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• Developing rigorous models to compute scattered light from diverse surface geometries.
• Using the localised Fourier modal method for single-structure scattering.
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Abstract

Rigorous scattering models are based on Maxwell’s equations and can provide high-accuracy solutions to
model electromagnetic wave scattering from objects. Being able to calculate the scattered field from any
surface geometry and considering the effect of the polarisation of the incident light, make rigorous models
the most promising tools for complex light-matter interaction problems. The total intensity of the electric
near-field scattering from a silicon cylinder illuminated by the transverse electric and transverse magnetic
polarisation of the incident light is obtained using various rigorous models including, the local field Fourier
modal method, boundary element method and finite element method. The intensity of the total electric
near-field obtained by these rigorous models is compared using the Mie solution as a reference for both
polarisation modes of the incident light. Additionally, the intensity of the total electric near-field scattered
from a silicon sinusoid profile using the same rigorous models is analysed. The results are discussed in detail,
and for the cylinder, the deviations in the intensity of the total electric field from the exact Mie solution are
investigated.

Keywords: Light scattering, rigorous model, electric field, Maxwell’s equation.

1 Introduction

Interaction between light and matter plays a crucial role in spectroscopy, optical metrology,

sensing, imaging, quantum information processing and lasers [1, 2]. In optical metrology, due to

the continuously increasing applications of surface texture measurement [3–5], the demand for

high-quality measurement technologies increases. These technologies mainly rely on determining

the elastically scattered electromagnetic field from the surface by modelling the interaction of

the electromagnetic field with the matter on the surface [6]. The scattered light field is then

propagated through the optical instrument to generate the image.

Modelling optical surface topography measuring instruments based on scattering models is of

significant importance as it helps in understanding instrument characteristics and performance

specifications, which consequently leads to optimising instrument configurations to achieve

the most accurate results possible. One important aspect of optical instrument modelling is

determining the instrument’s response to surface height variation. Within well-defined limits,

the elementary Fourier optics model [7], based on scalar diffraction theory and classical Fourier

optics, is used to characterise the instrument transfer function (ITF) [8], topographic lateral
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resolution [9] and residual nonlinearities [10].

In general, approximate and rigorous models can be employed in order to model the scattered

light field. As approximate scattering models are fast and simple approaches to calculate the

scattered field, they have already been used to describe interference microscopy by propagating

the scattered field through the optical instrument [11–14]. Nevertheless, approximate models have

certain limitations in their ranges of validity, which restrict their application to weakly scattering

media (materials whose refractive index differs only slightly from that of the surrounding medium),

surfaces with relatively small height variations and/or slowly varying surfaces on the optical

scale [15]. However, due to the increasing use of freeform surfaces, surfaces with technologically

advanced texturing, and additively manufactured structures in engineering, aerospace industry

and biology, analysing the complex features on surfaces is becoming more critical [16]. In

rigorous models, the fundamental properties of light are described by Maxwell’s electromagnetic

theory and the laws governing the propagation of light in a medium [17]. They are necessary

to calculate the scattered light from complex surface geometries containing overhangs and

re-entrant features, features with small radii of curvature, or other geometries where multiple

scattering occurs. Besides optical metrology, which has seen particularly widespread use of

rigorous scattering models, these models are applicable in various other fields of engineering and

science, such as fluid mechanics, acoustics, electromagnetics, fracture mechanics, and plasticity.

Rigorous models can also account for the polarisation of the incident and scattered light, surface

plasmons and near-field scattering. The behaviour of light at the interface between two different

media is determined by the boundary conditions for the electromagnetic wave vectors. In

nonmagnetic materials with no free charges and conduction currents, these conditions require

continuity of the tangential components of the electric and magnetic fields across the boundary

[18].

To predict the scattered light from complex surface geometries, various rigorous models have

been proposed. Finite element methods (FEMs) [19] provide an efficient numerical approach to

solve partial differential equations over complex domains using a set of boundary conditions.

For the case of inhomogeneous and near-planar surface structures, such as those forming

semiconductor devices, the Fourier modal method (FMM), also known as rigorous coupled

wave analysis (RCWA) [20, 21], provides a semi-analytical solution. FMM is a particularly

efficient way to analyse the performance of periodic structures such as blazed and lamellar

diffraction gratings [22, 23]. The finite-difference time-domain (FDTD) method [24] is based

on the discretisation of Maxwell’s equations in space and time and has been extensively used

in computational electrodynamics [25, 26]. The method of moments (MoM) [27] is a rigorous

numerical technique for analysing electromagnetic radiation, scattering and wave propagation

problems using the integral form of Maxwell’s equations, as opposed to their differential form

that is used in the FEM or FDTD methods. In computational terms, the process can be treated

as a boundary element method (BEM) [28] in which elemental areas act as finite sources and

radiate into the volume of interest. An accelerated variant of MoM is the method of fundamental

solutions (also called the method of auxiliary sources) and related techniques [29–33], where

the traditional boundary elements are replaced by Dirac delta or higher-order point sources

distributed on a surface in the interior of the scattering structure.
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With respect to optical metrology, the FMM and FEM models have been used to model the

measurement of nano-textured surfaces using scatterometry [34, 35]. The three-dimensional (3D)

BEM method, also named surface integral equation method, accelerated via the multi-level fast

multipole method (MLFMM) has been used to simulate speckle field distributions [36]. The FEM,

FMM and BEM methods have been employed to model coherence scanning interferometry and

confocal microscopy signals [37–39]. The FEM model is used to model microsphere-enhanced

microscopy and interferometry to study the lateral resolution enhancement in microscopic

imaging [40, 41]. The BEM model is employed to investigate the optical surface topography

measurement of steep and tilted surfaces when tilting the object at angles larger than the

numerical aperture slope limit [42].

An accuracy comparison has been made among different implementations of various numerical

approaches, including aperiodic-FMM (a-FMM), FEM, FDTD, the volume integral method

(VIP) and a hybrid method (combination of FMM and a-FMM), all applied to a slit-groove

diffraction problem [43]. A detailed comparison of the performance of some of the rigorous models

in near-field scattering computations for metallic nanoparticles is provided in [44]. Effectively

applying rigorous models to optical metrology problems requires a thorough understanding of

their accuracy and validity range. However, limited research exists on comparing the accuracy

of rigorous models across different applications in optical metrology [45–47].

Therefore, this paper provides a comparative analysis of four different rigorous models: a

newly developed local field Fourier modal method (LFFMM) that does not require absorbing

boundaries, two approaches based on the BEM (BEM K-H and BEM M, which are based

on solving Kirchhoff-Helmholtz integral and Maxwell’s equations, respectively), and the FEM

method. After discussing the approaches in detail in Section 2, we compare the total electric

near-fields, i.e. the summation of the incident and scattered fields obtained from each model,

for transverse electric (TE) and transverse magnetic (TM) polarised incident light. We limit

our discussion to isotropic and homogeneous scattering materials. For exemplary scattering

structures, we consider a silicon cylinder, which allows us to compare against the analytic 2D

Mie solution as a reference, and a sinusoidal profile representative of a scattering surface of

high spatial frequency and curvature, where approximate models fail. In addition, sinusoidal

profiles play an important role in determining the ITF of optical profilers [10]. In the context of

cylindrical surfaces, besides the accuracy analysis of the rigorous scattering models by comparing

their results with those from the exact Mie solution, it should be noted that cylinders and

spheres of various diameters also play an important role in optical metrology e.g. for 3D transfer

function measurements [48] and to consider curved measuring objects with high slope angles.

The results for all models, polarisations and structures are analysed and discussed in detail.

Deviations from the reference solution and from each other are investigated. This illustrates

each model’s specific advantages and disadvantages and enables an assessment of each model’s

applicability, accuracy and robustness.

