reconstruction. The level of ML integration varies
across these studies, from enhancing traditional techniques for
noise reduction and data interpretation to improving measure-
ment processes. These successes point to a future where com-
bining domain-specific knowledge with ML advancements
could lead to unparalleled accuracy and reliability in meas-
urements. Overall, the insights from these studies suggest that
optical metrology is evolving towards a more data-driven,
automated future, increasingly reliant on interdisciplinary col-
laborations that merge ML and optical metrology to develop
solutions that improve traditional methods.

4.1. Efficiency improvement through ML

Improving efficiency by overcoming challenges related to
measurement speed, data bottlenecks, and time-intensive tech-
niques. ML has streamlined data generation, refined sampling
strategies, and increased overall computational speed [11–15].
The use of parallel computing, particularly through GPUs and
FPGAs, enabling real-time processing for optical metrology.
These improvements not only save time and resources but also
broaden the potential applications of optical metrology. The
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move towards end-to-endML solutions represents a shift from
using ML in isolated tasks to a more integrated approach.

4.2. Effectiveness improvement through ML

ML has impacted the effectiveness of optical metrology,
especially in tasks like phase demodulation, unwrapping,
and phase-to-height conversion. Sophisticated ML algorithms
have increased the accuracy and robustness of these processes
[129, 140, 183], addressing issues related to noise, data com-
plexity, and environmental variations. This has led to more
reliable measurements, supporting applications in fields such
as precision engineering and manufacturing.

4.3. Challenges

ML models, known as ‘black boxes’, might not always fol-
low the physical laws that traditional models do. This could
lead to unrealistic results, particularly when faced with data
or conditions not covered by the training data. Moreover, the
effectiveness of ML models is heavily dependent on the qual-
ity and variety of their training data. In real-world situations,
the rarity and complexity of obtaining suitable data in optical
metrology can hinder the models’ robustness and reliability.

The opaque nature of NNs poses risks to the traceability
and repeatability of measurements in metrology. For instance,
when a noisy fringe pattern is processed by an ML model
to produce a clear image, it is often unclear how the model
reached that conclusion. Understanding these processes is cru-
cial for ensuring that measurements can be repeated and errors
can be traced. The use of ML in optical metrology is challen-
ging without clear explanations for its decisions or the ability
to adjust the model based on its performance.

4.4. Future direction

Transition from physics-based model to data-driven model
approaches: The shift towards a data-driven paradigm, facilit-
ated byML, improves how we handle the intricacies of optical
metrology. Unlike traditional models that rely on predefined
physical models and extensive prior knowledge, ML utilises a
learning-based representation where the algorithm is directly
learned from experimental data. ML does not depend on prior
understanding of the physical model. The data-driven model

is robust against varying experimental conditions provided the
training dataset is representative and diverse. This ensures the
model captures the true characteristics of the system more
accurately and extensively, offering better outcomes over con-
ventional methods.

Adopting end-to-end learning: By surveying ML’s end-to-
end learning capabilities, we could integrate the entire meas-
urement process into a single cohesive model. This contrasts
with the traditional divide-and-conquer approaches and allows
for simultaneous processing of interrelated tasks. This integ-
ration not only simplifies the computational framework but
also enhances performance by leveraging shared features and
learning direct mappings from raw image data to desired
sample parameters. This holistic approach mitigates the risk
of error propagation inherent in multi-step processes.

There is no unified measurement standard for the inter-
pretability of ML model, making it difficult to quantitatively
analysis compare the ML model. Therefore, designing a com-
prehensive interpretable evaluation system is one of the solu-
tions for reliability of ML applications in real-world.

In conclusion, as optical metrology progresses towards
a more automated and data-driven future, the interplay
between ML innovations and domain-specific knowledge will
be pivotal in overcoming current limitations and unlocking
improved measurement capabilities. The ongoing develop-
ment of interpretable, robust ML models that can adapt to
diverse and challenging environments will play an important
role in this evolution.
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Appendix. Summary of ML algorithms

This is a supplementary section where we list the major ML
algorithms, explaining their strengths, weaknesses, and applic-
ations in optical metrology techniques in table 23.
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Table 23. Section appendix: ML method in optical metrology.

ML Method Pros Potential cons
Application or suitability for
optical metrology

µDLP [71], 2019 Capable of high-quality 3D
reconstructions from a small
number of images.

Dependent on the quality and
variation of input fringe patterns.

Suitable for capturing dynamic and
transient scenes in optical
metrology, where high frame rates
and detailed structure capture are
necessary.

PI-FPA [72], 2023 Low computational cost compared
to traditional end-to-end networks.
Integrates physics-priors.

Integration complexity might
increase with the need for
fine-tuning in different applications.

Ideal for high-speed 3D imaging
and modelling of complex
structures, suitable for
environments where traditional data
collection is challenging.

DYnet++ [73], 2023 Efficient in retrieving phase
information from low-reflectivity
surfaces.

Dependency on initial training from
deformable mirrors may limit
generalisation without fine-tuning.

Ideal for industrial applications
requiring rapid and precise
measurement of complex or
low-reflectivity surfaces, such as in
real-time manufacturing processes.

DL-TPU [74], 2019 Suitable for high-speed 3D surface
imaging and dynamic
measurements.

Dependency on extensive training
data for high performance.

Applicable to a range of optical
metrology techniques beyond FPP,
such as stereo vision and digital
image correlation.

RCNN [78], 2024 Reduces the number of required
fringe patterns, increasing
measurement speed and reducing
complexity.

Requires additional imaging tools
for complex surface materials to
enhance performance.

Ideal for SL 3D imaging in
industrial and scientific applications
where quick and reliable surface
measurements are crucial.

PCTNet [81], 2023 Capable of handling complex
scenes by preserving both global
structure and local details.

Complexity of the network
architecture might require
significant computational resources.

Suited for SL depth estimation
tasks, effective in fringe and
speckle projection 3D
measurements.

DCAHINet [85], 2023 Superior performance in feature
extraction due to deformable
convolutions.

May require extensive training data
to optimise performance across
different devices.

Well-suited for dynamic 3D
reconstruction tasks in single-shot
FPP, effective in noisy and complex
measurement environments.

LiteF2DNet [86], 2023 Efficient in terms of memory and
processing time, suitable for
real-time applications.

Potential limitations in handling
extremely complex or highly
reflective surfaces due to synthetic
training.

Primarily designed for dynamic and
real-time 3D reconstruction tasks in
optical metrology.

CF3DNet [87], 2023 Unique end-to-end mapping of
phase deformations enables
reconstruction of discontinuous
object profiles.

Might struggle with real-world
challenges like reflectivity
differences and shadow effects
without further adaptation.

Suitable for cost-effective fringe
projection systems in dynamic
scenarios where discontinuities and
complex shapes are involved.

MPCAM [90], 2023 Utilises synthetic training to
enhance model robustness and
generalisation without extensive
real data collection.

Limited by the resolution of input
images, potentially affecting
applications requiring high-detail
analysis.

Optimal for environments where
traditional optical systems struggle
due to DOF and SNR trade-offs,
offering a cost-effective solution for
dynamic and complex scene
reconstruction.

CUE-NET [88], 2023 Enhances local and global feature
extraction through deformable
convolutions and attention
mechanisms.

Potential limitations in adapting to
highly variable hardware setups
without specific customisation.

