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The genetic architecture of breast papillary lesions
as a predictor of progression to carcinoma
Tanjina Kader 1,2, Kenneth Elder3, Magnus Zethoven1, Timothy Semple1, Prue Hill4, David L. Goode1,2, Niko Thio1, Dane Cheasley 1,
Simone M. Rowley1, David J. Byrne 1, Jia-Min Pang1, Islam M. Miligy5, Andrew R. Green5, Emad A. Rakha5, Stephen B. Fox1,
G. Bruce Mann3, Ian G. Campbell 1,2,6,7 and Kylie L. Gorringe1,2,6,7✉

Intraductal papillomas (IDP) are challenging breast findings because of their variable risk of progression to malignancy. The
molecular events driving IDP development and genomic features of malignant progression are poorly understood. In this study,
genome-wide CNA and/or targeted mutation analysis was performed on 44 cases of IDP, of which 20 cases had coexisting ductal
carcinoma in situ (DCIS), papillary DCIS or invasive ductal carcinoma (IDC). CNA were rare in pure IDP, but 69% carried an activating
PIK3CA mutation. Among the synchronous IDP cases, 55% (11/20) were clonally related to the synchronous DCIS and/or IDC, only
one of which had papillary histology. In contrast to pure IDP, PIK3CA mutations were absent from clonal cases. CNAs in any of
chromosomes 1, 16 or 11 were significantly enriched in clonal IDP lesions compared to pure and non-clonal IDP. The observation
that 55% of IDP are clonal to DCIS/IDC indicates that IDP can be a direct precursor for breast carcinoma, not limited to the papillary
type. The absence of PIK3CA mutations and presence of CNAs in IDP could be used clinically to identify patients at high risk of
progression to carcinoma.
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INTRODUCTION
Intraductal breast papilloma (IDP) is characterised by a continuous
myoepithelial cell layer with the presence of fibro-vascular papillary
stalks and the ductal epithelium1. IDPs are a common finding on
percutaneous biopsy of screen-detected abnormalities2,3 and can
occur either without atypical ductal hyperplasia (ADH) (i.e. benign)
or with ADH4. In this study, IDP with ADH is referred to as “atypical
IDP” when there is ≤3mm of atypical cell populations5,6 (Fig. 1). IDP
has never been characterised at the molecular level in detail. There
are only a few low resolution cytogenetics studies evaluating copy
number alterations (CNA) in benign IDP (not associated with
carcinoma)7–11 but none included atypical IDP. Focused somatic
mutation studies have showed a high prevalence of PIK3CA
mutations and AKT1 pathway activation in both benign and
atypical IDP12,13, but interestingly not in papillary carcinoma (PC).
These findings raise a question about where IDP fits in the breast
cancer progression pathway. Although a diagnosis of IDP carries an
increased risk of developing breast cancer, it has long been
suggested that IDP could only directly progress to PC. However, it
is still inexplicable why IDP has been observed to co-exist with the
more common non-papillary forms of ductal carcinoma in situ
(DCIS)/ invasive ductal carcinoma (IDC)14–18.
In addition to their unknown biology, recent studies suggested

that the rate of developing subsequent ipsilateral breast cancer
following diagnosis of atypical IDP is higher (13.2% in 8 years) than
after benign IDP (5.8%)4,5,19. In addition to this significant
subsequent risk of future breast cancer associated with IDP, many
diagnoses of IDP in a core biopsy are subsequently found to
include DCIS or IDC upon surgical excision. These “upgrades” can
be as high as 37% for a core biopsy-based diagnosis of atypical

IDP and 7–19% for benign IDP14,19–24. Although treatment options
may vary among clinicians, omission of surgery for asymptomatic
IDPs is desirable. However, this goal would require a reliable
biomarker for predicting progression.
A detailed understanding of the genetic drivers of IDP might

provide an insight into molecular features of progression to
ultimately aid in clinical management. Therefore, in this study we
performed genetic analysis of IDP cases without carcinoma (“pure”
IDP: both benign and atypical IDP) and IDP with coexisting
carcinoma of different grades (“synchronous” IDP; ascertained based
on cancer diagnosis with IDP being an incidental finding) (Fig. 1).

RESULTS
Sample characteristics and architectural features of pure
papilloma cases
All pure IDP cases (IDP without coexisting carcinoma) (n= 24,
Supplementary File 1) were ER+ with a mosaic staining in benign
cases but diffuse strong nuclear staining seen in areas with atypia.
p63 staining to highlight the myoepithelial cells at the epithelial-
stroma interface, which is commonly used to confirm a diagnosis
of IDP, was present in all cases. The pure IDP cohort was enriched
with benign IDP (n= 20) compared to atypical IDP lesions (n= 4).
Atypical IDP lesions were confirmed as CK5/6 negative in the
atypical proliferative areas, which were reconfirmed to be <3mm
of atypia (e.g. Supplementary Fig. 1). Detailed features of benign
and atypical IDP lesions are shown in Supplementary File 1. The
median follow-up time was 10 years (5–21 years) with no patients
recording a subsequent carcinoma diagnosis in that period. The
median age of the patient cohort was 60 (range 20–76). Based on
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the DNA availability, different platforms, either low-coverage
whole-genome sequencing (LC WGS), Affymetrix Molecular
Inversion Probe (MIP) SNP arrays or a targeted sequencing panel
was chosen to identify CNA (Fig. 1). All of these platforms have
been previously validated to generate concordant CNA profiles25.

