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Abstract 

A new mechanism is proposed to provide a viable physical explanation for the action of microwaves in solvent 

extraction processes. The key innovation is Temperature-Induced Diffusion, a recently-demonstrated 

phenomenon that results from selective heating using microwaves. A mechanism is presented which incorporates 

microwave heating, cellular expansion, heat transfer and mass transfer, all of which affect the pressure of cell 

structures within biomass. The cell-pressure is modelled with time across a range of physical and process 

variables, and compared with the expected outputs from the existing steam-rupture theory. It is shown that steam-

rupture is only possible at the extreme fringes of realistic physical parameters, but Temperature-Induced Diffusion 

is able to explain cell-rupture across a broad and realistic range of physical parameters and heating conditions. 

Temperature-Induced Diffusion is the main principle that governs microwave-assisted extraction, and this paves 

the way to being able to select processing conditions and feedstocks based solely on their physical properties.  
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Nomenclature 

Symbols 

Symbol Parameter Unit 
 Chemical potential 

𝜇 Chemical potential  𝐽𝑚𝑜𝑙−1 

𝑇 Temperature ℃ 

𝛼 Activity  

𝑣 Specific volume 𝑚3𝑚𝑜𝑙−1 

𝑠 Entropy  𝐽𝑚𝑜𝑙−1𝐾−1 

𝑅 Universal gas constant 𝐽𝑚𝑜𝑙−1𝐾−1 

𝑃 Pressure 𝑏𝑎𝑟 

 Microwave heating and heat transfer 

𝑡 Time 𝑠 

𝑘 Thermal conductivity 𝑊𝑚−1𝐾−1 

𝛽 Heat transfer coefficient 𝑚2𝑠−1 

𝐹 Microwave frequency 𝐻𝑧 

휀0 Permittivity of free space 𝑚−3𝑘𝑔−1𝑠4𝐴2 

휀′′ Dielectric loss factor  

휀′′𝑏𝑖𝑜𝑚𝑎𝑠𝑠 Dielectric loss factor of the biomass  

휀′′𝑠𝑜𝑙𝑣𝑒𝑛𝑡 Dielectric loss factor of the solvent  

∆휀′′ Difference between the loss factors of biomass and solvent  

𝐸 Electric field intensity 𝑉𝑚−1 

∆𝑇𝑚𝑎𝑥 Maximum temperature difference between the biomass and the solvent phase at thermal steady state ℃ 

𝜌 Mass density 𝑘𝑔𝑚−3 

𝐷𝑝 Penetration depth 𝑚 

𝐶𝑝 Specific heat capacity 𝐽𝑚𝑜𝑙−1𝐾−1 

 Cell expansion mechanics 

𝜎 Stress  𝑀𝑃𝑎 

𝜖 Strain  

𝑌 Elastic modulus at zero strain  𝑀𝑃𝑎 

 Mass transfer and cellular mechanics 

𝐿 Mass transfer coefficient 𝑚𝑜𝑙2𝐽−1𝑚−1𝑠−1 

𝑀 Molar quantity 𝑚𝑜𝑙 
𝛿𝑉 Volume of a given phase 𝑚3 

𝛼𝑊0−𝑐𝑒𝑙𝑙 Initial water activity in the cell 𝑏𝑎𝑟𝑔 

𝐷𝐴𝐵 Fick’s law diffusivity 𝑚2𝑠−1 

𝑃𝑚𝑎𝑥 Maximum biomass cell pressure at equilibrium 𝑏𝑎𝑟 

𝑡99 Time required to achieve 99% of the equilibrium value 𝑠 

 

Superscripts and subscripts 

 
Superscripts and subscripts 

Symbol Significance Example 

( )𝑖 Property of a component “i” 𝜇𝑖; chemical potential of component “i” 

( )0 Parameter at the baseline/datum condition 𝑇0; baseline/datum temperature 

( )𝑖( ) Property of a component “i” at given condition(s) 𝑠𝑖(𝑇); entropy of component “i” at temperature 𝑇 

( )𝐿 Parameter of a condensed state 𝑣𝐿; specific volume of the liquid state 

( )𝑊 Property of the solvent component (i.e. water) 𝑠𝑊(𝑇0); entropy of water at the baseline/datum temperature 

( )𝑗𝑘𝑙 Parameter at a given numerical position jkl 𝛿𝑉𝑗𝑘𝑙; volume of a numerical element at numerical position jkl 