Ideal for dynamic 3D
reconstruction in complex scenes,
particularly where noise and
discontinuities challenge traditional
FPP methods.

MIMONet [102], 2021 Simplifies the 3D reconstruction
process by eliminating camera
calibration and triangulation.

May less effective for conventional
high-frequency fringe projection in
industrial applications.

Suitable for dynamic 3D shape
reconstruction in complex scenes,
benefiting machine vision and
medical imaging.

(Continued.)
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Table 23. (Continued.)

SSMNet [89], 2024 Uses instance normalisation for
style migration and robust
cross-domain capability.

May limited by computational
resources and architecture
constraints, affecting broader
applicability.

Suitable for high-precision
binocular 3D reconstruction,
particularly in dynamic and
small-scale industrial environments.

RU-Net [127], 2022 Better gradient flow for NNs.
Scalable depth without
performance loss.

Potential for overfitting in scenarios
with limited data.

High-resolution image analysis. 3D
reconstruction from 2D images.

I-Net [128], 2023 Multi-scale processing and
enhanced convergence from diverse
convolutional kernels.

Potential high computational
demand.

Ideal for interferogram analysis and
Zernike coefficient estimation in
optical metrology.

Swin-ResUnet
[129],2024

Enhanced accuracy in phase
unwrapping through refinement
processes.

Requires sophisticated processing
for phase refinement, increasing
computational load.

Primarily used for image
segmentation and phase
unwrapping in optical metrology.

CDLP [135], 2022 Utilises high-quality datasets for
training, including spatial
frequency multiplexed fringe
encoding.

Dependency on high-quality data
for effective training.

Suitable for dynamic and transient
3D surface profiling in optical
metrology.

SAPR-DL [136], 2023 Simplifies traditional phase
retrieval steps, incorporating them
into a deep learning framework.

May require high computational
resources due to the complexity of
processing multiple frequencies in a
single capture.

Ideal for applications that require
rapid and precise 3D shape
measurements of discontinuous and
isolated objects.

FrANet [134], 2023 Reduces the need for extensive
ground truth data through a
two-stage training strategy.

Complex network structure may
demand higher computational
resources and more sophisticated
tuning.

Suitable for optical metrology
settings that require rapid and
precise 3D imaging capabilities.

UN-PUNet [142], 2023 Skip connections enhance the flow
of information, improving accuracy
and robustness.

Potentially high computational
demand due to complex structure.

Suitable for applications involving
electronic speckle pattern
interferometry.

MW-Net [141], 2023 Avoids noise amplification common
in multi-wavelength systems.

Dependency on highly accurate
training data to achieve optimal
performance.

Suitable for optical metrology, that
phase imaging where high accuracy
and extended measurement ranges
are required.

DLCDIFPU [139], 2023 Enhances phase unwrapping
accuracy with ML-based region
segmentation.

May struggle with extremely low
SNR wrapped phase images,
limiting its application in poor
quality data environments.

Suitable for environments where
advanced phase unwrapping is
critical.

Pu-pix2pix [157], 2023 Utilises ASPP module to replace
traditional convolution
down-sampling, improving feature
extraction.

The unchanged discriminator may
limit adaptability to varied noise
levels and image quality.

Suitable for applications requiring
accurate phase reconstruction from
complex interferograms.

MCNet-PU [159], 2023 Simplified network architecture
speeds up training and operation,
suitable for binary classification
tasks in phase unwrapping.

Performance may dependent on the
quality of training data and initial
filter settings.

Suited for InSAR applications
requiring binary classification of
phase unwrapping elements.

U-GauNet [158], 2023 Enhances category pixel
localisation through the global
attention up sampling module.

May struggle with very
high-resolution detail recovery due
to the focus on category
classification over spatial
localisation.

Ideal for optical metrology tasks
requiring high accuracy in phase
ambiguity resolution.

VRNet [170], 2023 Capable of processing data at
higher resolutions than those used
in training, demonstrating
flexibility and scalability.

Potential overfitting to training data
types may occur if not adequately
managed.

Suitable for applications
demanding accurate phase analysis
and reconstruction without the
complexity of additional hardware.

DL-PWPU [171], 2023 Enhances accuracy by aligning
fringe order boundaries with phase
discontinuities, crucial for reducing
unwrapping errors.

Potential challenges in handling
noisy or incomplete phase data
without sophisticated
pre-processing.

Well-suited for environments where
phase continuity and accurate
boundary detection are critical.

(Continued.)
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Table 23. (Continued.)

ML Method Pros Potential cons
Application or suitability for
optical metrology

FOA-Net [172], 2023 Uses residual connections to
enhance detail feature extraction
and integrate encoder-decoder
features effectively.

May require substantial
computational resources for
training due to complex
architecture.

Highly suitable for applications that
require accurate fringe order
estimation and phase unwrapping.

U2-Net [179], 2023 Effective in noise management and
maintaining structural integrity in
phase unwrapping.

Potentially high computational
complexity due to multiple stages
and depth supervision.

Suitable for 2D phase unwrapping
in optical metrology, where
maintaining detail and handling
noise are crucial.

SCAPU [178], 2023 Robust to various interferogram
complexities and noise levels.

Potentially high computational
requirements due to deep and
complex network architecture.

Suitable for complex and noisy
interferogram data in optical
metrology.

Hformer model [176],
2022

Improved feature pyramid network
merges multiscale features,
enhancing the accuracy of fringe
order predictions.

The hybrid nature requires careful
tuning of both CNN and
transformer components to
optimise performance.

Suitable for applications where
accurate fringe order determination
is crucial.

TPDNet [183], 2023 Enhances depth map predictions by
integrating texture images and
phase maps.

May depend on the quality of
texture information and phase
maps.

Suitable for optical metrology
where shadow-induced errors and
depth estimation are critical.

ORCID iDs

Ruidong Xue https://orcid.org/0009-0004-4468-3357
Helia Hooshmand https://orcid.org/0000-0003-4557-6516
Mohammed Isa https://orcid.org/0000-0003-4415-9761
Samanta Piano https://orcid.org/0000-0003-4862-9652
Richard Leach https://orcid.org/0000-0001-5777-067X

References

[1] Leach R, Chetwynd D, Blunt L, Haycocks J, Harris P,
Jackson K, Oldfield S and Reilly S 2006 Recent advances
in traceable nanoscale dimension and force metrology in
the UK Meas. Sci. Technol. 17 467

[2] Leach R, Bourell D, Carmignato S, Donmez A, Senin N and
Dewulf W 2019 Geometrical metrology for metal additive
manufacturing CIRP Ann. 68 677–700

[3] Leach R, Brown L, Jiang X, Blunt R, Conroy M and
Mauger D 2008 Guide to the measurement of smooth
surface topography using coherence scanning
interferometry

[4] Leach R K et al 2011 The European nanometrology
landscape Nanotechnology 22 062001

[5] Leach R 2020 Advances in Optical Surface Texture
Metrology (IOP Publishing)

[6] Leach R K, Giusca C, Haitjema H, Evans C and Jiang X
2015 Calibration and verification of areal surface
texture measuring instruments CIRP Ann.
64 797–813

[7] Eastwood J, Leach R K and Piano S 2022 Autonomous image
background removal for accurate and efficient close-range
photogrammetry Meas. Sci. Technol. 34 035404