Genetic features of pure papilloma are distinct from ductal or
papillary carcinomas
The CNA observed in the pure IDP cohort (n= 24) are summarised
in Table 1 and in Fig. 2a. A minority of IDP (37%, 9/24 cases) had
CNA and when observed, these predominantly involved a single
CN event (6/9 cases, 67%). There was no difference in the
presence of any CNA between benign (7/20 cases) and atypical
IDP (2/4 cases, p= 0.99, Fisher Exact test, two-sided, OR 1.86, 95%
CI 0.21–16.18; Fig. 2b) and therefore the data for these were
combined for subsequent analyses.
The mean fraction of the genome altered (FGA) was 1.6% (range

0–15%; Fig. 2c). The most prevalent CN changes were chromo-
some X loss (partial or full; 3/24 cases, 13%), followed by 16q loss
(2/24 cases, 8%), and 7q loss (partial/full arm; 2/24 cases, 8%)
(Table 1). CN change was observed in both symptomatic and
asymptomatic IDP (p= 0.36, Fisher Exact test; two-sided, OR 0.31,
95% CI 0.05–1.94, Fig. 2d). CN change was not associated with
patient age (p= 0.11, Mann-Whitney test).
As it has long been thought that benign IDP could progress to

only PC due to the similar “papillary”morphology, the CNA data of
pure IDP was compared with existing Fluorescence in situ
hybridisation (FISH) data for PC7–9. The spectrum of CNA of G1
PC reported in these studies is summarised in Table 1.
Concomitant 16q loss and 1q gain were the most common
events in PC (9/13 cases, 69%), which was very different to the
IDPs (8% 16q loss, 0% 1q gain).
The spectrum and frequency of CNA in the pure IDP cohort

were also compared with previously published data from LG DCIS,
HG DCIS26,27, grade 1 (G1) and grade 3 (G3) IDC (METABRIC)28 (Fig.
2e, Table 1). Lower CNA frequencies were observed in pure IDP

compared to DCIS and IDC of both low and high grades (Fig. 2c,
p < 0.0001). CNA common to either LG or HG carcinoma were only
infrequently observed (e.g. 16q loss, 17p loss). Other CNA
recurrently detected in IDP were relatively rare in DCIS/IDC (e.g.
7q loss, X loss) (Table 1).
While pure IDP, unlike breast carcinoma, does not appear to be

strongly driven by CN change, one pure benign IDP case was an
exception (P17). The CNA observed in this case included gains of
17q, 19q, 19p, 6p, 1p and 15q as well as the loss of chromosome X,
most closely resembling a HG carcinoma. This symptomatic case
with nipple discharge had no atypia present and had not
progressed to carcinoma following excision during 7 years
follow-up.

Somatic mutations in IDP
Cases of pure IDP with sufficient DNA available (n= 9/24) were
sequenced using a targeted gene panel (258 genes27,29)
(Supplementary Table 1) to identify driver somatic mutations
(Fig. 3). Pure IDP displayed a low mutation burden with a median
of 1 somatic mutation (range 0–4). The most commonly mutated
gene was PIK3CA with 8 out of 9 (89%) IDP cases harbouring
known activating missense mutations. Exons 9 and 20 of PIK3CA
were sequenced in an additional four cases of pure IDP by Sanger
sequencing, which identified one additional mutation making a
total of 9 out of 13 pure IDP cases (69%) (8/12 benign and 1/1
atypical; Fig. 3).
No other recurrent somatic mutations were found in the pure

IDP cohort; however, single cases had known cancer hotspot
mutations in ERBB3 (Supplementary Fig. 2) and HRAS, and a
missense mutation in SPEN (Fig. 3). One case (P4) carried both
PIK3R3 and TP53 variants, both with low allelic frequencies (<0.1);
however, these could not be validated by Sanger sequencing due
to unavailability of DNA. Interestingly, this case also carried PIK3CA
and SPEN variants at higher allele frequencies (0.17, 0.52,
respectively, Supplementary Table 2), suggesting that a subclone
(s) had arisen carrying the PIK3R3 and TP53 mutations.
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Fig. 1 Description and definition of the intraductal papilloma (IDP) cohort. IDP were detected either in core biopsy samples or as incidental
findings in excision specimens of breast carcinomas. p63 was used to distinguish between an IDP (p63+) and encapsulated/solid papillary
carcinoma (PC: p63−). CK5/6 staining was used to evaluate the extent of atypical cells within IDP. If <3mm CK5/6-, the IDP was classified as
having atypia (i.e. papilloma with ADH, according to WHO guidelines). If the atypical populations were >3mm CK5/6-, then this was referred
to as papilloma with DCIS (i.e. papillary DCIS). We firstly undertook molecular characterisation of pure IDPs (Aim A), which were ascertained
based on only a diagnosis of IDP without any association of DCIS/IDC/PC. To investigate the precursor relationship of IDPs with ductal or
papillary in situ/cancer, the “synchronous” IDP cohort was investigated (Aim B). These cases were ascertained based on a carcinoma diagnosis
in which IDPs were incidental findings. In (Aim C), we compared pure IDP with those synchronous IDP that we found to be clonally related
to the coexisting carcinoma, in order to identify biomarkers of progression. Example of the cases were shown in the Supplementary Figs.
(1: pure, 3: synchronous). The analytic platforms used are indicated (for details: See Method).
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Fig. 2 CN analysis of pure papilloma and comparison to carcinoma. a Overall CNA profile of 24 pure papilloma cases. Top: Chromosome
number from 1–22 and X. YAxis: frequency of CN changes of all 24 cases. Bottom: Individual sample profiles. Blue=Gain; Red= loss. Purple= allelic
imbalance (MIP array samples only). b Number of cases of pure papilloma that showed CN change or no CN change based on the histopathological
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Clonality analysis of IDP synchronous with carcinoma
The clonal relationship between 20 IDP cases and synchronous
carcinoma (Supplementary File 1, Supplementary Fig. 3) were
explored using CNA profiles (n= 20) and targeted gene panel
sequencing where sufficient DNA was available (n= 9, Fig. 3).
Details of the cases are summarised in Supplementary File 1. The
synchronous carcinomas were divided into LG (LG DCIS),
intermediate grade (IG) (IG DCIS/grade 2 (G2) IDC) or HG (HG
DCIS/G3 IDC). All synchronous carcinomas were ER+, and three
carried an ERBB2 amplification (one papillary DCIS with mucinous
carcinoma and two HG DCIS/IDC). The histopathology of the
carcinomas were of no special type, apart from one mucinous
invasive carcinoma, and a papillary DCIS (in the same case, S11)
(Supplementary File 1).
Overall, 55% of the IDP (11/20 cases) were clonal with the