It is important to highlight that, despite the significance of time efficiency, memory usage,

and convergence in numerical methods, our study refrains from comparing computational time

due to the diverse specifications of the computers employed.
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2 Rigorous scattering models

The interaction between incident electromagnetic waves and objects generates scattered fields

that can be described through Maxwell’s equations, which govern electric and magnetic field

behaviour. For time-harmonic fields, these equations can be simplified to the Helmholtz equation,

which describes wave propagation. The rigorous models considered in this paper are introduced

briefly in the following. Note that the descriptions are related to the implementations used here

and are not generally applicable to the respective method.

BEM is a powerful approach for solving scattering problems, emphasising the boundaries of

objects (2D or 3D) to facilitate a thorough analysis of their interactions with incident waves.

By characterising the scatterer through its surface boundaries, BEM enables field evaluations

at these interfaces instead of throughout the entire volume. Maxwell’s equations dictate the

relationships among the incident, scattered, and total fields, ensuring that the tangential

components of electric and magnetic fields comply with the required boundary conditions at

the interfaces between different media. Additionally, the method employs Green’s functions to

transform the problem into boundary integrals, effectively reducing the dimensionality of the

analysis and improving computational efficiency for complex geometries. The scattered field is

modelled using the Kirchhoff Helmholtz integral and Maxwell’s equations.

FEM is used to address electromagnetic scattering problems in bounded 2D domains by

discretising the area into smaller elements. This allows for precise modelling of complex shapes

and materials. To mitigate boundary reflections, a perfectly matched layer (PML) is used, which

ensures that scattered fields are absorbed without reflections. The scattered electric field is

derived from the vector wave equation, based on Maxwell’s equations, and is analyzed within the

defined physical domain, which includes the scattering object and its surrounding medium. The

model accommodates both in-plane and out-of-plane scattering, facilitating three-dimensional

illumination effects. Overall, FEM provides an accurate representation of scattering phenomena

by effectively solving the boundary value problem through numerical techniques.

LFFMM is an extension of the FMM model tailored for finite or aperiodic 2D structures,

using a Gaussian beam as the incident field to calculate scattering based on local field interactions.

The method relies on the angular spectrum representation to decompose the Gaussian beam

into plane waves. The scattered field for each of the plane waves is calculated using FMM. The

FMM model provides a rigorous and numerically efficient 3D calculation of both in-plane and

out-of-plane scattering for 3D illumination. By summing the scattered field from the plane

waves, the method enables efficient computation of the scattered fields and subsequent analysis

of the electromagnetic response.

2.1 BEM K-H

The BEM K-H model presented in this paper is a two-dimensional (2D) numerical rigorous

model, i.e., limited to surfaces completely described only by a set of lateral and axial coordinates

(xz-plane), assuming the surface is infinitely extended along the third dimension (y-axis) [28,

49].
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Consider a boundary ∂S (contour in 2D) separating two homogeneous, isotropic and linear

media labelled S and S̄, in the xz-plane, as shown in figure 1. We assume that the surface

profile function z = ζ(x) depends only on one dimension, namely x. When an electromagnetic

wave generated by an external source propagates through medium S̄, it will be scattered by the

medium S. To obtain the scattered field, the Helmholtz equation [50] should be solved, and the

boundary conditions need to be applied at the surface interface and infinity.

Figure 1: Geometry of the scattering object S considered for the scattering problem.

The BEM K-H model is based on the derivation of a set of coupled integral equations for

the source functions, i.e. the field and its normal derivative are evaluated on the surface. With

knowledge of these sources, the total field, and, thus, the solution to the scattering problem,

can be obtained from the extinction theorem [18, 51] at any point above and below the surface

boundary. Without loss of generality, the plane of incidence, i.e. the plane which contains the

normal vector on the interface and the incident wave vector is considered in the xz-plane, and

the incident light wave Φinc(x, z, ω) is either TM or TE polarised. In such a case, only the

tangential component of the field (the electric field Ey for TE polarisation, and the magnetic

field Hy for TM polarisation) is needed to fully describe the electromagnetic field as written

below

Φν(x, z, ω) =

Hy(x, z, ω) ν = TM,

Ey(x, z, ω) ν = TE,
(1)

where ν describes the polarisation and ω is the angular frequency of the incident light. The

fact that the primary field can be fully described by a single vector component significantly

simplifies the problem, reducing it from a vector to a scalar problem. This is considered the main

feature of the BEM K-H model that distinguishes this model from the BEM M model. When

Φν(x, z, ω) is known, the remaining components of the electromagnetic field can be calculated

using Maxwell’s equations [50]. These components, for TM polarisation, are given by

Ex(x, z, ω) = − i

ωε(ω)

∂

∂z
Hy(x, z, ω), (2a)

Ez(x, z, ω) =
i

ωε(ω)

∂

∂x
Hy(x, z, ω), (2b)

where i represents the imaginary unit and ε(ω) denotes the permittivity of the medium through
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which the light is propagating. For TE polarisation, the remaining components are described as

Hx(x, z, ω) =
i

ωµ(ω)

∂

∂z
Ey(x, z, ω), (3a)

Hz(x, z, ω) = − i

ωµ(ω)

∂

∂x
Ey(x, z, ω), (3b)

where µ(ω) is the magnetic permeability of the medium through which the wave is propagating.

Consider Φν(x, z, ω), as described in Eq. (1), a field component that is tangential to the surface

independent of the polarisation of the incident light and applying the boundary conditions at

the interface z = ζ(x) leads us to [18]

Φ+
ν (x, z, ω)|z=ζ(x) = Φ−

ν (x, z, ω)|z=ζ(x), (4a)

1

κ+
ν (ω)

∂nΦ
+
ν (x, z, ω)|z=ζ(x) =

1

κ−
ν (ω)

∂nΦ
−
ν (x, z, ω)|z=ζ(x), (4b)

where Φ+
ν (x, z) and ∂nΦ

+
ν (x, z) are the values of the field and its outward normal derivative

at the outer side of the boundary ∂S, and Φ−
ν (x, z) and ∂nΦ

−
ν (x, z) at the inner side of the

boundary (see figure 1). In equation (4), κ±
ν (ω) are defined as

κ±
ν (ω) =

ε±(ω) ν = TM,

µ±(ω) ν = TE,
(5)

and ∂n denotes the normal derivative to the surface given by the following expression

∂n = n̂ · ∇ =
−ζ ′(x)∂x + ∂z

γ(x)
, (6)

where

γ(x) =
√
1 + [ζ ′(x)]2. (7)

In Eq. (6), ∂i
i = x, z
== ∂/∂i, n̂ is the unit normal vector on the interface directed into medium (+)

(see figure 1), described by

n̂ =
ζ ′(x)x̂+ ẑ√
1 + [ζ ′(x)]2

. (8)

According to the integral theorem of Kirchhoff-Helmholtz [52], the total field in S̄ can be

presented as the surface integral

Φinc
ν (r, ω) +

1

4π

∫
∂S

[Φν(r
′, ω)∂n′G(r−r′, ω)−∂n′Φν(r

′, ω)G(r−r′, ω)] dS′ =

Φν(r, ω), r ∈ S̄,

0, r /∈ S̄,

(9)

where r = (x, z), and G(r − r′, ω) is the free-space Green’s function. In 2D, an explicit

representation of the outgoing, free-space Green’s function is given by the Hankel function of

the first kind and zeroth-order as [53]

G(r− r′, ω) = iπH
(1)
0

(√
ϵ(ω)

ω

c
|r− r′|

)
, (10)
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where c is the speed of light in vacuum. Similarly to equation (9), the total field in S can be

written as

− 1

4π

∫
∂S

[Φν(r
′, ω)∂n′G(r− r′, ω)− ∂n′Φν(r

′, ω)G(r− r′, ω)] dS′ =

Φν(r, ω), r ∈ S,

0, r /∈ S.
(11)

The extinction theorem considers the incident field extinguished in the region S by the induced

field, as represented by the second term on the left-hand side of the equation (9). This is

obtained by setting the right-hand-side of Eqs. (9) and (11) to zero [54]. Furthermore, using

Eqs. (9) and (11), the field at any point (outside and inside) in the xz-plane can be found by

performing a surface integral over ∂S. In order to perform this integral, however, the total field

and its normal derivative on the surface boundary ∂S has to be known. Hence, in BEM, the

scattering problem is equivalent to finding the field and the normal derivative on the surface.