[8] Liu M, Senin N and Leach R 2022 Performance comparison
of machine learning models for the characterisation of
additive surfaces using light scattering Int. Conf. on
Metrology and Properties of Surfaces

[9] Liu M, Senin N, Su R and Leach R 2022 Measurement of
laser powder bed fusion surfaces with light scattering and
unsupervised machine learning Meas. Sci. Technol.
33 074006

[10] Soldatos J 2024 Artificial Intelligence in Manufacturing:
Enabling Intelligent, Flexible and Cost-Effective
Production Through AI (Springer)

[11] Catalucci S, Thompson A, Piano S, Branson I I I D T and
Leach R 2022 Optical metrology for digital
manufacturing: a review Int. J. Adv. Manuf. Technol.
120 4271–90

[12] Catalucci S, Thompson A, Eastwood J, Zhang Z M,
Branson I I I D T, Leach R and Piano S 2022 Smart optical
coordinate and surface metrology Meas. Sci. Technol.
34 012001

[13] Chao Z, Jiaming Q, Shijie F, Yin W, Li Y, Pengfei F, Han J,
Kemao Q and Chen Q 2022 Deep learning in optical
metrology: a review Light Sci. Appl. 11 1–54

[14] Hamrani A, Agarwal A, Allouhi A and McDaniel D 2023
Applying machine learning to wire arc additive
manufacturing: a systematic data-driven literature review
J. Intell. Manuf. 35 1–33

[15] Zhang Z M, Catalucci S, Thompson A, Leach R and Piano S
2023 Applications of data fusion in optical coordinate
metrology: a review Int. J. Adv. Manuf. Technol.
124 1341–56

[16] Li Y et al 2023 NTIRE 2023 challenge on efficient
super-resolution: methods and results Proc. IEEE/CVF
Conf. on Computer Vision and Pattern Recognition pp
1921–59

[17] Qian J, Feng S, Xu M, Tao T, Shang Y, Chen Q and Zuo C
2021 High-resolution real-time 360◦ 3D surface defect
inspection with fringe projection profilometry Opt. Lasers
Eng. 137 106382

[18] Feng S, Zuo C, Zhang L, Yin W and Chen Q 2021
Generalized framework for non-sinusoidal fringe
analysis using deep learning Photon. Res.
9 1084–98

[19] Li Y, Ge Z, Yu G, Yang J, Wang Z, Shi Y, Sun J and Li Z
2023 Bevdepth: acquisition of reliable depth for
multi-view 3D object detection Proc. AAAI Conf. on
Artificial Intelligence vol 37 pp 1477–85

[20] Lee C, Song G, Kim H, Ye J C and Jang M 2023 Deep
learning based on parameterized physical forward model
for adaptive holographic imaging with unpaired data Nat.
Mach. Intell. 5 35–45

28

https://orcid.org/0009-0004-4468-3357
https://orcid.org/0009-0004-4468-3357
https://orcid.org/0000-0003-4557-6516
https://orcid.org/0000-0003-4557-6516
https://orcid.org/0000-0003-4415-9761
https://orcid.org/0000-0003-4415-9761
https://orcid.org/0000-0003-4862-9652
https://orcid.org/0000-0003-4862-9652
https://orcid.org/0000-0001-5777-067X
https://orcid.org/0000-0001-5777-067X
https://doi.org/10.1088/0957-0233/17/3/S02
https://doi.org/10.1088/0957-0233/17/3/S02
https://doi.org/10.1016/j.cirp.2019.05.004
https://doi.org/10.1016/j.cirp.2019.05.004
https://doi.org/10.1088/0957-4484/22/6/062001
https://doi.org/10.1088/0957-4484/22/6/062001
https://doi.org/10.1016/j.cirp.2015.05.010
https://doi.org/10.1016/j.cirp.2015.05.010
https://doi.org/10.1088/1361-6501/aca497
https://doi.org/10.1088/1361-6501/aca497
https://doi.org/10.1088/1361-6501/ac6569
https://doi.org/10.1088/1361-6501/ac6569
https://doi.org/10.1007/s00170-022-09084-5
https://doi.org/10.1007/s00170-022-09084-5
https://doi.org/10.1088/1361-6501/ac9544
https://doi.org/10.1088/1361-6501/ac9544
https://doi.org/10.1038/s41377-022-00714-x
https://doi.org/10.1038/s41377-022-00714-x
https://doi.org/10.1007/s10845-023-02171-8
https://doi.org/10.1007/s10845-023-02171-8
https://doi.org/10.1007/s00170-022-10576-7
https://doi.org/10.1007/s00170-022-10576-7
https://doi.org/10.1016/j.optlaseng.2020.106382
https://doi.org/10.1016/j.optlaseng.2020.106382
https://doi.org/10.1364/PRJ.420944
https://doi.org/10.1364/PRJ.420944
https://doi.org/10.1038/s42256-022-00584-3
https://doi.org/10.1038/s42256-022-00584-3


Meas. Sci. Technol. 36 (2025) 012002 Topical Review

[21] Everton S K, Hirsch M, Stravroulakis P, Leach R K and
Clare A T 2016 Review of in-situ process monitoring and
in-situ metrology for metal additive manufacturingMater.
Des. 95 431–45

[22] De Groot P 2015 Principles of interference microscopy for
the measurement of surface topography Adv. Opt.
Photonics 7 1–65

[23] Su R 2020 Coherence scanning interferometry Advances in
Optical Surface Texture Metrology (IOP Publishing) pp
2–1 to 2–27

[24] Su R and Leach R K 2021 Virtual coherence scanning
interferometer for surface measurement Proc. SPIE
11782 117820L

[25] Su R and Leach R 2021 Physics-based virtual coherence
scanning interferometer for surface measurement Light
Adv. Manuf. 2 120–35

[26] Su R, Coupland J, Sheppard C and Leach R 2021 Scattering
and three-dimensional imaging in surface topography
measuring interference microscopy J. Opt. Soc. Am. A
38 A27–A42

[27] Hooshmand H, Pahl T, de Groot P J, Lehmann P, Pappas A,
Su R, Leach R and Piano S 2023 Comparison of
approximate methods for modelling coherence scanning
interferometry Proc. SPIE 12619 224–37

[28] Zangl K, Danzl R, Muraus U, Helmli F and Prantl M 2019
Vertical focus probing for high-precision optical
dimensional metrology Proc. Int. Symp. Measurement
Technology Intelligent Instrumentation

[29] Leach R 2020 Advances in Optical Form and Coordinate
Metrology (IOP Publishing) ch 6

[30] Isa M A, Leach R, Branson D and Piano S 2024 Vision-
based detection and coordinate metrology of a spatially
encoded multi-sphere artefact Opt. Lasers Eng.
172 107885

[31] Isa M A, Khanesar M A, Leach R, Branson D and Piano S
2023 High-accuracy robotic metrology for precise
industrial manipulation tasks Proc. SPIE 12623 83–91

[32] Xu J and Zhang S 2020 Status, challenges and future
perspectives of fringe projection profilometry Opt. Lasers
Eng. 135 106193

[33] Zuo C, Feng S, Huang L, Tao T, Yin W and Chen Q 2018
Phase shifting algorithms for fringe projection
profilometry: a review Opt. Lasers Eng. 109 23–59