synchronous cancer. Only 9 out of these 20 synchronous cases
have both mutation and CNA data, generated by the targeted
sequencing panel (Fig. 1) and the remaining cases have only CNA
data derived from either LCWGS or MIP SNP arrays to assess
clonality. The majority of cases had at least three shared CNAs,
with or without shared point mutations (n= 7, e.g. Fig. 4a,
Supplementary Fig. 4), or a shared CN breakpoint and shared
point mutation(s) (n= 2, e.g. Fig. 4b). Two cases where the IDP
lesion and LG DCIS shared gain of chromosome 1q with the same
breakpoint were also considered clonal (Supplementary Fig. 5). If
the breakpoint was not the same we defined this as non-clonal, for
example in S13, the papillary component shared 1q gain with the
DCIS component, however, without a shared breakpoint (Supple-
mentary Fig. 6). We also considered clonal analysis based on
mutations detetcted by the targeted sequencing panel (n= 8
pairs) using a previously published method30. The clonality index
was >0.8 for all cases, reconfirming their clonal relationship
(Supplementary Table 3).
The rate of clonality was similar regardless of the grade of

synchronous cancer (LG (6/7 cases), synchronous IG (3/6 cases)
and synchronous HG (2/7 cases) carcinoma (p= 0.09, Fisher Exact
test, Fig. 5a). There was also no difference observed in clonality
rate according to tumour type with IDP being clonal and non-
clonal with DCIS that was solid, cribriform, comedo or papillary
type. However, a clonal relationship was significantly associated

with atypical IDP (10/12) compared to benign IDP (1/8) (p=
0.0045, Fisher Exact test, two-tailed, OR 35, 95% CI 2.63–465.39,
Fig. 5b). This was consistent with the striking difference observed
in terms of the type of papillary lesion between the pure and
synchronous IDP cohorts. Atypical IDP lesions were significantly
more frequent (n= 12) than benign (n= 8) in synchronous cases
(Fisher Exact test, p= 0.0045, two-tailed, OR 7.5, 95% CI
1.85–30.34, Supplementary Fig. 7) compared to pure IDP.
For clonal IDP lesions, 2/11 were in a different block, whereas 5/

9 non-clonal IDP lesions were in a different block, which was not
statistically significant (Fisher Exact test, p= 0.16, two-tailed, OR
5.63, 95% CI 0.75–42.36, Fig. 5c). The size of the synchronous
cancers was not associated with clonality rate (clonal mean size=
12mm, non-clonal mean size= 18.75 mm, p= 0.61, Mann-
Whitney test). There was no significant difference in the
percentage of nuclei positive for Ki67 between pure and clonal
IDPs (p= 0.093, Mann-Whitney test) nor pure and non-clonal IDPs
(p > 0.99, Mann-Whitney test) (Supplementary Fig. 8).

Genetic events in clonal and non-clonal papillary lesions
As another means of summarising the clonal relationships, an
unsupervised hierarchical cluster analysis was performed, which
showed that 7/11 of IDP which were clonal clustered together
with their associated carcinoma components (Fig. 5d). For these
cases, the CN profiles were the same (3/7 e.g. Fig. 4a, c) or had
only a few differences (4/7). The four non-clustering cases carried
2–4 times as many CNA in the carcinoma components compared
to the IDP components (e.g. Fig. 4b), which may explain their
clustering to different groups. Despite this non-clustering, we
contend that these cases are still clonally related due to (1) the
precise location of shared breakpoints (cases S2 and S6 shown in
Supplementary Fig. 5); (2) shared gain of chromosome 20 and 12,
shared loss of chromosome 11 and 13 (case S20, Supplementary
Fig. 9); and (3) a shared 1q gain along with a PIK3R1 deletion (case
S9, Supplementary Table 2, Fig. 4b). Overall, 8/11 (73%) clonal
cases had at least one additional CNA in the associated carcinoma.
In addition, four cases had an additional event in the IDP
component, suggesting these IDP lesions kept evolving on their
own. For non-clonal cases, the IDP components mostly clustered
together as a group due to their collective lack of CNA.

Fig. 3 Somatic mutations in papilloma. Mutations identified by targeted sequencing panel in pure papilloma (n= 9), non-clonal papilloma
(n= 3) and clonal papilloma (n= 6). Any CN changes as well as change only in either 1q gain, 16q loss or 11q loss along with histopathological
subtype of papilloma are shown. *Validated by Sanger sequencing.
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Although most of the synchronous carcinomas were ERBB2 non-
amplified, one ERBB2 amplified case, S11 (with both IG papillary
DCIS and mucinous carcinoma components), was shown by
multiple shared CN gains and losses to be clonal with the atypical
IDP lesion (Supplementary Fig. 10). While high level amplification
of ERBB2 was evident in the IDP and DCIS components, the
mucinous carcinoma component showed only a low level gain of
ERBB2 (validated by SISH), and an additional 13q loss (Supple-
mentary Fig. 10). The CN profiles might suggest that the mucinous
component, while sharing the same ancestor, branched out and
kept evolving on its own without ERBB2 amplification.
Eight out of nine non-clonal cases have no CN events. Three out

of these eight cases were subjected to targeted gene panel
sequencing, and two (S12 and S19) carried readily detectable
mutations not shared with the synchronous carcinoma, further
validating their non-clonal status (Fig. 3, Supplementary Tables 2
and 3, Supplementary Fig. 2). In contrast, at least one common
mutation between IDP and carcinoma components was found in
all six clonal cases sequenced on the gene panel, validating their
clonality (Fig. 3, Supplementary Table 3, Supplementary Fig. 2).
The shared mutations between IDP and carcinoma components
are detailed in Supplementary Table 2.
Due to the insufficient DNA for the remaining cases, four cases