Using Eqs. (9) and (11), the total field at the outer (+) and inner (−) side of the surface

boundary can be re-written as

Φ+
ν (r, ω) = Φinc

ν (r, ω) +
1

4π

∫
∂S

[Φ+
ν (r

′, ω)∂n′G+(r− r′, ω)− ∂n′Φ+
ν (r

′, ω)G+(r− r′, ω)] dS′,

(12a)

Φ−
ν (r, ω) = − 1

4π

∫
∂S

[Φ−
ν (r

′, ω)∂n′G−(r− r′, ω)− ∂n′Φ−
ν (r

′, ω)G−(r− r′, ω)] dS′, (12b)

where G+(r− r′, ω) and ∂n′G+(r− r′, ω) are the Green’s function and its normal derivative at

the outer side the surface boundary, while G−(r− r′, ω) and ∂n′G−(r− r′, ω) are the Green’s

function and its normal derivative at the inner side the surface boundary, correspondingly. Using

Eq. (7) the surface element dS is given by the following expression

dS = γ(x)dx. (13)

Taking the boundary conditions of Eq. (4) into account, the integral Eqs. (12) will be coupled

and using Eq. (13) can be written as

Φ+
ν (x, z, ω) = Φinc

ν (x, z, ω) +

∫
[A+(x, z|x′, ω)Fν(x

′, ω)−B+(x, z|x′, ω)Nν(x
′, ω)] dx′, (14a)

Φ−
ν (x, z, ω) = −

∫
[A−(x, z|x′, ω)Fν(x

′, ω)− κ−
ν (ω)

κ+
ν (ω)

B−(x, z|x′, ω)Nν(x
′, ω)] dx′, (14b)

where κ±
ν (ω) have been defined in Eq. (5), and

Fν(x, ω) = Φ+
ν (x, z, ω)|z=ζ(x), (15a)

Nν(x, ω) = γ(x)∂nΦ
+
ν (x, z, ω)|z=ζ(x), (15b)

are the source functions on the surface boundary, and kernels A±(x, z|x′) and B±(x, z|x′) are
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defined as

A±(x, z|x′, ω) =
1

4π
γ(x′)∂n′G±(x, z|x′, z′, ω)|z′=ζ(x′), (16a)

B±(x, z|x′, ω) =
1

4π
G±(x, z|x′, z′, ω)|z′=ζ(x′). (16b)

The scattered field outside and inside the scattering object is found by using Eq. (14a) and

(14b), if source functions Fν(x, ω) and Nν(x, ω) are known. A coupled set of equations for these

sources can be obtained by setting z = ζ(x)+η where η → 0+, in Eq. (14a) and (14b). Doing so

results in the following set of inhomogeneous, coupled integral equations for the sources defined

on the surface boundary

Fν(x, ω) = F inc
ν (x, ω) +

∫
[A+(x|x′, ω)Fν(x

′, ω)− B+(x|x′, ω)Nν(x
′, ω)]dx′, (17a)

0 =

∫
[A−(x|x′, ω)Fν(x

′, ω)− κ−
ν (ω)

κ+
ν (ω)

B−(x, |x′, ω)Nν(x
′, ω)]dx′, (17b)

where F inc
ν (x, ω) is the incident field at the boundary source points, and A±(x|x′, ω) and

B±(x|x′, ω) are defined as

A±(x|x′, ω) = lim
η→0+

A±(x, z|x′, ω)|z=ζ(x)+η, (18a)

B±(x|x′, ω) = lim
η→0+

B±(x, z|x′, ω)|z=ζ(x)+η. (18b)

In order to solve Eqs. (17), the integral equations are converted into matrix equations by

discretising the spatial variables x and x′ using a suitable scheme to extrapolate integral points

to mesh nodes [55]. Hence, the surface boundary is divided to N source points, and a system of

2N equations with 2N unknowns (N fields and N normal derivatives) is obtained by applying the

integral Eqs. (17) at each point source. Once the fields Fν(x, ω) and their normal derivatives

Nν(x, ω) are obtained at the surface boundary, the total field can be calculated at a desired

point in xz-plane using Eq. (14a) and (14b).

2.2 BEM M

The second BEM model used herein is a three-dimensional (3D) rigorous simulation model [27].

In the BEM M model, the extent of the modelled object is necessarily finite in all dimensions of

3D space. This represents an important difference from the 2D models BEM K-H and FEM.

While this boundary condition is usually more realistic and often advantageous in application,

one has to expect some differences between the models’ results due to the additional edge

diffraction effects in the BEM M method. For a more in-depth explanation of the simulation,

the reader is referred to previous publications on the topic [27, 36].

Since the BEM M approach is a 3D simulation, the regions S and S̄ depicted in Fig. 1 must

now be considered as 3D domains and the surface ∂S as a 2D surface in a 3D space. Also, in

contrast to the scalar fields in the BEM K-H model, the electric fields E and magnetic fields H

are vector fields in the BEM M model. The BEM algorithm is based on the surface integral

formulation of Stratton and Chu [56, 57]. In this formulation, using the vector Green’s theorem,
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the total electric field at an arbitrary point r is given by

E(r) =

Einc(r)−
∫
∂S

[iωµS̄(n̂×H+)GS̄ − (n̂× E+)×∇′GS̄ − (n̂ · E+)∇′GS̄] dS
′, r ∈ S̄,∫

∂S
[iωµS(n̂×H−)GS − (n̂× E−)×∇′GS − (n̂ · E−)∇′GS] dS

′, r ∈ S,

(19)

while the total magnetic field is given by

H(r) =

Hinc(r) +
∫
∂S

[iωϵS̄(n̂× E+)GS̄ + (n̂×H+)×∇′GS̄ + (n̂ ·H+)∇′GS̄] dS
′, r ∈ S̄,∫

∂S
[iωµS(n̂× E−)GS − (n̂×H−)×∇′GS − (n̂ ·H−)∇′GS] dS

′, r ∈ S,

(20)

where n̂ is the unit normal vector on the interface pointing into S̄. E± and H± are the electric

and magnetic fields in medium S (−) and in the surrounding medium S̄ (+). GS̄ and GS are the

Green’s functions in their respective domains. n̂, E± and H± depend on r′, i.e. the source point

on ∂S, over which we integrate. Similarly, GS̄ and GS depend on the difference vector r − r′

between evaluation point and boundary element. Both dependencies are implied in Eqs. (19)

and (20) for brevity. The Green’s function for the 3D case is

GΣ(r− r′) =
exp(−ikΣ|r− r′|)

4π|r− r′|
Σ ∈ {S̄, S} (21)

where kΣ is the wave number in the respective medium. We can see here that, due to the

singularity in GΣ when r → r′, this method’s accuracy is limited around ∂S compared to others.