[34] Salvi J, Fernandez S, Pribanic T and Llado X 2010 A state of
the art in structured light patterns for surface profilometry
Pattern Recognit. 43 2666–80

[35] Luhmann T, Robson S, Kyle S and Boehm J 2013
Close-Range Photogrammetry and 3D Imaging (De
Gruyter Textbook) (De Gruyter)

[36] Linder W 2013 Digital Photogrammetry: Theory and
Applications (Springer)

[37] Chen Z and Segev M 2021 Highlighting photonics: looking
into the next decade ELight 1 2

[38] Leach R 2011 Optical Measurement of Surface Topography
vol 8 (Springer)

[39] Leach R 2013 Characterisation of Areal Surface Texture
(Springer)

[40] Leach R 2014 Fundamental Principles of Engineering
Nanometrology (Elsevier)

[41] Hooshmand H, Liu M, Leach R and Piano S 2022
Quantitative investigation of the validity conditions for the
Beckmann–Kirchhoff scattering model Opt. Eng.,
Bellingham 61 124113

[42] Dong J, Hooshmand H, Liu M and Piano S 2023 Dynamic
surface displacement measurement using carrier optical
vortex interferometer: a numerical study Opt. Lasers Eng.
171 107824

[43] Hooshmand H, Liu M, Pappas A, Thompson A, Leach R and
Piano S 2023 Comparison of coherence scanning

interferometry, focus variation and confocal microscopy
for surface topography measurement Euspen’s 23rd Int.
Conf. & Exhibition

[44] Sirohi R S 2017 Introduction to Optical Metrology (CRC
Press)

[45] Triantaphyllou A, Giusca C L, Macaulay G D, Roerig F,
Hoebel M, Leach R K, Tomita B and Milne K A 2015
Surface texture measurement for additive manufacturing
Surf. Topography: Metrol. Prop. 3 024002

[46] Newton L, Senin N, Gomez C, Danzl R, Helmli F, Blunt L
and Leach R 2019 Areal topography measurement of
metal additive surfaces using focus variation microscopy
Addit. Manuf. 25 365–89

[47] Olson M, Wyner A and Berk R 2018 Modern neural
networks generalize on small data sets Advances in Neural
Information Processing Systems vol 31

[48] Qi G-J and Luo J 2020 Small data challenges in big data era:
a survey of recent progress on unsupervised and
semi-supervised methods IEEE Trans. Pattern Anal.
Mach. Intell. 44 2168–87

[49] Bornschein J, Visin F and Osindero S 2020 Small data, big
decisions: model selection in the small-data regime Int.
Conf. on Machine Learning (PMLR) pp 1035–44

[50] Wang F, Bian Y, Wang H, Lyu M, Pedrini G, Osten W,
Barbastathis G and Situ G 2020 Phase imaging with an
untrained neural network Light Sci. Appl. 9 77

[51] Kokol P, Kokol M and Zagoranski S 2022 Machine learning
on small size samples: a synthetic knowledge synthesis
Sci. Prog. 105 00368504211029777

[52] Han S H, Niaz A and Choi K N 2023 A U-Net based
self-supervised image generation model applying PCA
using small datasets Proc. 2023 2nd Asia Conf. on
Algorithms, Computing and Machine Learning pp 450–4

[53] Radford A, Metz L and Chintala S 2015 Unsupervised
representation learning with deep convolutional generative
adversarial networks CoRR abs/1511.06434 (available at:
https://api.semanticscholar.org/CorpusID:11758569)

[54] Bozinovski S 2020 Reminder of the first paper on transfer
learning in neural networks, 1976 Informatica
44 3

[55] West J, Ventura D and Warnick S 2007 Spring Research
Presentation: A Theoretical Foundation for Inductive
Transfer vol 1 (Brigham Young University, College of
Physical and Mathematical Sciences)

[56] Ng H W, Nguyen V D, Vonikakis V and Winkler S 2015
Deep learning for emotion recognition on small datasets
using transfer learning Proc. 2015 ACM on Int. Conf. on
Multimodal Interaction pp 443–9

[57] Cao P, Zhang S and Tang J 2018 Preprocessing-free gear
fault diagnosis using small datasets with deep
convolutional neural network-based transfer learning
IEEE Access 6 26241–53

[58] Brodzicki A, Piekarski M, Kucharski D,
Jaworek-Korjakowska J and Gorgon M 2020 Transfer
learning methods as a new approach in computer vision
tasks with small datasets Found. Comput. Decis. Sci.
45 179–93

[59] Fonseca J and Bacao F 2023 Tabular and latent space
synthetic data generation: a literature review J. Big Data
10 115

[60] Eastwood J, Newton L, Leach R and Piano S 2022
Generation and categorisation of surface texture data using
a modified progressively growing adversarial network
Precis. Eng. 74 1–11

[61] Little C, Elliot M and Allmendinger R 2023 Federated
learning for generating synthetic data: a scoping review
Int. J. Popul. Data Sci. 8 1

[62] Kim J, Ahn Y and Shim B 2022 Massive data generation for
deep learning-aided wireless systems using meta learning

29

https://doi.org/10.1016/j.matdes.2016.01.099
https://doi.org/10.1016/j.matdes.2016.01.099
https://doi.org/10.1364/AOP.7.000001
https://doi.org/10.1364/AOP.7.000001
https://doi.org/10.1088/978-0-7503-2528-8ch2
https://doi.org/10.1364/JOSAA.411929
https://doi.org/10.1364/JOSAA.411929
https://doi.org/10.1016/j.optlaseng.2023.107885
https://doi.org/10.1016/j.optlaseng.2023.107885
https://doi.org/10.1016/j.optlaseng.2020.106193
https://doi.org/10.1016/j.optlaseng.2020.106193
https://doi.org/10.1016/j.patcog.2010.03.004
https://doi.org/10.1016/j.patcog.2010.03.004
https://doi.org/10.1117/1.OE.61.12.124113
https://doi.org/10.1117/1.OE.61.12.124113
https://doi.org/10.1016/j.optlaseng.2023.107824
https://doi.org/10.1016/j.optlaseng.2023.107824
https://doi.org/10.1016/j.addma.2018.11.013
https://doi.org/10.1016/j.addma.2018.11.013
https://doi.org/10.1109/TPAMI.2020.3031898
https://doi.org/10.1109/TPAMI.2020.3031898
https://doi.org/10.1038/s41377-020-0302-3
https://doi.org/10.1038/s41377-020-0302-3
https://doi.org/10.1177/00368504211029777
https://doi.org/10.1177/00368504211029777
https://api.semanticscholar.org/CorpusID:11758569
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.1109/ACCESS.2018.2837621
https://doi.org/10.1109/ACCESS.2018.2837621
https://doi.org/10.2478/fcds-2020-0010
https://doi.org/10.2478/fcds-2020-0010
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1016/j.precisioneng.2021.10.020
https://doi.org/10.1016/j.precisioneng.2021.10.020
https://doi.org/10.23889/ijpds.v8i1.2158
https://doi.org/10.23889/ijpds.v8i1.2158


Meas. Sci. Technol. 36 (2025) 012002 Topical Review

and generative adversarial network IEEE Trans. Veh.
Technol. 72 1302–6

[63] Park N-W, Park M-G, Kwak G-H and Hong S 2023 Deep
learning-based virtual optical image generation and its
application to early crop mapping Appl. Sci.
13 1766