(three non-clonal and one clonal) were subjected to only PIK3CA
hotspot mutation assessment by Sanger sequencing of exons 9
and 20. One of the non-clonal cases (S18) had a PIK3CA mutation
only in the IDP component (p.H1047R). Taken together, PIK3CA
mutations were found in 2 of 6 non-clonal IDP and 0/7 clonal IDP,
compared to 9/13 in pure IDP. There was a significant difference
observed in PIK3CA mutation status between pure and clonal IDP
cases (p= 0.006, Fisher Exact test, Fig. 5e).

Pure IDP lack some CN events frequent in breast carcinoma
The frequency of CN changes of pure, clonal and non-clonal IDP
lesions was compared. Non-clonal IDP cases (n= 9) showed a
significantly lower FGA than pure IDP (Fig. 5f, p= 0.04, Mann-
Whitney test) with almost no CN change, whereas clonal IDP had a
significantly higher FGA than pure IDP (p= 0.0002, Mann-Whitney
test). The specific CN changes among these three groups were
different with a significant enrichment of 1q gain, 16q loss and
11q loss in clonal IDP compared to pure IDP (p < 0.001, Fisher
Exact test, Fig. 5g, Table 1, Supplementary Table 4).
If the clonal papillomas represent a precursor lesion, we would

expect additional genetic events upon progression to carcinoma.
Indeed, the frequency of some CNA increased across the spectrum
of IDP to LG to HG DCIS/IDC (Table 1, Supplementary Table 4). In
particular, 5p gain was observed only in the carcinoma
components of three synchronous cases, including whole
chromosome 5 gain in two cases. In contrast, gains on 17q, 8q,
1q and loss of 16q, 22q, partial or full arm X, 10q were seen in both
clonal IDP and synchronous carcinoma, and are also common
alterations in DCIS/IDC.

Biomarkers for predicting risk of malignant progression of IDP
The existence of higher frequency and type of CNA in clonal IDP
than pure IDP cases (Fig. 5f, g) suggest that these are potential
genetic events predisposing to progression from IDP to carci-
noma. All 11 clonal IDP cases carried either 1q gain, 11q loss or
16q loss compared with only 2/24 of the pure IDP cases (p <
0.0001, Fisher Exact test, Fig. 6a) and 1/9 non-clonal IDP cases.
Moreover, for the cases with available mutation and CN data, a
significant difference was observed between pure and clonal
cases with the absence of PIK3CA mutation together with the
presence of any CN event (Fig. 6b, p= 0.0002, Fisher Exact test) or

Fig. 4 Example of CN changes of clonal papilloma. a Clonal papilloma case with LG DCIS (S3). b Clonal papilloma case with G2 IDC (S9).
c Example of a clonal papillary lesion case with HG DCIS (S16) as well as particular locations of shared breakpoint and the same gain of
chromosome 8q between the atypical papillary lesion (d) and HG DCIS (e). CN gain is indicated by blue and loss is indicated by red. Purple is
allelic imbalance and yellow is loss of heterozygosity.
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with any of 1q gain, 11q loss or 16q loss (p < 0.0001, Fig. 6c).
Interestingly, while the clonal IDP components lacked PIK3CA
activating mutations, 6/11 cases did harbour at least one change
that could affect the PIK3CA/AKT1 pathway including deletion in
PIK3R1 (n= 2), AKT1 mutation (n= 1), CN gain of PIK3CA (n= 2),
loss of PTEN (n= 1) or even gain of EGFR (n= 1).

DISCUSSION
While many clinicians would agree not to treat asymptomatic IDP
with surgical excision, the treatment decision still varies. Clinical
observational studies showed that IDP may progress to IDC of no
special type or cribriform subtypes4 or co-exist with DCIS/IDC14–17
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of various morphologies and grades14,18. Here we find that the
absence of CN events, regardless of histopathological subtype,
symptoms or age of the patient, is strongly associated with lack of
progression potential, raising the possibility that IDP showing no
CN events could be spared from routine surgical excision.
The finding that most pure IDPs have no CN events is supported

by previous locus-specific cytogenetics studies performed by FISH
(n= 7–12)7–10, as well as CGH studies (n= 2211, and n= 531). The
key limitations of previous IDP studies are the poor resolution of
the methods used, that have been performed only on benign IDP,
the lack of p63 staining to validate the diagnosis, the very small
sample sizes and the absence of CNA data for synchronous cases.
In addition, studies concentrating on somatic mutations in PIK3CA
and AKT1 in pure IDP and later carcinomas lacked CNA data12,13. In
the current study, we combine recent improvements in genomic
analysis technology with expert pathological review incorporating
p63 staining for a cohort consisting of both pure and synchronous
cases. Importantly, careful review for atypical IDP lesions was
carried out to distinguish them from high risk cribriform, micro-
papillary type ADH as suggested by recent WHO guidelines6.
Interestingly, IDP has previously been thought to be a precursor

only to PC, although evidence for this was circumstantial and
related to similar morphological features and the occasional
observation that PC could arise within the fibro-vascular core of
benign IDP4,32. In one LOH study, 4/11 benign IDP synchronous
with PC were clonal33. The relationship of IDP with other types of
breast cancer is unknown with only a single case of benign IDP
synchronous with IG DCIS and mucinous carcinoma being
reported to date, which showed that it was non-clonal11. The
present study definitively demonstrates that a subset of IDP can
directly progress to DCIS and IDC of any grade, which extends the
finding of a previous study that PC and DCIS share molecular
genetic features and likely have a common etiology34. Interest-
ingly, our finding of one case where IDP was clonal to both a
ERBB2 amplified papillary DCIS and a HER2-ve G1 mucinous breast
carcinoma suggests a broader commonality of molecular etiology
and is consistent with recent findings of similarities of mucinous
breast cancer and IDC35.
In our cohort, atypical IDP was more likely to be clonal with