The formulations in Eqs. (19) and (20) are the equivalents to (9) and (11) from the BEM

K-H method, but the integrands in (19), (20) are vector valued and the integration over ∂S is

two-dimensional. To solve for E(r) and H(r), we approximate ∂S using triangular elements. The

surface currents on each element are expanded using Rao-Wilton-Glisson (RWG) rooftop basis

functions [57]. Using the Method of Moments (MoM) approach based on Galerkin operators,

the integral equations of the whole system can be expanded into the linear system of equations

x = Zy, (22)

where Z is the impedance matrix that represents the interactions between all basis functions

and x and y are vectors of N unknowns. In general, the matrix Z is densely populated.

To make this method feasible for electrical large 3D structures in terms of memory footprint

and computation time, we employ the multi-level fast multipole method, first described by

Greengard and Rokhlin [58], and later by Song, Lu and Chew [59] for electromagnetic scattering.

It harnesses the fact that, for two groups of surface elements with large spatial separation, their

inter-group interactions can be approximated by the field radiating from each group which

can be expanded into multipoles. This sparsifies the dense impedance matrix Z in Eq. (22)

considerably. Together with an iterative solver like the generalised minimal residual method

(GMRES) [60], it allows us to calculate systems with comparatively large surface areas of up to

60λ× 60λ within a few hours (depending on convergence). This makes the comparison to the

2D methods presented herein possible.
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2.3 FEM

The FEM model presented in this study is based on previous publications [37, 39], but extended

to non-periodic scattering objects. For a general review of FEM in electromagnetics we refer

to Jin [61] or Volakis et al. [62]. The scattering geometry, including labels of the different

media and the boundary as well as the definition of the incident angles, are given in Fig. 2.

Physically, the scattering object is 3D, but infinitely extended and invariant under translation

in one direction (here y) as sketched in Fig. 2(a). For simulation, it is sufficient to discretize a

cross-section at arbitrary y-position as outlined in Fig. 2(b). The domains S of the scattering

object and S̄ of the surrounding medium are extended by an artificial damping layer called

PML to avoid reflections at the boundaries and constitute the case of an infinitely extended

domain. The PML is implemented such that the scattered field enters without reflections at the

interface and is damped exponentially to zero inside.

In order to obtain the scattered electric field Esca, the vector wave equation

∇× Λ−1∇× Esca − k2εΛEsca = 0, (23)

with the wave number k = 2π/λ depending on the wavelength λ and the relative electric

permittivity ε, which depends on the respective medium, is solved within the PML. Within the

physical domain (S and S̄), the vector wave equation

∇× Λ−1∇× Etot − k2εΛEtot = 0, (24)

with the total electric field Etot = Esca + Einc, coupled to the scattered field by the incident

field Einc, is considered. Note that for incident waves restricted to the xz-plane, it is usually

sufficient to solve the Helmholtz equation without further modifications, similar to the BEM

K-H model as shown in a previous publication [63]. However, in this study, we focus on the

vectorial modelling being able to consider out-of-plane scattering. Hence, the FEM model is a

2D model with respect to scattering objects but considers in- and out-of-plane, and therewith

3D, illumination and scattering. The PML is considered by the matrix Λ in Eqs. (23) and (25),

which corresponds to the identity matrix in S; S̄ and becomes complex in SPML as described

by Sacks et al. [64]. The damping functions of the PML are implemented to constitute an

exponential damping with quadratic function of form f(z) = αz(z − z0)
2 in the exponent. z0

corresponds to the z-coordinate of the interface between the physical and PML domain. The

damping constant αz = 1 is chosen and the thickness of the PML is given by 800 nm. The PML

in x direction is implemented in exactly the same manner. Note that the PML parameters

are chosen to ensure high accuracy. For a more efficient modelling, PML parameters can be

adjusted to decrease the size of the PMLs. However, optimizing PML parameters is out of the

scope of this paper. Therefore, for more information on PMLs, we refer to Jin [61].

In order to obtain a differential equation for the total electric field in all domains, Eq. (23)

is rewritten to

∇× Λ−1∇× Etot − k2εΛEtot = ∇× Λ−1∇× Einc − k2εΛEinc. (25)
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Since the scattered field is damped to zero in the PML, Etot(∂S) = Einc(∂S) is chosen at the

boundary ∂S.

Solving a 3D vector equation discretising a 2D area, the electric fields are split into one

part parallel and the other perpendicular to the domain. Further, the relation Eµ(x, y, z) =

Eµ(x, z) exp
(
ikinc

y y
)
, µ = sca, tot, inc, where kinc

y is the y-component of the incident wave vector

kinc =

 kinc
x

kinc
y

kinc
z

 = k

 sin
(
θinc

)
cos

(
φinc

)
sin

(
θinc

)
sin

(
φinc

)
− cos

(
θinc

)
 , (26)

with the incident angles θinc and φinc as sketched in Fig. 2(b), is considered to calculate y-

derivatives analytically. Note that φinc = 0 and φinc = π correspond to the 2D case where

the plane of incidence corresponds to the xz-plane. The incident field is described by a plane

wave Einc = R(θinc, φinc)E0 exp
(
ikinc · r

)
, where the matrix R ensures that the electric field is

perpendicular to kinc and E0 includes the amplitude and the initial polarisation in xy-plane [37,

39].

The resulting boundary value problem is solved using the open-source software NGSolve [65].

For the parallel part of the electric field, Nédélec elements of third order are used; the vertical

part is approximated by Lagrange elements of same order [66]. The geometry is discretised in

triangular elements, where the maximum distance between two adjacent elements is restricted

to λ/(5n) with n being the refractive index of the respective medium.

y
z

x

(a) (b)

Figure 2: (a) Sketch of a 3D cylinder corresponding to the physical scattering object considered in Sec. 3.1, exemplary
for a 2D scattering object. A cross-section with area S of the cylinder is used in the FEM simulation. (b) Scattering
geometry for the FEM simulation with the scattering object S, the surrounding medium S̄, and the PML medium SPML.
The boundary of the structure is marked by ∂S. Further, the incident angles, wave vector and electric field are sketched.

2.4 Local Field Fourier Modal Method

The FMM method is widely used for calculating the electromagnetic response from periodic

structures. It is based on the Fourier plane wave decomposition of all periodic functions and

has gained popularity due to its relative simplicity and efficiency for a wide class of problems.
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In particular, the method is suitable for large unit cell simulation. Simulation of scattering from

finite structures using the FMM may be achieved by either using absorbing boundaries or by

using light confinement. In the latter case you first make a periodic implantation of the finite

structure and secondly confine the incident light to one unit cell.

Here we present a method to extend the Fourier modal method to aperiodic/finite structures

using field localisation. We call the method for Local field Fourier modal method (LFFMM) and

use a Gaussian beam as our local field. A Gaussian beam cannot be used directly by FMM, so

we need to make a plane wave decomposition (PWD) of the Gaussian field. The PWD used here

is called the angular spectrum representation and it is a mathematical technique to describe

optical fields in homogeneous, isotropic, linear and source-free media as a series expansion of

plane waves with variable amplitudes and propagation directions. We will use the 2D PWD in

reference [67, 68] for the decomposition of the incident Gaussian amplitude (Einc) given by

Einc(x, y, z = 0) = exp

{
−

[(
x

w0x

)2

+

(
y

w0y

)2
]}

, (27)

where w0x and w0y are the incident beam waist along the x and y directions, respectively.