[64] Pokhrel S R and Choi J 2020 Federated learning with
blockchain for autonomous vehicles: analysis and design
challenges IEEE Trans. Commun. 68 4734–46

[65] Yang Y, Dong Z, Meng Y and Shao C 2021 Data-driven
intelligent 3D surface measurement in smart
manufacturing: review and outlook Machines 9 13

[66] Lu W, Pagani L, Zhou L, Liu X, Wang J, Leach R and Jiang X
( 2019 Uncertainty-guided intelligent sampling strategy
for high-efficiency surface measurement via free-knot
b-spline regression modelling Precis. Eng. 56 38–52

[67] Ren J, Ren M, Sun L, Zhu L and Jiang X 2021 Generative
model-driven sampling strategy for the high-efficiency
measurement of complex surfaces on coordinate
measuring machines IEEE Trans. Instrum. Meas. 70 1–11

[68] Bazan A, Turek P, Sułkowicz P, Ł. P and Zakrranjancki A
2023 Influence of the size of measurement area
determined by smooth-rough crossover scale and mean
profile element spacing on topography parameters of
samples produced with additive methods Machines 11 615

[69] Gao F, Zheng Y, Li Y and Li W 2023 A back propagation
neural network-based adaptive sampling strategy for
uncertainty surfaces Trans. Inst. Meas. Control
46 1012–23

[70] Eastwood J, Gayton G, Leach R K and Piano S 2023
Improving the localisation of features for the calibration of
cameras using efficientnets Opt. Express
31 7966–82

[71] Feng S, Zuo C, Yin W, Gu G and Chen Q 2019 Micro deep
learning profilometry for high-speed 3D surface imaging
Opt. Lasers Eng. 121 416–27

[72] Yin W, Che Y, Li X, Li M, Hu Y, Feng S, Lam E Y, Chen Q
and Zuo C 2023 Physics-informed deep learning for fringe
pattern analysis Opto-Electron. Adv. 7 230034–1

[73] Nguyen M T, Ghim Y S and Rhee H G 2023 DYnet++: a
deep learning based single-shot phase-measuring
deflectometry for the 3D measurement of complex
free-form surfaces IEEE Trans. Ind. Electron. 71 2112–21

[74] Yin W, Chen Q, Feng S, Tao T, Huang L, Trusiak M,
Asundi A and Zuo C 2019 Temporal phase unwrapping
using deep learning Sci. Rep. 9 20175

[75] Li H, Zhong H, Tian Z, Zhang P and Tang J 2023 A fast
two-dimensional phase unwrapping algorithm based on
convolutional neural network IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 16 7518–28

[76] Liu X, Yang L, Chu X and Zhou L 2023 A novel phase
unwrapping method for binocular structured light 3D
reconstruction based on deep learning Optik
279 170727

[77] Nguyen A-H, Ly K L, Lam V K and Wang Z 2023
Generalized fringe-to-phase framework for single-shot 3D
reconstruction integrating structured light with deep
learning Sensors 23 4209

[78] Yang T, Liu H, Tang Z and Gu F 2023 Robust structured light
3D imaging with two fringe patterns using recurrent
classification neural networkMeas. Sci. Technol.
35 015201

[79] Zhu Y, Yang D, Qiu J, Ke C, Su R and Shi Y 2023
Simulation-driven machine learning approach for
high-speed correction of slope-dependent error in
coherence scanning interferometry Opt. Express
31 36048–60

[80] Zhu X, Han Z, Song L, Wang H and Wu Z 2022 Wavelet
based deep learning for depth estimation from single

fringe pattern of fringe projection profilometry
Optoelectron. Lett. 18 699–704

[81] Zhu X, Han Z, Zhang Z, Song L, Wang H and Guo Q 2023
PCTNet: depth estimation from single structured light
image with a parallel CNN-transformer network Meas.
Sci. Technol. 34 085402

[82] Ronneberger O, Fischer P and Brox T 2015 U-Net:
convolutional networks for biomedical image
segmentation Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th Int.
Conf. (Munich, Germany, 5–9 October 2015) Proc., Part
III 18 (Springer) pp 234–41

[83] Nguyen H, Wang Y and Wang Z 2020 Single-shot 3D shape
reconstruction using structured light and deep
convolutional neural networks Sensors 20 3718

[84] Nguyen H, Ly K L, Tran T, Wang Y and Wang Z 2021 hNet:
single-shot 3D shape reconstruction using structured light
and h-shaped global guidance network Results Opt.
4 100104

[85] Song X and Wang L Dcahinet: a deformable
convolution-based hinet with attention connection for
single-shot fringe projection profilometry (http://dx.doi.
org/10.2139/ssrn.4506496)

[86] Ravi V and Gorthi R K 2023 LiteF2DNet: a lightweight
learning framework for 3D reconstruction using fringe
projection profilometry Appl. Opt. 62 3215–24

[87] Ravi V and Gorthi R K 2023 CF3DNet: a learning-based
approach for single-shot 3D reconstruction from circular
fringes Opt. Lasers Eng. 167 107597

[88] Wang S, Jiang X, Liu X, Dong Z, Pei R and Wang H 2023
End-to-end reconstruction of multi-scale holograms based
on CUE-NET Opt. Commun. 530 129079

[89] Dong Y, Wu H, Yang X, Chen X and Xi J 2023 Shape-aware
speckle matching network for cross-domain 3D
reconstruction (http://dx.doi.org/10.2139/ssrn.4466286)

[90] Kou T, Zhang Q, Zhang C, He T and Shen J 2023 Integrated
MPCAM: Multi-PSF learning for large depth-of-field
computational imaging Inf. Fusion 89 452–72

[91] Xu H, Ma J, Jiang J, Guo X and Ling H 2020 U2Fusion: a
unified unsupervised image fusion network IEEE Trans.
Pattern Anal. Mach. Intell. 44 502–18

[92] Dong Y, Yang X, Wu H, Chen X and Xi J 2023 Lightweight
and edge-preserving speckle matching network for precise
single-shot 3D shape measurement Measurement
210 112549

[93] Gu F, Du H, Wang S, Su B and Song Z 2023 High-capacity
spatial structured light for robust and accurate
reconstruction Sensors 23 4685

[94] Nguyen A-H, Sun B, Li C Q and Wang Z 2022 Different
structured-light patterns in single-shot 2D-to-3D
image conversion using deep learning Appl. Opt.
61 10105–15

[95] Takeda M and Mutoh K 1983 Fourier transform profilometry
for the automatic measurement of 3-D object shapes Appl.
Opt. 22 3977–82

[96] Kemao Q 2004 Windowed Fourier transform for fringe
pattern analysis Appl. Opt. 43 2695–702

[97] Kemao Q 2007 Two-dimensional windowed Fourier
transform for fringe pattern analysis: principles,
applications and implementations Opt. Lasers Eng.
45 304–17

[98] Nguyen H, Liang J, Wang Y and Wang Z 2021 Accuracy
assessment of fringe projection profilometry and digital
image correlation techniques for three-dimensional shape
measurements J. Phys. Photon. 3 014004

[99] Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R,
Bachrach A and Bry A 2017 End-to-end learning of
geometry and context for deep stereo regression Proc.
IEEE Int. Conf. on Computer Vision pp 66–75