synchronous cancer compared to benign IDP, which confirms
clinical data suggesting that atypical IDP lesions are more likely to
progress to carcinoma than benign IDP4,5,19. Clonal IDP cases
could be distinguished from non-clonal and pure IDP by the
presence of specific CN events, particularly 16q loss, 1q gain and
11q loss, which are alterations commonly identified in PC33 and
ductal carcinoma26,28. The origin of the carcinomas in cases that
were not clonal to the IDPs remain unknown although it is
possible that the coexisting lesions do have a common etiology,
but through genetic or epigenetic processes not detected in our
targeted assay. Additionally, although the synchronous IDP lesions
morphologically looked like IDP (p63 positive), we also considered
whether the dissected IDP lesions clonal with carcinoma were
colonized by the cancer components through the ducts. Since the
atypical populations of IDP will be at most 30% of the whole IDP

(by definition), if detection of genetic events was derived from the
carcinoma component, the log2 ratios of shared CNA and the
allele frequencies of shared variants would be reduced to at least
this proportion in the IDP data. However, such a reduction in log2
ratio or allele frequency was not seen.
Our study confirms and extends the findings of previous studies

showing that while PIK3CA mutation is common in both benign
and atypical pure IDPs12,13, they are rare in PC or IDC that arise in
the context of IDP. It is unclear whether the lack of PIK3CA
mutations in the clonal IDP/carcinomas is by chance due to the
limited cases (n= 6) or reflects an intrinsic biological difference
in carcinoma arising from an IDP. PIK3CAmutation is very common
in ductal carcinoma36, but as an initiating driver of proliferation
in IDPs may lead to an evolutionary dead-end, lacking malignant
potential. Weng et al.37 also reported that PIK3CA mutation in
various early breast lesions could provide only an advantage for
cellular proliferation, instead of driving towards carcinogenesis,
due to the lack of clonal PIK3CA mutations in carcinoma
components compared to synchronous neoplastic lesions. This
paradox remains to be explained, but is supported by the
identification of PIK3CA mutations, particularly in the kinase
domain, in overgrowth syndromes that lack any malignant
transformation38.
A strength of the current study is the high likelihood that the

pure IDP were genuinely low malignant potential lesions because
of the absence of subsequent carcinoma even after the long
follow-up period (median 10 years). Consequently, the absence
of CN events (1q gain/16q loss/11q loss) as well as the presence of
PIK3CA mutation in IDPs diagnosed in core biopsy irrespective of
histopathological features (benign/atypia) or symptoms have the
potential to be a biomarker of a low risk malignant potential
lesion.
In conclusion, our data suggest a revised model of breast cancer

progression, in which IDP, especially atypical IDP lesions, can be a
precursor lesion of both LG and HG carcinoma of both ductal and
papillary morphology without PIK3CA mutation (Fig. 6). The CN
state of chromosomes 1, 11 or 16 as well as the PIK3CA mutation
status of IDPs diagnosed in biopsies could be evaluated further as
an assay to predict which subset of patients diagnosed with IDP
could have the potential to develop carcinoma. However, the
limitation of this study is the small sample size, in particular of
pure atypical IDP, which needs to be overcome in the future. In
addition, we lack data for cases that have not been surgically
excised to assess the natural history of IDP with and without
certain genetic events. Our findings may also be relevant to
identify women at risk of upgrade to carcinoma when a papillary
lesion is detected in a biopsy, although this remains to be tested.
Such a prognostic tool might spare the majority of women
diagnosed with IDP from unnecessary surgery, which will
significantly reduce the treatment cost and associated psycholo-
gical and physical impact.