 

 

 

 

 

 

 

 



 

 

 

 

1 Introduction 
Biomass is an attractive alternative to fossil reserves for the production of fuels and platform chemicals [1]. This 

includes novel routes to platform chemicals using green chemistry and industrial biotechnology approaches [2], 

but also the extraction of bio-based chemicals with wide-ranging applications including in the pharmaceutical and 

health industries [3], and the production of functional materials (e.g. adsorbents) from solid residues [4]. The 

heterogeneity and recalcitrance of biomass materials  limits the effectiveness of available processing technologies 

[5], so the development of novel processes and chemistry is required for large-scale processing to become 

economically viable. 

Microwave processing has been widely reported to accelerate or enhance biomass-upgrading processes [6]. The 

unique ability of electromagnetic waves to transfer and dissipate energy volumetrically means that microwave 

processes can be fast, continuous, compact and flexible in operation. They can be portable, potentially operating 

on farms or food production sites, avoiding the major logistical challenge of transporting distributed feedstocks 

to a central processing facility, and minimising degradation during transport. Microwaves also heat selectively, 

which means that they heat different components of heterogeneous systems at different rates, and it is thought that 

this can lead to rupture of cells within biomass, resulting in higher extraction yields and the ability to treat 

recalcitrant lignocellulosic materials. Although there is widespread recognition of the potential benefits of 

microwave processes in the chemical and pharmaceutical sectors, the effects of the unique heating mechanisms 

on heat and mass transfer, chemical transformations and potential physical rupture of the plant material are poorly 

understood. It is this lack of mechanistic understanding that poses the major barrier to scale-up [7]. 

The currently-accepted theory is that microwaves promote rapid loosening of the cell wall matrix [8, 9] and cause 

cell rupture [10-12], and this alteration in the biomass microstructure enhances component extraction. To date, 

although many authors have discussed this phenomenon qualitatively, and some have illustrated structural changes 

in biomass using microscopic imaging [12-14], there is no clear evidence of how (and arguably if) microwave 

heating leads to structural modification of biomass. There have been two recent attempts to quantify this 

phenomenon. The first relates to the common hypothesis that rapid and internal heating by microwaves induces 

vaporisation within the cellular structures, thereby quickly increasing pressure and causing cell rupture [3, 15-22]. 

A quantitative model has been proposed by Chan et al. [23] to link microwave heating with cell pressure due to 

intracellular steam generation, which couples microwave heating, water vaporisation and mechanical cell wall 

properties to predict internal pressure and cell rupture time. The model correctly predicts a rupture time of the 

order of minutes, which is consistent with empirical observations, however conventional heat transfer is not 



 

 

 

 

considered in this approach. Biomass heats selectively and attains a higher temperature than the surrounding 

solvent, however no consideration is made of the heat flow from biomass to solvent nor the steady state 

temperature that could result during microwave heating. The Chan model represents a major step towards a 

mechanism for microwave-assisted extraction but there are missing physical phenomena that need to be included 

and investigated over a realistic set of conditions before a quantitative assessment of steam-rupturing can be 

presented. 

An alternative theory to explain plant cell disruption using microwaves has been proposed by Lee et al. [24]. The 

extraction of solutes from plant materials is characterised as a mass transfer process [16], involving (i) penetration 

of the solvent into the solid, (ii) solubilisation-desorption of the solute from the solid matrix and/or hydrolysis, 

(iii) diffusion to the surface of the biomass, and (iv) external transfer into the bulk solution. The Lee theory 

proposes that microwave selective heating can fundamentally change these mass transfer processes, and this could 

lead to disruption of the cellular structure. Solvents such as water flow between the cell and solvent phases down 

a chemical potential gradient until mass equilibrium is achieved. Chemical potential is a quantity that combines 

the different driving forces for mass transfer into a single mathematical expression [25]. These driving forces 

include gradients in pressure, temperature and component activity. Selective heating with microwaves induces 

temperature gradients between cells and the solvent phase in a biomass-solvent system. This phenomenon, which 

is absent in conventional heating, acts as an additional driving force for mass transfer. If the intracellular 

components are heated selectively over the solvent, the chemical potential of these intracellular components is 

reduced, and this leads to movement of the solvent into cells, inducing higher cell pressures. Liquids such as water 