30

https://doi.org/10.1109/TVT.2022.3204835
https://doi.org/10.1109/TVT.2022.3204835
https://doi.org/10.3390/app13031766
https://doi.org/10.3390/app13031766
https://doi.org/10.1109/TCOMM.2020.2990686
https://doi.org/10.1109/TCOMM.2020.2990686
https://doi.org/10.3390/machines9010013
https://doi.org/10.3390/machines9010013
https://doi.org/10.1016/j.precisioneng.2018.09.002
https://doi.org/10.1016/j.precisioneng.2018.09.002
https://doi.org/10.3390/machines11060615
https://doi.org/10.3390/machines11060615
https://doi.org/10.1364/OE.478934
https://doi.org/10.1364/OE.478934
https://doi.org/10.1016/j.optlaseng.2019.04.020
https://doi.org/10.1016/j.optlaseng.2019.04.020
https://doi.org/10.1109/TIE.2023.3253940
https://doi.org/10.1109/TIE.2023.3253940
https://doi.org/10.1038/s41598-019-56222-3
https://doi.org/10.1038/s41598-019-56222-3
https://doi.org/10.1109/JSTARS.2023.3298989
https://doi.org/10.1109/JSTARS.2023.3298989
https://doi.org/10.1016/j.ijleo.2023.170727
https://doi.org/10.1016/j.ijleo.2023.170727
https://doi.org/10.3390/s23094209
https://doi.org/10.3390/s23094209
https://doi.org/10.1088/1361-6501/acfba3
https://doi.org/10.1088/1361-6501/acfba3
https://doi.org/10.1364/OE.500343
https://doi.org/10.1364/OE.500343
https://doi.org/10.1007/s11801-022-2082-x
https://doi.org/10.1007/s11801-022-2082-x
https://doi.org/10.1088/1361-6501/acd136
https://doi.org/10.1088/1361-6501/acd136
https://doi.org/10.3390/s20133718
https://doi.org/10.3390/s20133718
https://doi.org/10.1016/j.rio.2021.100104
https://doi.org/10.1016/j.rio.2021.100104
http://dx.doi.org/10.2139/ssrn.4506496
http://dx.doi.org/10.2139/ssrn.4506496
https://doi.org/10.1364/AO.483303
https://doi.org/10.1364/AO.483303
https://doi.org/10.1016/j.optlaseng.2023.107597
https://doi.org/10.1016/j.optlaseng.2023.107597
https://doi.org/10.1016/j.optcom.2022.129079
https://doi.org/10.1016/j.optcom.2022.129079
http://dx.doi.org/10.2139/ssrn.4466286
https://doi.org/10.1016/j.inffus.2022.09.005
https://doi.org/10.1016/j.inffus.2022.09.005
https://doi.org/10.1109/TPAMI.2020.3012548
https://doi.org/10.1109/TPAMI.2020.3012548
https://doi.org/10.1016/j.measurement.2023.112549
https://doi.org/10.1016/j.measurement.2023.112549
https://doi.org/10.3390/s23104685
https://doi.org/10.3390/s23104685
https://doi.org/10.1364/AO.468984
https://doi.org/10.1364/AO.468984
https://doi.org/10.1364/AO.22.003977
https://doi.org/10.1364/AO.22.003977
https://doi.org/10.1364/AO.43.002695
https://doi.org/10.1364/AO.43.002695
https://doi.org/10.1016/j.optlaseng.2005.10.012
https://doi.org/10.1016/j.optlaseng.2005.10.012


Meas. Sci. Technol. 36 (2025) 012002 Topical Review

[100] Shamsafar F, Woerz S, Rahim R and Zell A 2022
MobileStereoNet: towards lightweight deep networks for
stereo matching Proc. IEEE/CVF Winter Conf. on
Applications of Computer Vision pp 2417–26

[101] Sun C, Luo C, Zhou X, Arnab A and Schmid C 2023 Does
visual pretraining help end-to-end reasoning? (arXiv:2307.
08506)

[102] Nguyen H, Ly K L, Nguyen T, Wang Y and Wang Z 2021
MIMONet: Structured-light 3D shape reconstruction by a
multi-input multi-output network Appl. Opt. 60 5134–44

[103] Li Y, Li Y, Dai X, Guo S and Xiao B 2023 Physical-world
optical adversarial attacks on 3D face recognition Proc.
IEEE/CVF Conf. on Computer Vision and Pattern
Recognition pp 24699–708

[104] Li G, Duan N, Fang Y, Gong M and Jiang D 2020
Unicoder-VL: a universal encoder for vision and language
by cross-modal pre-training Proc. AAAI Conf. on Artificial
Intelligence vol 34 pp 11336–44

[105] Lehr J, Sibarita J-B and Chassery J-M 1998 Image restoration
in x-ray microscopy: PSF determination and biological
applications IEEE Trans. Image Process. 7 258–63

[106] Kingsbury N 2000 A dual-tree complex wavelet transform
with improved orthogonality and symmetry properties
Proc. 2000 Int. Conf. on Image Processing (Cat. No.
00CH37101) vol 2 (IEEE) pp 375–8

[107] Toet A 1989 Image fusion by a ratio of low-pass pyramid
Pattern Recognit. Lett. 9 245–53

[108] Liu Y, Liu S and Wang Z 2015 Multi-focus image fusion
with dense sift Inf. Fusion 23 139–55

[109] Nencini F, Garzelli A, Baronti S and Alparone L 2007
Remote sensing image fusion using the curvelet transform
Inf. Fusion 8 143–56

[110] Li J, Guo X, Lu G, Zhang B, Xu Y, Wu F and Zhang D 2020
DRPL: deep regression pair learning for multi-focus
image fusion IEEE Trans. Image Process. 29 4816–31

[111] Zhang H, Le Z, Shao Z, Xu H and Ma J 2021 MFF-GAN: an
unsupervised generative adversarial network with adaptive
and gradient joint constraints for multi-focus image fusion
Inf. Fusion 66 40–53

[112] Zhang Y, Liu Y, Sun P, Yan H, Zhao X and Zhang L 2020
IFCNN: a general image fusion framework based on
convolutional neural network Inf. Fusion 54 99–118

[113] Ma J, Tang L, Fan F, Huang J, Mei X and Ma Y 2022
SwinFusion: cross-domain long-range learning for general
image fusion via swin transformer IEEE/CAA J. Autom.
Sin. 9 1200–17

[114] Chang J R and Chen Y S 2018 Pyramid stereo matching
network Proc. IEEE Conf. on Computer Vision and
Pattern Recognition pp 5410–8

[115] Guo X, Yang K, Yang W, Wang X and Li H 2019 Group-wise
correlation stereo network Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition pp 3273–82

[116] Zhang F, Qi X, Yang R, Prisacariu V, Wah B and Torr P 2020
Domain-invariant stereo matching networks Computer
Vision–ECCV 2020: 16th European Conf. (Glasgow, UK,
23–28 August 2020) Proc., Part II 16 (Springer) pp
420–39

[117] Wang Q, Wu B, Zhu P, Li P, Zuo W and Hu Q 2020
ECA-Net: efficient channel attention for deep
convolutional neural networks Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition pp 11534–42

[118] Wang H, Zeng H, Chen P, Liang R and Jiang L 2019 Fast
single fringe-pattern processing with graphics processing
unit Appl. Opt. 58 6854–64