In the angular spectrum picture, we draw a propagation axis z and consider the field at the

beam waist plane (z = 0) transverse to the propagation direction. In this plane we can evaluated

the angular spectrum F (kx, ky) as the Fourier transform of the complex amplitude distribution

Einc. The Fourier transformation may replace the angular spectrum theory in the vicinity

of the Gaussian beam waist since the z-component of the wave-vector is almost equal to the

wave-number (k). Consequently, a Gaussian beam can be expressed as a superposition of many

plane waves by the inverse Fourier transformation, which is called the angular spectrum of plane

waves [69]. The process can be expressed as

Einc(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
F (kx, ky) exp [i(kxx+ kyy + kzz)] dkxdky, (28)

where ku is the wave vector component along the u (u = x, y or z) direction. The 2D PWD

determines the plane-wave spectrum of the incident Gaussian beam by applying a 2D discrete

Fourier transform. Since the incident electric field needs to be represented as a discrete set of

plane waves in our implementation, we rewrite Eq. (28) as a discrete transformation. If the

number of sampling points, along the direction u (u = x or y), over the interval−umax ≤ u ≤ umax

is Mu, then the incident amplitude at z = 0 can be expressed in terms of its plane-wave spectrum

as

Einc(x, y, z = 0) =

Mx/2−1∑
mx=−Mx/2

My/2−1∑
my=−My/2

F
(
kx,mx , ky,my

)
exp

[
i
(
kx,mxx+ ky,myy

)]
, (29)

where ku,mu = mu∆k is the wave vector component along the u (u = x or y) direction and

∆k is the sampling spacing. For the (mx,my) sub-beam, the z wave vector component can be

expressed as

kz,mx,my =
(
k2 − k2

x,mx
− k2

y,my

)1/2

. (30)
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Therefore, each propagating component of the (mx,my) sub-beam can be specified by an incident

angle, an azimuth angle, and a plane-wave angular spectrum with the application of 2D PWD.

Analytical integration of the normally incident Gaussian beam mode TEM00 in Eq. (27) is given

by Eq. (31).

F
(
kx,mx , ky,my

)
=

w0xw0y

4π
exp

{
−
[(w0x

2
kx,mx

)2

+
(w0y

2
ky,my

)2
]}

. (31)

Parseval’s theorem tells us that the integral over real space is equal to the integral over

Fourier space∫ ∞

−∞

∫ ∞

−∞

∣∣Einc(x, y, z = 0)
∣∣2 dxdy = (2π)2

∫ ∞

−∞

∫ ∞

−∞

∣∣F (
kx,mx , ky,my

)∣∣2 dkxdky. (32)

Clearly, Eqs. (27) and (31) are bounded such that they are zero outside the intervals

[−xmax, xmax] × [−ymax, ymax] and [−kx,max, kx,max] × [−ky,max, ky,max]. To determine umax and

ku,max, we replace the limits of integration in Eq. (32) with finite values, choosing ±xmax and

±ymax large enough so that the Gaussian profile is negligible outside this region. For ±kx,max

and ±ky,max, we ensure that propagating modes do not exceed 2π/λ and adjust these values

until the error in Eq. (32) is below 1× 10−10.

We will use the sampling spacing ∆ and ∆k along the two directions in real space and

k-space. The Nyquist-Shannon sampling theorem, for one direction, requires that the following

relation between the sampling spacing ∆, ∆k and umax, ku,max is satisfied

π
∆
≤ ku,max

π
∆k

≤ umax. (33)

In this work, we choose ∆ = π/(4ku,max) and ∆k = π/(4umax). The sampling points Mu

may now be written as the nearest even integer of (2u/∆). Furthermore the incident angle

(θmx,my) and azimuth angle (ϕmx,my) of the sub-beam (mx,my) are given by

θmx,my = arccos

(
kz,mx,my

k

)
, (34)

ϕmx,my = arctan

(
kmy

kmx

)
. (35)

If the Gaussian beam is incident at an arbitrary angle of incidence for the central beam

(mx = my = 0) as well as an azimuth angle of the central beam, the expression for the incident

wave-vector needs to be modified to

k′ = RθincRφinc

 kx,mx

ky,my

kz,mx,my

 , (36)

where

Rθi =

 cos θinc 0 sin θinc

0 1 0

− sin θinc 0 cos θinc

 , (37)
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Rφinc =

 cosφinc sinφinc 0

− sinφinc cosφinc 0

0 0 1

 . (38)

Here, k′ is the rotated wave-vector, θinc the angle of incident of the central beam, φinc the

azimuth angle of the central beam, Rθinc and Rφinc are rotational matrices.

2.4.1 Single structure calculation

The near-field and far-field from a single structure are calculated by using the periodic FMM

method from reference [34]. FMM relies on solving Maxwell’s equations inside a medium that is

uniform in the z-direction (normal to the surface) so that the light propagating in the medium

can be regarded as plane waves and subsequently performing Fourier expansion of Maxwell’s

equation along the x- and y-directions. Analytical treatment of the wave equation in the

z-direction enables FMM to model uniform structures, with homogeneous material properties,

of arbitrary heights. General structures, that are not uniform or do have altering material

properties in the z-direction, are subdivided into layers with homogeneous material that are

uniform in the z-direction. A necessary requirement for a good layer representation is that

the integral over the permittivity and permeability for the layer representation is equal to

the integral over the design structure for the same parameter. In the following procedure, we

describe how to set up the FMM simulation region (1-2), how to calculate the near field for

one of the sub-beams in the series expansions of plane waves (3) and finally how to add up the

sub-beams in the series expansion (4).

1. Determine umax and ku,max using Parseval’s theorem.

2. Set the FMM pitch greater than 2umax and set the number of modal modes high enough to

ensure far field convergence [70].

3. Calculate the near field for all incident and azimuth angles of the sub-beams. Each sub-

beam field is multiplied with the associated angular spectrum amplitude F (kx,mx , ky,my)

obtained from Eq. (31). The calculation of the field for a sub-beam is divided into three

regions: the reflected region (z < 0), the structure layer (0 ≤ z ≤ L) and the transmitted

layer z > L. The field in the reflected and transmitted region may be calculated using

the standard Rayleigh expansion. The calculation of the field inside the structured layer

depends on the FMM implementation. The most common methods are the S-matrix [71]

and the enhanced transmittance matrix approach [72] used here. Further information on

the implementation is given elsewhere [73–75].

4. Apply the superposition principle to obtain the resulting field from the sub-beams fields.

The advantage of the presented LFFMM method with Gaussian beam illumination is that it

does not require any rewriting of the periodic FMM code and may thus be used together with

any commercial periodic FMM implementation. Another advantage is that you can obtain the

far-field in the same way by exchanging the near-field for the sub-beams with the far-field for the

sub-beams in the above procedure. This is in contrast to the aperiodic FMM in reference [76]

that requires the implementation of PML layers in the periodic FMM code and a near- to
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far-field transformation [77].
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Figure 3: (a) Gaussian and plane wave amplitude over a computational grid of [−3, 3] µm. (b) The Gaussian beam and
its angular spectrum representation obtained using Eq. (27) and Eq. (29) respectively, underlying the agreement between
the two.

In this paper, we numerically compare the FMM method with Gaussian beam illumination

with the Lorenz-Mie, BEM and FEM methods using plane wave illumination over an evalu-

ation grid of [−u, u] µm. A Gaussian beam needs to have a minimum beam waist radius of

approximately u2 µm in order to have nearly the same amplitude as a plane wave over the

evaluation grid. The plane wave and Gaussian amplitude for u = 3 µm are shown in Figure

3 (a) and reveal that we only have the same amplitude in a narrow region around the centre of

the computational grid. A direct comparison with the Lorenz-Mie, BEM and FEM methods

using plane wave illumination is, therefore, only possible in a narrow range around the centre

of the computational grid. Figure 3 (b) shows the Gaussian beam amplitude and its angular

spectrum representation for the FMM unit cell.