Fig. 5 Clonality of papillomas. a Number of clonal/non-clonal cases between the three grades of carcinoma. b Number of clonal/non-clonal
cases between the two histopathological subtypes (benign and atypical papillary lesions). c Number of clonal/non-clonal cases based on
whether they are in the same/different block. a–c Fisher Exact test was performed. **p < 0.01, ns not significant. d Unsupervised hierarchical
clustering of all clonal and non-clonal papilloma cases with carcinoma, based on CNA segments extracted from Nexus. Left: the sample ID and
the component of the cases (papilloma=P (orange)/DCIS=D (green)/IDC=I (red)/mucinous carcinoma=M (grey)); the grades of DCIS/IDC: low
grade=1, intermediate=2, high grade=3; papilloma: a= atypia/b= benign. Row dendrogram is coloured by individual sample ID regardless of
the components (papilloma/DCIS/IDC) (i.e. 1 case=1 colour). X axis: Chromosome number on top; blue=loss, red=gain. Clonal papilloma cases
that clustered together (n= 7) are marked with black asterisks and the remaining 4 clonal papilloma cases are marked with black hashtags.
e Number of cases with PIK3CAmutation in pure, clonal and non-clonal papilloma. Fisher Exact test was performed; **p < 0.01. f Comparison of
FGA in pure, clonal and non-clonal papilloma cases (Mann-Whitney two-tailed test), Error bars indicate mean and standard deviation; **p <
0.01, ***p < 0.001. g Frequency plots of CN gain (blue) and loss (red) in pure, clonal and non-clonal papilloma.
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Fig. 6 Biomarkers for predicting likelihood of progression to carcinoma and schematic representation of revised breast cancer
progression model including intraductal papilloma as a true precursor to both ductal and papillary carcinoma. a Number of cases with
any of the indicated CN events comparing pure, clonal and non-clonal papilloma. b Number of cases showing combinations of any CN change
and PIK3CA mutation. c Number of cases showing combinations of any of 16q loss/11qloss/1q gain and PIK3CA mutation. Fisher Exact tests
were performed; ****p < 0.0001, ***p < 0.001, **p < 0.01. d An unknown event in normal ductal epithelium produces a diploid tumour-
initiating cell (46 chromosomes) with a growth advantage that evolves to become benign papilloma. The benign papilloma presumably has a
proliferation advantage by often harbouring a PIK3CA mutation; however, this is insufficient to continue the clonal expansion for
tumorigenesis as shown by “evolutionary dead end” and could stay as benign without further progression. Occasionally benign papilloma
could have a selective advantage by gaining specific CNA to progress to atypical IDP lesion/ LG DCIS. Without a PIK3CAmutation, the initiating
cell could progress towards an atypical papillary lesion directly. Once CN changes in any of 1q gain/16q loss/11q loss occur, these driver
alterations provide a selective advantage and progress towards either LG or HG DCIS or PC with subsequent additional CNAs and further
mutations. A supportive microenvironment is likely also crucial. Progression towards to HG DCIS from atypical papillary lesions might need a
higher level of CNA than progressing towards LG DCIS (shown as the number of “>”).
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METHODS
Tumour samples
All cases of IDP without carcinoma (pure IDP) and IDP coexisting with
carcinoma (DCIS/IDC) (synchronous IDP) were identified from the Royal
Melbourne Hospital (RMH) breast service records from 1995 to 2015. Pure
IDP cases were all surgically excised as the standard therapy and finalised
using data from the Victorian Cancer Registry (to 2017, median 10 years of
follow-up) to rule out cases with previous cancer, later development of
cancer (>1 year after initial IDP) and cancer on subsequent excision (<1
year after initial IDP) (Supplementary File 1). Synchronous cases were
ascertained on the incidental presence of IDP in a primary diagnosis of
DCIS/ IDC. Symptoms such as nipple discharge or lump were recorded if
available. Cases were considered as asymptomatic when no symptoms
(lump/ nipple discharge) were recorded. Archival diagnostic FFPE tumour
blocks of pure IDP (n= 29) and synchronous IDP with DCIS and/or IDC/
Papillary DCIS (n= 25) were obtained from the RMH Pathology depart-
ment. Since these cases were identified by multiple pathologists of
different levels of expertise, all cases were subsequently reviewed by an
experienced breast anatomical pathologist (P. Hill) and 28/29 pure
(Supplementary Fig. 1) and 24/25 synchronous cases (Supplementary Fig.
3) were confirmed as IDP. The criteria for benign/atypical IDP lesion were
followed according to Page et al. (i.e. ADH within papilloma) combined
with the recent recommendation of the World Health Organisation (WHO)
(papilloma with <3mm extent of ADH)4,6. Details of patient selection are
summarized in Supplementary Fig. 11. Immunohistochemistry (IHC)
staining was assessed in 43/50 cases for p63 and CK5/6 to determine
the differential diagnosis between benign IDP and PC (p63+ ve= benign
IDP, Supplementary Fig. 1, p63-ve= PC) as well as reconfirming the
atypical populations (<3mm CK5/6 –ve= papilloma with ADH or referred
to here as “atypical IDP”, Supplementary Fig. 1; >3 mm CK5/6-ve=
papilloma with DCIS), respectively (Supplementary File 1). Cases were
excluded for poor staining (n= 2/7) or unavailability of sections (5/7).
Genomic data for LG DCIS cases (n= 21) and HG DCIS cases (n= 38) was

derived from our previously published work26,27,39 where cases were
obtained from the RMH, the Peter MacCallum Cancer Centre and the
Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK.
Histological review of all these cases was performed by the same
pathologist (P. Hill).
This study was conducted under ethical approval from the Peter

MacCallum Cancer Centre (HREC #12–64), Melbourne Health (HREC#
2012.119) and the North West-Greater Manchester Central Research Ethics
Committee 15/NW/0685. This study was performed under a waiver of
consent because of difficulty in contacting women whose diagnosis was
>10 years prior.

Tissue micro-dissection and DNA extraction
IDP and associated cancer tissues were micro-dissected from 8–10 micron
haematoxylin and eosin (H&E) stained sections (9–20 sections) either by
manual micro-dissection or using the Roche Automated Tissue Dissection
System (Roche) to achieve >50% tumour tissue purity. For synchronous
cases, tissues were dissected from the IDP lesion, DCIS and/or IDC or
Papillary DCIS separately. As benign lesions can disappear or seem
different in freshly cut sections, one new reference H&E slide was
evaluated by a pathologist (JMP) before tissue dissection to compare to
the diagnostic H&E from RMH, marked by PH. Micro-dissected tissue from
the Roche Automated Tissue Dissection System was placed in 100 µl of
buffer ATL (Qiagen, Hilden, Germany) and then sonicated using the Covaris
LE220 system (Covaris, Inc, Woburn, MA, USA), followed by the addition of
20 µL of proteinase K and incubation at 56 °C overnight. DNA was
extracted using the MagAttract® HMW DNA mini Kit (Qiagen) as described
previously25. DNA was extracted from manually dissected tissue using the
Qiagen DNeasy Kit as described previously26 followed by quantification.
Quant-iTTM dsDNA High-sensitivity Assay Kit (Invitrogen, Carlsbad, CA, USA)
was used to determine the concentration of extracted DNA. The quality of
DNA was assessed by a multiplex PCR assay with primer sets that produce
100–700 bp fragments from non-overlapping target sites in the GAPDH
gene as described previously25 and the quality varied among samples,
ranging from 100 bp to 700 bp fragments (Supplementary File 2).