[119] Chen Y, Wang T and Kemao Q 2021 Parallel advanced
iterative algorithm for phase extraction with unknown
phase-shifts Opt. Lasers Eng. 138 106408

[120] Zhong Z, Song D, Liu L, Chen X and Shan M 2023
Dual-wavelength off-axis digital holography in ImageJ:

toward real-time phase retrieval using CUDA streams
Appl. Opt. 62 5868–74

[121] Pandey D, Ramaiah J and Gannavarpu R 2021 Fast
measurement of phase and its derivatives in digital
holographic interferometry using graphics processing unit
assisted state space method Optik 248 168172

[122] Munera N, Trujillo C and Garcia-Sucerquia J 2022
High-speed measurement of mechanical
micro-deformations with an extended phase range using
dual-wavelength digital holographic interferometry Appl.
Opt. 61 B279–86

[123] Kirk D et al 2007 NVIDIA CUDA software and GPU
parallel computing architecture ISMM vol 7 pp 103–4

[124] Sanders J and Kandrot E 2010 CUDA by Example: An
Introduction to General-Purpose GPU Pprogramming
(Addison-Wesley Professional)

[125] Karpinsky N, Hoke M, Chen V and Zhang S 2014
High-resolution, real-time three-dimensional shape
measurement on graphics processing unit Opt. Eng.,
Bellingham 53 024105

[126] Zhang C, Zhang M and Chen C 2023 Efficient
three-dimensional shape measurement: avoiding matrix
inversion Meas. Sci. Technol. 34 125019

[127] Sun Y, Bian Y, Shen H and Zhu R 2022 High-accuracy
simultaneous phase extraction and unwrapping method for
single interferogram based on convolutional neural
network Opt. Lasers Eng. 151 106941

[128] Li Y, Liu X, Yang Z and Liu Z 2023 Phase retrieval for
single-frame interferogram with an irregular-shaped
aperture based on deep learning Opt. Express 31 36754–69

[129] Kuang Y, Liu F, Liu Y, Chen X, Wu Y and Zhang R 2024
Correction of spurious phase sign in single closed-fringe
demodulation using transformer based Swin-ResUNet
Opt. Laser Technol. 168 109952

[130] Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q and
Wang M 2022 Swin-Unet: Unet-like pure transformer for
medical image segmentation European Conf. on Computer
Vision (Springer) pp 205–18

[131] Ibtehaz N and Rahman M S 2020 MultiResUNet: rethinking
the U-Net architecture for multimodal biomedical image
segmentation Neural Netw. 121 74–87

[132] Feng S, Chen Q, Gu G, Tao T, Zhang L, Hu Y, Yin W and
Zuo C 2019 Fringe pattern analysis using deep learning
Adv. Photonics 1 025001

[133] Feng S, Xiao Y, Yin W, Hu Y, Li Y, Zuo C and Chen Q 2023
Fringe-pattern analysis with ensemble deep learning Adv.
Photonics Nexus 2 036010

[134] Wan M, Kong L and Peng X 2023 Single-shot
three-dimensional measurement by fringe analysis
network Photonics 10 417

[135] Li Y, Qian J, Feng S, Chen Q and Zuo C 2022 Composite
fringe projection deep learning profilometry for
single-shot absolute 3D shape measurement Opt. Express
30 3424–42

[136] Xu M, Zhang Y, Wan Y, Luo L and Peng J 2023 Single-shot
multi-frequency 3D shape measurement for discontinuous
surface object based on deep learning Micromachines
14 328

[137] Takeda M, Gu Q, Kinoshita M, Takai H and Takahashi Y
1997 Frequency-multiplex Fourier-transform
profilometry: a single-shot three-dimensional shape
measurement of objects with large height discontinuities
and/or surface isolations Appl. Opt. 36 5347–54

[138] Guan C, Hassebrook L and Lau D 2003 Composite
structured light pattern for three-dimensional video Opt.
Express 11 406–17

[139] Jiaying L and Xianming X 2023 Central difference
information filtering phase unwrapping algorithm based
on deep learning Opt. Lasers Eng. 163 107484

31

https://arxiv.org/abs/2307.08506
https://arxiv.org/abs/2307.08506
https://doi.org/10.1364/AO.426189
https://doi.org/10.1364/AO.426189
https://doi.org/10.1109/83.661006
https://doi.org/10.1109/83.661006
https://doi.org/10.1016/0167-8655(89)90003-2
https://doi.org/10.1016/0167-8655(89)90003-2
https://doi.org/10.1016/j.inffus.2014.05.004
https://doi.org/10.1016/j.inffus.2014.05.004
https://doi.org/10.1016/j.inffus.2006.02.001
https://doi.org/10.1016/j.inffus.2006.02.001
https://doi.org/10.1109/TIP.2020.2976190
https://doi.org/10.1109/TIP.2020.2976190
https://doi.org/10.1016/j.inffus.2020.08.022
https://doi.org/10.1016/j.inffus.2020.08.022
https://doi.org/10.1016/j.inffus.2019.07.011
https://doi.org/10.1016/j.inffus.2019.07.011
https://doi.org/10.1109/JAS.2022.105686
https://doi.org/10.1109/JAS.2022.105686
https://doi.org/10.1364/AO.58.006854
https://doi.org/10.1364/AO.58.006854
https://doi.org/10.1016/j.optlaseng.2020.106408
https://doi.org/10.1016/j.optlaseng.2020.106408
https://doi.org/10.1364/AO.493456
https://doi.org/10.1364/AO.493456
https://doi.org/10.1016/j.ijleo.2021.168172
https://doi.org/10.1016/j.ijleo.2021.168172
https://doi.org/10.1364/AO.443857
https://doi.org/10.1364/AO.443857
https://doi.org/10.1117/1.OE.53.2.024105
https://doi.org/10.1117/1.OE.53.2.024105
https://doi.org/10.1088/1361-6501/acefe9
https://doi.org/10.1088/1361-6501/acefe9
https://doi.org/10.1016/j.optlaseng.2021.106941
https://doi.org/10.1016/j.optlaseng.2021.106941
https://doi.org/10.1364/OE.504296
https://doi.org/10.1364/OE.504296
https://doi.org/10.1016/j.optlastec.2023.109952
https://doi.org/10.1016/j.optlastec.2023.109952
https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1117/1.AP.1.2.025001
https://doi.org/10.1117/1.AP.1.2.025001
https://doi.org/10.1117/1.APN.2.3.036010
https://doi.org/10.1117/1.APN.2.3.036010
https://doi.org/10.3390/photonics10040417
https://doi.org/10.3390/photonics10040417
https://doi.org/10.1364/OE.449468
https://doi.org/10.1364/OE.449468
https://doi.org/10.3390/mi14020328
https://doi.org/10.3390/mi14020328
https://doi.org/10.1364/AO.36.005347
https://doi.org/10.1364/AO.36.005347
https://doi.org/10.1364/OE.11.000406
https://doi.org/10.1364/OE.11.000406
https://doi.org/10.1016/j.optlaseng.2023.107484
https://doi.org/10.1016/j.optlaseng.2023.107484


Meas. Sci. Technol. 36 (2025) 012002 Topical Review

[140] Zhao Z, Zhou M, Du Y, Li J, Fan C, Zhang X, Wei X and
Zhao H 2022 Robust phase unwrapping algorithm based
on Zernike polynomial fitting and swin-transformer
networkMeas. Sci. Technol. 33 055002