3 Results and discussion

3.1 Single cylinder

In this work, we consider a monochromatic plane electromagnetic wave with a wavelength of

0.5 µm illuminating a silicon cylinder with a radius of 0.5 µm and a refractive index of 4.289

+ 0.0489i [78] along the z-axis (see Figure 4(a)). The intensity of the total electric near-field,

i.e. the summation of the incident and scattered field from the cylinder in the xz-plane is obtained

by the FEM, BEM K-H, BEM M and LFFMM models for both TE and TM polarisations of the

incident light. The results are compared with the intensity of the total electric near-field solution

of the Mie scattering [79] from a single cylinder with the same specifications and illumination

geometry [80]. However, in the LFFMM model, the plane incident wave is approximated by

a Gaussian beam with a waist radius of 9 µm to minimise the effect of scattering from the

periodic structure. The intensity of the total electric near-field obtained by scattering from the

silicon cylinder using the Mie scattering model is shown in Figure 5 for (a) TE and (b) TM

polarisation of the incident light over the 2D evaluation grid of [-3, +3] µm in the xz-plane. The

sampling distance is set to 10 nm along both the x and z axes. The same evaluation grid and

15



sampling distance are used to simulate the intensity of the total electric field corresponding to

the FEM, BEM K-H, BEM M and LFFMM models. Additionally, the amplitude of the incident

electromagnetic field is considered as unity for both the Mie and all rigorous models.

Figure 4: Evaluation grid and illumination geometry for the (a) cylinder and (b) sinusoid profile in the xz-plane. k,
ETE and ETM represent the illumination wave vector, and electric field vectors regarding the TE and TM polarisation,
respectively.

Figure 5: The 2D intensity of the total electric near-field scattered from a silicon cylinder (radius of 0.5 µm and a
refractive index of 4.289 + 0.049i) obtained by the plane wave Mie scattering model for (a) TE and (b) TM polarisation
of a monochromatic (wavelength of 0.5 µm) plane wave incident on the cylinder along the -z-axis.

3.1.1 TE mode

Figure 6 shows the 2D difference of the intensity of the electric near-field scattered from the

cylinder obtained by the (a) LFFMM, (B) BEM K-H, (c) FEM and (d) BEM M models and

the plane wave Mie scattering model for the TE polarisation in the xz-plane. In Figure 6, the

colourbar scale is chosen so that more than 99.5% of the values of the difference between the

intensity of the electric field obtained by the presented models and the Mie model fall within

the same range. Figure 6 (b) and (c) illustrate that the difference between the intensity of the

electric field obtained by the FEM and BEM K-H model and the Mie model is insignificant

for the TE polarisation. Figure 6 (a) illustrates that the LFFMM model provides accurate
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results, specifically in the range of [−1, +1] µm along the x-axis, where the Gaussian and

plane wave amplitudes are almost identical. It is important to note that the results beyond

this region are not directly comparable to the Mie model due to the substantial impact of

amplitude differences between Gaussian and plane waves. Within this limited range, we observe

a substantial agreement between the LFFMM and Mie calculations. A closer look reveals the

onset of faint periodical areas in the reflection. Our simulation suggests that these spurious

modes are caused by the FMM meshing. In this study, the conventional FMM meshing grid,

often referred to as staircase approximation, is employed [34]. This grid approximates the

cylindrical geometry by using rectangular layers within the Euclidean plane. Circular resonance

modes, like whispering gallery modes, cannot propagate as well in the FMM grid since they

do not possess the same symmetry as a cylindrical grid. We may, therefore, observe spurious

modes by the interaction of resonance modes with the FMM grid.

To quantify the difference between the intensity of the total electric field obtained by each

model and the Mie method for the TE polarisation, the mean value of the relative error of the

intensity of the total electric field obtained by each model over the evaluated grid of [−3, +3]

µm is calculated. Results are shown in Figure 6, and presented in Table 1 (first row). Results

indicate that the relative error of the intensity of the total electric field obtained by the FEM,

BEM K-H, BEM M and LFFMM models for the TE polarisation across the entire evaluation

grid is less than 0.05%, 0.3%, 17% and 12%, respectively. In the BEM K-H model, elements are

represented by source points on the surface. Through surface discretisation, the object’s profile

is uniformly sampled with a spatial sampling distance of 2.5 nm, resulting in 800 source points

on the surface boundary with a maximum Euclidean distance of 0.05 µm (λ/10) between them.

In the BEM M model, the cylinder has a finite length of 15 µm along the y-axis and the edge

lengths of the triangular surface elements vary slightly between 0.03 µm and 0.04 µm (< λ/10).

Through additional investigations using different cylinder lengths, we found that a large part of

the remaining deviation in the BEM M model result is due to the cylinder’s finite length, which

induces additional edge effects. In the BEM models, the error in the calculated intensity grows

notably along the cylinder’s boundary due to the spatial singularity of the Green’s function

kernel. This, in turn, results in a high relative error in intensity on the boundary when compared

to the Mie model, particularly where the source point coincides with the field point. Eliminating

the singular points located on the boundary of the cylinder (less than 0.1% of the total data

points) decreases the mean relative error to approximately 0.1% in the BEM K-H, and 9% in

the BEM M model. In the LFFMM model, restricting the comparison to the evaluation grid of

[−1, +1] µm along the x-axis and [−3, +3] µm along the z-axis, reduces the mean relative error

to less than 3%.

Figure 7 shows the intensity profile of the total electric near-field obtained by scattering

from the cylinder at (a) z = −2 µm, (b) z = −1 µm, (c) z = +2 µm and (d) z = +1 µm along

the x-axis (as shown in Figure 5 (a) by the yellow dashed line) using the BEM K-H, BEM M,

FEM, LFFMM and Mie models for the TE incidence polarisation. Figure 8 shows the intensity

profile of the total electric near-field obtained by scattering from the cylinder at (a) x = +0.7

µm, (b) x = +2 µm along the z-axis (as shown in Figure 5 (a) by the white dashed-dotted

line) using the BEM K-H, BEM M, FEM, LFFMM and Mie models for the TE incidence

polarisation. As shown in Figure 7 and 8, the extracted profiles exhibit a strong correspondence
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among themselves and also with the Mie model. The profiles extracted using the LFFMM

model highlight that the dissimilarity between this model and the Mie model increases as the

amplitudes of the incident field between them diverge.

Figure 6: The 2D difference of the intensity of the total electric near-field obtained by scattering from a silicon cylinder
using the (a) LFFMM, (b) BEM K-H, (c) FEM and (d) BEM M models and the plane wave Mie scattering model (TE
incidence polarisation).

Figure 7: Intensity profile of the total electric near-field obtained by scattering from a silicon cylinder at (a) z = −2 µm,
(b) z = −1 µm, (c) z = +2 µm and (d) z = +1 µm along the x-axis using the BEM K-H, BEM M, FEM, LFFMM and
plane wave Mie models (TE incidence polarisation).
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Figure 8: Intensity profile of the total electric near-field obtained by scattering from a silicon cylinder at (a) x = +0.7 µm,
(b) x = +2 µm along the z-axis using the BEM K-H, BEM M, FEM, LFFMM and plane wave Mie models (TE incidence
polarisation).

3.1.2 TM mode

Figure 9 shows the 2D difference of the intensity of the electric near-field from the cylinder

by the (a) LFFMM, (b) BEM K-H, (c) FEM and (d) BEM M models and the plane wave

Mie scattering model for the TM polarisation in the xz-plane. In this figure, the scale of the

colourbar is chosen to be similar to that of Figure 6. Hence, one can compare the simulated

result obtained by each model for the TE polarisation to that of the TM polarisation.