Sample selection for genetic analysis method
Final case selection is summarised in Supplementary Fig. 11 based on
diagnosis, dissection, DNA availability and successful library preparation
and good quality data. The first 12 cases with at least 40 ng DNA available

were processed for the MIP SNP arrays, but later cases were analysed using
a targeted sequencing panel. Cases with a low amount DNA available
(5–25 ng) were processed for LCWGS. The method utilised for each case is
described in Supplementary File 1 and the DNA input for library
preparation for LCWGS/targeted sequencing panel is stated in Supple-
mentary File 2. For pure IDP cases, samples were processed for only the IDP
component. For synchronous IDP cases, samples were processed from all
IDP lesions and their paired DCIS and/or IDC/Papillary DCIS components.
The final number of cases was 24 for pure IDP and 20 for synchronous IDP
lesions. All cases were subjected to one of the techniques mentioned
above depending on how much DNA was available; except two
synchronous cases that were subjected to both MIP and the targeted
sequencing panel for both IDP and DCIS/IDC components (Case S9, S16)
(Supplementary File 1). The majority of synchronous cases had both
components analysed with the same technique, except two for which
LCWGS was chosen for the component with low-input DNA and targeted
sequencing for the other (Case S11, S12). A somatic mutation found by the
targeted panel (Case S12: IDP component) was then validated for its
presence in the synchronous DCIS by Sanger sequencing.

NEBNext® UltraTM II DNA Library Prep and Low-coverage whole-
genome sequencing (LCWGS)
A low DNA input library preparation protocol was used for all samples
using the NEBNext® UltraTM II DNA Library Prep Kit (NEB E7645S/L, New
England BioLabs® Inc., Ipswich, MA, USA) as described25. In brief,
fragmented DNA by Covaris S2 in 50 µL was used for NEBNext End Prep,
followed by an immediate adaptor ligation step with a 1.5 µM diluted
adaptor. After cleaning up of adaptor ligated DNA, PCR amplification was
carried out with eight cycles and 10 cycles for 20 ng and 5–10 ng input,
respectively. The mixture of AMPure XP beads and the PCR products were
incubated at room temperature for at least 20 min. Subsequently, after
ethanol washes, 33 µL elution buffer (0.1 X TE) was added and incubated
for 10min. 2 µL of the final 30 µL library was analysed with the TapeStation
(Agilent 2200, Santa Clara, CA, USA) for the size distribution. These libraries
were used for LCWGS as described25. Briefly, an Illumina Nextseq platform
(NextSeq 500) (Illumina, San Diego, CA, USA) (paired-end 75 bp) was used
to run the pooled, normalized indexed libraries according to the standard
Illumina protocol. The sequencing depth achieved in the samples ranged
from 0.72–2.1×. (Supplementary File 2).

Molecular inversion probe (MIP) SNP arrays
The MIP 330 K OncoScan array was used to analyze pure and synchronous
papilloma samples with associated carcinoma components and was
performed according to the manufacturer’s instructions by the Ramaciotti
Centre for Genomics (version 3, NSW, Australia) or Affymetrix Inc (version 2,
Santa Clara, CA, USA). DNA input was 40–100 ng for this assay as described
previously26,40.

Targeted sequencing library preparation, enrichment and
sequencing
Targeted sequencing of tumour DNA was performed using an Agilent
SureSelect Custom Panel targeting 258 genes (total targeted region of
1.337Mb27,29) (Supplementary Table 1) including breast cancer driver
genes such as PIK3CA, AKT1, PIK3R1, GATA3, PTEN, TP53, ARID1A. The panel
is designed based on known breast cancer genes from large cohort studies
including TCGA and has previously been used by Lee et al.29. Library
preparation was performed mostly from an input of at least 100 ng of DNA
using the KAPA Hyper system (Agilent, Santa Clara, CA, USA) as described
previously29 except three pure IDP cases where 40–70 ng DNA was used
(DNA input: Supplementary File 2). Sequencing of target-enriched DNA
libraries were performed using the Illumina Next Seq 500 generating 75 bp
paired-end sequence reads.
The variants identified by targeted sequencing panel were validated by

Sanger sequencing where DNA was available. Additional samples were
screened for PIK3CA variants in exons 9 and 20. Primers for Sanger
sequencing were designed in Primer 3 as described previously27

(Supplementary File 2: Primers used, PCR conditions). PCR products were
sequenced using BigDye Terminator v3.1 (Applied Biosystems) and a 3730
DNA Analyzer (Applied Biosystems) as described previously27. Chromato-
grams were visualized in Geneious v8.1.9 (Biomatters, Auckland, New
Zealand).

T. Kader et al.

10

npj Breast Cancer (2020)     9 Published in partnership with the Breast Cancer Research Foundation



Data analysis
For LCWGS, reads were aligned with bwa mem (v0.7.12-r1039) to hg19
(GRCh37) after removal of sequencing primers by cutadapt (v1.7.1) as
described previously25. ControlFREEC (version 6.7)41 was used to estimate
copy number from the LCWGS data in 50 kb windows, with default
parameters, no matched normal sample and baseline ploidy set to 2 as
described previously25. To reduce spurious calls, blacklisted regions
(problematic regions, including highly repetitive centromeric regions,
where DNA copy number cannot be accurately measured) as identified
from Scheinin et al.42 were filtered out as described25.
MIP data were pre-processed by the Ramaciotti Centre for Genomics or