[141] Li J, Li C, Zhang Q, Wu B, Liu T, Lu X, Di J and Zhong L
2023 Multi-wavelength network: predicted-illumination
for phase unwrapping in quantitative phase imaging Opt.
Laser Technol. 167 109781

[142] He H, Tang C, Zhang L, Xu M and Lei Z 2023 UN-PUNet
for phase unwrapping from a single uneven and noisy
ESPI phase pattern J. Opt. Soc. Am. A 40 1969–78

[143] Li H, Zhong H, Ning M, Zhang P and Tang J 2023 Using
neural networks to create a reliable phase quality map for
phase unwrapping Appl. Opt. 62 1206–13

[144] Wang K, Li Y, Kemao Q, Di J and Zhao J 2019 One-step
robust deep learning phase unwrapping Opt. Express
27 15100–15

[145] Qin Y, Wan S, Wan Y, Weng J, Liu W and Gong Q 2020
Direct and accurate phase unwrapping with deep neural
network Appl. Opt. 59 7258–67

[146] Xu M, Tang C, Shen Y, Hong N and Lei Z 2022 PU-M-Net
for phase unwrapping with speckle reduction and structure
protection in ESPI Opt. Lasers Eng. 151 106824

[147] Zhou L, Yu H, Lan Y and Xing M 2021 Deep learning-based
branch-cut method for InSAR two-dimensional phase
unwrapping IEEE Trans. Geosci. Remote Sens. 60 1–15

[148] Chen C W and Zebker H A 2002 Phase unwrapping for large
SAR interferograms: statistical segmentation and
generalized network models IEEE Trans. Geosci. Remote
Sens. 40 1709–19

[149] Spoorthi G, Gorthi R K S S and Gorthi S 2020 PhaseNet 2.0:
phase unwrapping of noisy data based on deep learning
approach IEEE Trans. Image Process. 29 4862–72

[150] Zhao M, Huang L, Zhang Q, Su X, Asundi A and Kemao Q
2011 Quality-guided phase unwrapping technique:
comparison of quality maps and guiding strategies Appl.
Opt. 50 6214–24

[151] Costantini M 1998 A novel phase unwrapping method based
on network programming IEEE Trans. Geosci. Remote
Sens. 36 813–21

[152] Ghiglia D C and Pritt M D 1998 Two-Dimensional Phase
Unwrapping: Theory, Algorithms and Software 1st edn
(Wiely)

[153] Asundi A and Wensen Z 1998 Fast phase-unwrapping
algorithm based on a gray-scale mask and flood fill Appl.
Opt. 37 5416–20

[154] Ghiglia D C and Romero L A 1994 Robust two-dimensional
weighted and unweighted phase unwrapping that uses fast
transforms and iterative methods J. Opt. Soc. Am. A
11 107–17

[155] Xie X 2016 Iterated unscented Kalman filter for phase
unwrapping of interferometric fringes Opt. Express
24 18872–97

[156] Vijay Kumar S, Sun X, Wang Z, Goldsbury R and Cheng I
2023 A U-Net approach for InSAR phase unwrapping and
denoising Remote Sens. 15 5081

[157] Zhang L, Huang G, Li Y, Yang S, Lu L and Huo W 2023 A
robust InSAR phase unwrapping method via improving
the pix2pix network Remote Sens. 15 4885

[158] Chen X, He C and Huang Y 2023 An error
distribution-related function-trained two-dimensional
InSAR phase unwrapping method via U-GauNet Signal
Image Video Process. 17 2653–60

[159] Yang K, Yuan Z, Xing X and Chen L 2023 Deep
learning-based mask-cut method for InSAR
phase-unwrapping IEEE J. Miniaturization Air Space Syst.
4 221–30

[160] Isola P, Zhu J Y, Zhou T and Efros A A 2017 Image-to-image
translation with conditional adversarial networks Proc.

IEEE Conf. on Computer Vision and Pattern Recognition
pp 1125–34

[161] Liu G, Wang R, Deng Y, Chen R, Shao Y and Yuan Z 2013 A
new quality map for 2-D phase unwrapping based on gray
level co-occurrence matrix IEEE Geosci. Remote Sens.
Lett. 11 444–8

[162] Sun X, Zimmer A, Mukherjee S, Kottayil N K, Ghuman P
and Cheng I 2020 DeepInSAR—a deep learning
framework for SAR interferometric phase restoration and
coherence estimation Remote Sens. 12 2340

[163] Sica F, Gobbi G, Rizzoli P and Bruzzone L 2020 ϕ-Net: deep
residual learning for InSAR parameters estimation IEEE
Trans. Geosci. Remote Sens. 59 3917–41

[164] Gao D and Yin F 2011 Mask cut optimization in
two-dimensional phase unwrapping IEEE Geosci. Remote
Sens. Lett. 9 338–42

[165] Goldstein R M, Zebker H A and Werner C L 1988 Satellite
radar interferometry: two-dimensional phase unwrapping
Radio Sci. 23 713–20

[166] Xu W and Cumming I 1999 A region-growing algorithm for
InSAR phase unwrapping IEEE Trans. Geosci. Remote
Sens. 37 124–34

[167] Fried D L 1977 Least-square fitting a wave-front distortion
estimate to an array of phase-difference measurements J.
Opt. Soc. Am. 67 370–5

[168] Luo X, Song W, Bai S, Li Y and Zhao Z 2023 Deep
learning-enabled invalid-point removal for spatial phase
unwrapping of 3D measurement Opt. Laser Technol.
163 109340

[169] Zhu X, Zhao H, Song L, Wang H and Guo Q 2023
Triple-output phase unwrapping network with a physical
prior in fringe projection profilometry Appl. Opt.
62 7910–6

[170] Wang S, Chen T, Shi M, Zhu D and Wang J 2023
Single-frequency and accurate phase unwrapping method
using deep learning Opt. Lasers Eng. 162 107409

[171] Huang W, Mei X, Fan Z, Jiang G, Wang W and Zhang R
2023 Pixel-wise phase unwrapping of fringe projection
profilometry based on deep learning Measurement
220 113323

[172] Guo X, Li Y, Qian J, Che Y, Zuo C, Chen Q, Lam E Y,
Wang H and Feng S 2023 Unifying temporal phase
unwrapping framework using deep learning Opt. Express
31 16659–75

[173] Su X-Y, Von Bally G and Vukicevic D 1993 Phase-stepping
grating profilometry: utilization of intensity modulation
analysis in complex objects evaluation Opt. Commun.
98 141–50

[174] Herráez M A, Burton D R, Lalor M J and Gdeisat M A 2002
Fast two-dimensional phase-unwrapping algorithm based
on sorting by reliability following a noncontinuous path
Appl. Opt. 41 7437–44

[175] Bai S, Luo X, Xiao K, Tan C and Song W 2022 Deep
absolute phase recovery from single-frequency phase map
for handheld 3D measurement Opt. Commun.
512 128008

[176] Zhu X, Han Z, Yuan M, Guo Q, Wang H and Song L 2022
Hformer: hybrid convolutional neural network transformer
network for fringe order prediction in phase unwrapping
of fringe projection Opt. Eng., Bellingham
61 093107

[177] Gontarz M, Dutta V, Kujawińska M and Krauze W 2023
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