Figure 9 (c) illustrates that the difference between the intensity of the electric field obtained

by the FEM model and the Mie model is insignificant for the TM polarisation. In the BEM

K-H model, the object is sampled similarly to the TE mode. However, comparing Figure 6 (b)

and Figure 9 (b), it is noticeable that in the BEM K-H model, due to the indirect calculation of

the total electric field regarding the TM incidence polarisation, the error in the total electric

field is in comparison to the case of TE incidence polarisation. As mentioned in section 2.1,

in the BEM K-H model, only the tangential component of the electromagnetic field (Hy) is

calculated to fully describe the electromagnetic field in the case of TM polarisation. Therefore,

the electric field is obtained indirectly by applying the curl operator to Hy and multiplying

the outcome by a factor including the permittivity of the medium through which the light is

propagating using Eq. (2). Since the permittivity has different values inside and outside the

cylinder, the error of the total electric field is increased at the surface boundary. In the LFFMM

model, the electric fields are calculated directly and the magnetic fields are obtained by applying

a curl operation. As discussed in 3.1.1, in the LFFMM model, the difference in amplitude of

the incident wave over the entire grid, as well as the FMM meshing approach, are the two

primary sources contributing to the deviation from the plane wave Mie model. Therefore, more

accurate results are expected in the central region along the x-axis. Furthermore, the staircase

approximation used in this work causes abrupt permittivity jumps at the meshing boundaries,

leading to nonphysical hot spots near the surface boundary. However, the ongoing research

indicates that this effect may be significantly reduced when the z-component of the electric field
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is calculated in Fourier space. This is because the Fourier space approach uses soft boundaries,

allowing the external and internal cylindrical fields to cross the structure’s boundary. Future

studies are anticipated to provide insights into this matter. Figure 9 demonstrates that these

hot-spots have a significant influence on the near-field behaviour. Hence, it is evident that the

standard FMM meshing method is not able to provide near-field intensity calculations for a

cylinder with the same degree of accuracy as the Mie calculations (see the far-field comparison

results between the FEM and FMM model in section 6). Therefore, a Fourier space electrical

field calculation with more advanced meshing methods, such as adaptive spatial resolution or

curvilinear transformations, should be employed to achieve more accurate results in LFFMM

concerning cylindrical structures.

To quantify the difference between the intensity of the total electric field obtained by each

model and the Mie method for the TM polarisation, the mean value of the relative error of the

intensity of the total electric field obtained by each model over the evaluated grid of [−3, +3]

µm are calculated and shown in Figure 9. Results are also presented in Table 1 (second row).

The results reveal that, for the TM polarisation across the entire evaluation grid of [−3, +3]

µm, the relative error of the intensity of the total electric field obtained by the FEM, BEM

K-H, BEM M and LFFMM models is approximately 0.06%, 1%, 5% and 13%, respectively.

Removing the singular points located on the boundary of the cylinder (less than 0.1% of the

total data points) decreases the mean relative error to approximately 0.9% in the BEM K-H,

however, it does not significantly change in the BEM M and LFFMM models. In the LFFMM

model, restricting the comparison to the evaluation grid of [−1, +1] µm along the x-axis and

[−3, +3] µm along the z-axis (the region in which the deviation of incident light amplitude is

less than 3%), reduces the mean relative error to less than 9%. It is worth mentioning that

the relative error of the intensity of the total electric field for all models can be decreased by

increasing the number of source points on the surface boundary or decreasing the mesh size, at

the cost of increasing the computational time.
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Figure 9: The 2D difference of the intensity of the total electric near-field obtained by scattering from a silicon cylinder
using the (a) LFFMM, (b) BEM K-H, (c) FEM and (d) BEM M models and the plane wave Mie scattering model (TM
incidence polarisation).

Figure 10 shows the intensity profile of the total electric near-field obtained by scattering

from the cylinder at (a) z = −2 µm, (b) z = −1 µm, (c) z = +2 µm and (d) z = +1 µm along

the x-axis (as shown in Figure 5 (b) by the yellow dashed line) using the BEM K-H, BEM M,

FEM, LFFMM and Mie models for the TM incidence polarisation. Figure 11 shows the intensity

profile of the total electric near-field obtained by scattering from the cylinder at (a) x = +0.7

µm, (b) x = +2 µm along the z-axis (as shown in Figure 5 (b) by the white dashed-dotted

line) using the BEM K-H, BEM M, FEM, LFFMM and Mie models for the TM incidence

polarisation. As illustrated in Figure 10 and 11, the intensity profiles obtained by the FEM,

BEM K-H, BEM M and LFFMM (within the central region along the x-axis) models display a

significant consistency both among themselves and when compared to the Mie model.
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Figure 10: Intensity profile of the total electric near-field obtained by scattering from a silicon cylinder at (a) z = −2 µm,
(b) z = −1 µm, (c) z = +2 µm and (d) z = +1 µm along the x-axis using the BEM K-H, BEM M, FEM, LFFMM and
plane wave Mie models (TM incidence polarisation).

Figure 11: Intensity profile of the total electric near-field obtained by scattering from a silicon cylinder at (a) x = +0.7
µm, (b) x = +2 µm along the z-axis using the BEM K-H, BEM M, FEM, LFFMM and plane wave Mie models (TM
incidence polarisation).

Table 1: Mean value of the relative error of the intensity of the total electric field obtained from the FEM, BEM K-H,
BEM M and LFFMM models over the evaluated grid of [−3, +3] µm regarding the TE and TM polarisation of the
incident light.

Polarisation

Model
FEM

BEM K-H

(raw)

BEM K-H

(modified)

BEM M

(raw)

BEM M

(modified)

LFFMM

(raw)

LFFMM

(modified)

LFFMM

(Gaussian)

TE 0.0004 0.0024 0.0012 0.1687 0.0946 0.1137 0.0260 0.0116

TM 0.0006 0.0111 0.0092 0.0520 0.0502 0.1310 0.0899 0.0556
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To demonstrate the influence of the Gaussian amplitude on the difference between the LFFMM

model and the plane wave Mie scattering model for the total evaluation grid, a comparison is

made between the LFFMM model and the Mie model while the object is illuminated by the

Gaussian wave illustrated in Figure 3. Figure 12 shows the 2D difference of the intensity of the

total electric near-field, obtained by scattering from the silicon cylinder, using the LFFMM

model and the Gaussian Mie model for the (a) TE and (b) TM polarisation of the incident

light. The mean relative error between the LFFMM model and the Mie model using the same

Gaussian beam is approximately 1% and 5% for the TE and TM modes, respectively (see the

last column of Table 1). The results illustrate that there is an insignificant error in the intensity

of the total electric near-field obtained by the LFFMM model when compared to the Mie model

under Gaussian wave illumination.

Figure 12: The 2D difference of the intensity of the total electric near-field, obtained by scattering from a silicon cylinder,
using the LFFMM and the Mie model while the object is illuminated by the Gaussian wave illustrated in Figure 3, for
the (a) TE and (b) TM polarisation of the incident light.

3.2 Sinusoidal profile

To demonstrate the robustness, flexibility and adaptability of the FEM, BEM K-H, BEM M

and FMM models, the intensity of the total (near-) electric field obtained by scattering from a

periodic object is compared. Consider a monochromatic plane electromagnetic wave with an

amplitude of unity and a wavelength of 0.5 µm illuminating a silicon sinusoidal profile at an

incident angle of 30◦ with respect to the -z axis (see Figure 4(b)). The amplitude and pitch

value of the sinusoidal profile is considered 0.1 µm and 0.3 µm, respectively, and the object’s

refractive index is 4.289 + 0.0489i. The maximum slope angle of the sinusoidal profile (≈ 65◦)

is chosen so that only a rigorous model can predict the scattered light. The intensity of the

total electric near-field scattered from the sinusoidal profile in the xz-plane is obtained by the

FEM, BEM K-H, BEM M and FMM models for the TE and TM polarisation of the incident

light. In the BEM K-H model, similar to the single cylinder case, elements are represented by

source points on the surface. Through surface discretisation, the object’s profile is uniformly

sampled with a spatial sampling distance of 39 nm, resulting in a maximum Euclidean distance

of 0.05 µm (λ/10) between the source points. In the BEM K-H and BEM M models, the profile
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is considered quasi-periodic since a sine wave is extended over 100 and 55 cycles, respectively.