Affymetrix Inc., with tumor samples batch normalized against Affymetrix
controls as described previously26.
For Targeted Sequencing, paired-end sequence reads were aligned to

the g1k v37 hg19 reference genome using BWA43. Optical duplicate reads
were removed using Picard (http://broadinstitute.github.io/picard/)
(v1.119), then local realignment around indels and base quality score
recalibration were performed using the Genome Analysis Tool Kit (GATK
v3.2) in accordance with their recommended best practice workflow44. SNP
and indel variants were called using GATK Unified Genotyper, Platypus45

and Varscan 246. Called variants were additionally annotated using the
Ensembl Variant Effect Predictor47. Somatic mutations in the tumour
sequencing data were identified by applying the following filters: canonical
transcript; variants identified by at least two variant callers; minor allele
frequency (MAF) present at ≤0.001 in ExAc (Version 0.3.1, excluding TCGA
data, released March 14 2016)48, GnomAD (Version 2.0, released 27
February 2017), EVS (Version ESP6500SI-V2-SSA137)49. Manual inspection
of the sequence reads using the Integrative Genomics Viewer (IGV)50 were
performed before finalizing the somatic mutations. Any false positive
variants due to sequencing artefacts were excluded from final analysis.
Off-target sequencing reads were used to generate genome-wide copy

number data using CopywriteR51 using a 50 kb window and utilising a
normal lymphocyte DNA control (NA12878, Coriell Institute) run in the
same sequencing batch for the normalisation baseline. All samples passed
Quality Score in Nexus. However, 7 pure IDPs had extra noise in the CN
profile. The background noise or sequence artefacts or the “waviness” of
the CN profile was likely due to the poor quality of FFPE samples40. In order
to reduce the noise/ artefacts of these samples, they were normalised
against a normal DNA from FFPE stroma /matched normal (specified in
Supplementary File 1) and CN calls were manually curated. For example,
MIP data were manually curated through allelic imbalance information,
and spurious calls unsupported by allelic data were removed from
downstream analysis.
All sample data were imported into Nexus (v8, BioDiscovery Inc.,

Hawthorne, CA) and segmented using SNP-FASST. Copy number gains
were called if the log2 ratio of the segment was >0.15 and losses called if <
−0.15.

Clonality assessment. Since the overall CNA and mutation levels of pure
IDP in our study was substantially lower than DCIS and IDC, lesions were
classified as clonally related when sharing at least one breakpoint with the
same CNA. The shared breakpoints were observed at 50 kb resolution for
sequencing data and at the resolution of the SNP loci for MIP array data
(Supplementary Figs. 4, 5 and 10). Visually inspected shared breakpoints
were emphasized rather than overall CNAs as suggested by Bollett et al.52.
If no breakpoint was shared, the case was called non-clonal even if the
components had the same CNA (Supplementary Fig. 6). In addition, the
clonality indices (CI and CI2) were analysed according to Schultheis et al.30

based on mutations from the targeted sequencing panel analyses, for
those cases where both IDP and DCIS/IDC components were subjected to
targeted sequencing (n= 8).

Clonality assessment based on mutation profile. The synchronous cases
were assessed for their clonality status based on mutations generated by
the targeted sequencing panel. The two clonality indices (CI and CI2) were
calculated as described in Schultheis et al.30. For this analysis, all
synonymous and non-synonymous SNVs were included as long as they
met the criteria followed by the filtering process mentioned above in data
analysis. These indices recognise that shared mutation(s) for a synchronous
case may happen by chance based on the frequency of the gene mutation
in the TCGA dataset (n= 977) (http://gdac.broadinstitute.org/runs/stddata__
2016_01_28/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Mutation_
Packager_Oncotated_Calls.Level_3.2016012800.0.0.tar.gz).

The clonality index CIð Þwas defined as ¼ 1�Qn
k¼1 fk ; n>0

0; n ¼ 0

�

:

Here, n= number of shared mutations in IDP and DCIS/IDC components
and fk= the percentage of breast carcinomas from TCGA dataset
harbouring a given mutation. We considered a pair of synchronously
diagnosed IDP and DCIS/IDC were clonal if CI > 0.8, as suggested by
Schultheis et al.30.
Schultheis et al. suggested that CI and CI2 are consistent in their study;

CI2 was also calculated in this study as an alternative approach. In this
alternative approach, the cutoff was calculated as suggested using the R
package ROCR (R v3.6.1). The threshold value was returned as 2.84.
CN segments of all components of synchronous cases derived from

Nexus were imported into Partek Genome Suite (Partek Inc., St. Louis, MO,
USA) in order to carry out unsupervised hierarchical clustering without any
normalisation. Pearson dissimilarity and average linkage was used to
generate dendrograms.
CN profiles (pure, clonal and non-clonal IDPs) were compared to cases of

DCIS (previously published)26,27,39, and IDC cases from METABRIC28. CNA
segments were exported from Nexus and the percentage of genome
altered by copy number in base pairs resolution or the weighted fraction of
the genome altered (FGA) was calculated. In brief, FGA was calculated by
the summation of the CN change in base pairs for each chromosome and
then dividing by the length of that chromosome. The final FGA for a sample
was calculated by taking the average of the percentage of CN change
across all chromosomes53. All data are available as described in the Data
Availability statement54–56.

Immunohistochemistry (IHC)
ER, Ki67, CK5/6, p63 immunohistochemistry was performed on all cases by
the Peter MacCallum Cancer Centre Anatomical Pathology Department
using standard protocols. ER was scored using the Allred system57.
Ki67 scoring was performed using ImmunoRatio (http://153.1.200.58:8080/
immunoratio) (Last accessed on October, 2018)58. The basal marker CK5/6
was performed to assess the presence or absence of luminal cell layers of
atypical IDP lesion. p63 was performed to assess the presence or absence
of the myoepithelial layer of benign IDP59. HER2 status was taken from the
original pathology report when it was available (IHC/SISH/CISH), or from
the CN profile of chromosome 17 based on 17q11.2–17q12 high level of
amplification.

Statistical analysis
Graph Pad Prism v7 (GraphPad, Inc, San Diego, CA,USA) was used to
generate graphs and appropriate statistics as indicated in each table and
figure. Clonality indices were calculated in R (v3.6.1). A p-value of <0.05 was
considered significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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generated during this study and supporting the conclusions of this article, are
publicly available through NCBI Sequence Read Archive: https://identifiers.org/ncbi/
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