For the BEM M 3D model, the sinusoidal grating has a finite depth of 3 µm along the y axis.

3.2.1 TE mode

The intensity of the total electric near-field obtained by scattering from the sinusoidal profile

for the TE polarisation of the incident light is shown in Figure 13 using the (a) FEM, (b) BEM

K-H, (c) BEM M and (d) FMM, over the 2D evaluation grid of [-0.15, +0.15] µm along the

x-axis and [-2, +2] µm along the z-axis. The sampling distance is set to 2 nm along both the x

and z axes.

Figure 14 shows the intensity profile of the total electric near-field obtained by scattering

from a sinusoidal profile at (a) z = +0.5 µm, (b) z = -0.5 µm, (c) z = +1.5 µm and (d) z=

-1.5 µm along the x-axis using the BEM K-H, BEM M, FEM and FMM models for the TE

incidence polarisation. Figure 15 shows the intensity profile of the total electric near-field

obtained scattering from a sinusoidal profile at (a) x = +0.05 µm, (b) x = -0.05 µm, (c) x =

+0.1 µm and (d) x = -0.1 µm along the z-axis using the BEM K-H, BEM M, FEM and FMM

models for the TE incidence polarisation.

Figure 13: The 2D intensity of the total electric near-field obtained by scattering from the sinusoidal profile for the TE
polarisation of the incident light using the (a) FEM, (b) BEM K-H, (c) BEM M and (d) FMM models in the xz-plane.
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Figure 14: Intensity profile of the total electric near-field obtained by scattering from a sinusoidal profile at (a) z = +0.5
µm, (b) z = -0.5 µm, (c) z = +1.5 µm and (d) z= -1.5 µm along the x-axis using the BEM K-H, BEM M, FEM and
FMM models (TE incidence polarisation).

Figure 15: Intensity profile of the total electric near-field obtained by scattering from a sinusoidal profile at (a) x = +0.05
µm, (b) x = -0.05 µm, (c) x = +0.1 µm and (d) x = -0.1 µm along the z-axis using the BEM K-H, BEM M, FEM and
FMM models (TE incidence polarisation).

3.2.2 TM mode

The intensity of the total electric near-field obtained by scattering from the sinusoidal profile

for the TM polarisation of the incident light is shown in Figure 16 using the (a) FEM, (b) BEM

K-H, (c) BEM M and (d) FMM models, over the same evaluation grid and sampling distance

along the x and z axes as considered in the TM polarisation case.

Figure 17 shows the intensity profile of the total electric near-field obtained by scattering

from a sinusoidal profile at (a) z = +0.5 µm, (b) z = -0.5 µm, (c) z = +1.5 µm and (d) z=

-1.5 µm along the x-axis using the BEM K-H, BEM M, FEM and FMM models for the TM

incidence polarisation. Figure 18 shows the intensity profile of the total electric near-field

obtained scattering from a sinusoidal profile at (a) x = +0.05 µm, (b) x = -0.05 µm, (c) x
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= +0.1 µm and (d) x = -0.1 µm along the z-axis using the BEM K-H, BEM M, FEM and

FMM models for the TM incidence polarisation. Figures 13 to 18 demonstrates a significant

agreement in the intensity of the total electric field scattered from the sinusoidal profile in the

xz-plane, obtained by the FEM, BEM K-H, BEM M, and FMM models, for both TE and TM

polarisations of the incident light. The mean value of the difference between the intensities of

the extracted profiles of figures 14, 15, 17 and 18, obtained by each pair of models, is within the

range of 0.0003 a.u. and 0.09 a.u. for both TE and TM polarisations. This agreement illustrates

the capability of these models to accurately assess scattered light from profiles characterised by

high slope angles.

Figure 16: The 2D intensity of the total electric near-field obtained by scattering from the sinusoidal profile for the TM
polarisation of the incident light using the (a) FEM, (b) BEM K-H, (c) BEM M and (d) FMM models in the xz-plane.

Figure 17: Intensity profile of the total electric near-field obtained by scattering from a sinusoidal profile at (a) z = +0.5
µm, (b) z = -0.5 µm, (c) z = +1.5 µm and (d) z= -1.5 µm along the x-axis using the BEM K-H, BEM M, FEM and
FMM models (TM incidence polarisation).
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Figure 18: Intensity profile of the total electric near-field obtained by scattering from a sinusoidal profile at (a) x = +0.05
µm, (b) x = -0.05 µm, (c) x = +0.1 µm and (d) x = -0.1 µm along the z-axis using the BEM K-H, BEM M, FEM and
FMM models (TM incidence polarisation).

4 Conclusion

Due to the increasing use of freeform surfaces, surfaces with technologically advanced texturing,

and additively manufactured structures in engineering, the aerospace industry and biology,

analysing the complex features on the surface is becoming more critical. Rigorous scattering

models have thus been widely developed to predict the scattered light from complex surface

geometries including overhangs and re-entrant features, where multiple scattering is inevitable.

In this paper, the intensity of the total electric near-field scattered from a silicon cylinder of

the radius of 0.5 µm and a refractive index of 4.289+0.0489i is simulated using four different

rigorous models based on Maxwell’s equations including the FEM, two approaches based on the

BEM method (BEM K-H and BEM M) and the LFFMM method. The cylinder is illuminated by

a monochromatic plane electromagnetic wave with a wavelength of 0.5 µm along the -z axis, and

both the TE and TM polarisations are considered for the incident light. In the LFFMM model,

the periodic FMM structure is transformed into a single structure using a localised Gaussian

input field. The intensity of the total electric field obtained by these models is compared using

the Mie solution as a reference over the evaluation grid of [-3, +3] µm in the xz-plane.

The results demonstrate strong agreement between the FEM, BEM K-H, BEM M, and

LFFMM models with Mie solutions for both TE and TM polarisations, confirming their accuracy

in simulating near-field scattering. FEM achieved a mean relative error of less than 0.1% for

both polarisations but is computationally intensive. The BEM K-H model, while maintaining

accuracy (0.1% error for TE, 0.9% for TM), is faster and more efficient as a 2D method. The

BEM M model showed a higher error (5% for TM, 10% for TE) but is more powerful for

treating surfaces with 3D profiles. LFFMM, while less accurate (3% error for TE, 9% for TM),

overcomes periodicity limitations with Gaussian illumination. It should be noted that LFFMM

is a newly developed rigorous scattering technique that employs localised fields instead of PML

layers. As a newly developed method, there is room for improvement, and ongoing efforts are
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being made to enhance its performance.

To assess the robustness, flexibility, and adaptability of the rigorous models, the intensity of

the scattered field from a periodic silicon sinusoidal profile is analyzed. A monochromatic plane

wave with a 0.5 µm wavelength illuminates the profile at a 30◦ angle to the z-axis. The profile

has an amplitude of 0.1 µm, a pitch of 0.3 µm, and a refractive index of 4.289 + 0.0489i. The

maximum slope angle of the profile is approximately 65 degrees, requiring a rigorous model to

predict the scattered light. The mean difference in the total electric near-field intensity scattered

from the sinusoidal profile, as calculated by the FEM, BEM K-H, BEM M, and FMM models

along various vertical and horizontal lines in the xz-plane, ranges between 0.0003 a.u. and 0.09

a.u. for both TE and TM polarisations, assuming the amplitude of the incident electromagnetic

field is unity for all rigorous models. This highlights the models’ effectiveness in evaluating

scattered light from complex profiles.

We have shown that the four models, all based on different methods, yield consistent results.

This result suggests that each one is viable for solving real-world problems where a rigorous

scattering model is needed. Each model offers its own set of advantages, so the choice between

them should be made depending on the specific requirements of the application.
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