are nearly incompressible, and if liquid flows into a cell there will be a subsequent pressure increase due to the 

resistance to expansion provided by the cell walls, a phenomenon which could lead to disruption of the cellular 

structure. Lee et al. [24] showed that a temperature difference of just 1 ℃ could potentially lead to equilibrium 

cell pressures exceeding 100 bar, which the authors stated would be sufficient to exceed the yield stress of most 

cellular structures. Furthermore, the theory that selective heating can drive mass transfer has recently been 

validated experimentally; reverse osmosis for water desalination was achieved without the need for the application 

of pressure as in conventional reverse osmosis processes [26]. Despite the novelty and step-change in 

understanding, the study by Lee et al. [24] was limited to steady-state, so it is not possible to assess whether the 

kinetics of Temperature-Induced Diffusion are within the same timeframe as empirical microwave extraction 

studies.   



 

 

 

 

The aim of this work is to build on the theoretical approaches of Chan and Lee, adding heat transfer and mass 

transfer kinetics. This will determine whether temperatures high enough for intracellular steam generation can be 

achieved in the Chan approach, and if the mass transfer kinetics in the Lee model are within empirically-observed 

ranges, ultimately allowing an assessment of each model as a viable mechanism for microwave-assisted 

extraction. Two distinct methodologies are required, one for temperature and one for mass transfer.   

2 Temperature distribution during microwave heating 
This section presents the methodology and results when a heat transfer element is included with microwave 

heating of biomass-solvent systems. The temperature distributions established using this approach will 

subsequently be used to test the steam-rupture hypothesis, and to provide input parameters to investigate 

Temperature-Induced Diffusion.  

2.1 Methodology 

2.1.1 System Geometry 

Biomass cells were approximated as a cuboid, which resembles cell types such as onion epidermal cells [27-31] 

that are well characterised in terms of their mechanical behaviour [29-31]. Individual cells are 100 𝜇𝑚 length, 50 

𝜇𝑚 width, 10 𝜇𝑚 height and 1 𝜇𝑚 wall thickness [27-31]. When multiple cells are considered, they are assumed 

to have an identical geometry and a regular arrangement, with their interior assumed to consist of an aqueous 

solution with defined activity. The amount of solvent surrounding a cell cluster is defined by a solvent to solid 

ratio of 100 ml/g. 

2.1.2 Heating Rate Equation 

Microwaves heat volumetrically due to energy dissipation as the electric field component interacts with the 

process material. The main mechanisms by which electromagnetic waves heat materials within the microwave 

frequency range are dipolar polarisation and ionic conduction [32]. The extent to which electromagnetic energy 

is converted to heat is governed by the dielectric loss factor (휀′′), which varies with frequency and temperature 

[33]. As an extraction process advances the temperature of both biomass and solvent will increase due to a 

combination of microwave heating and conventional heat transfer (EQUATION 1). Both the solvent and the cell can 

be heated with microwaves, and the extent depends on the electric field intensity (E) and the dielectric loss factor 

(휀′′) [34]. 

𝑑𝑇

𝑑𝑡
= 𝛽∇2(𝑇) +  

𝛽

𝑘
 2𝜋𝐹휀0휀′′𝐸2 

Equation 1: Heating rate equation containing volumetric heating and conventional Fourier terms. Refer to nomenclature. 



 

 

 

 

E is a function of the applied power and reactor geometry, and also varies as energy is dissipated throughout the 

process material. Microwave attentuation is accounted for in this work using Lambert’s law [35], where the 

strength of the electric field decays within a material as the wave attenuates. Conduction occurs through the 

cellular structure, and convective heat transfer takes place from the outer surface of the cell structure to the 

surrounding solvent. A steady state exists when the rate of volumetric energy dissipation in the biomass equals 

the rate of heat transfer into the surrounding solvent. As this study focussed on ambient pressure extraction 

processes the surrounding solvent is assumed to attain a maximum temperature at its normal boiling point. Further 

energy transfer into the solvent results in vaporisation, rather than a temperature increase. 

2.1.3 Numerical solution  

This work employs a finite-difference time domain (FDTD) method to solve the partial-differential equation 

governing heat (EQUATION 1). The model is split into finite numerical points in space aligned in a Cartesian fashion 

(FIGURE 1) and the heating rate equation is solved for each numerical point over a predefined time domain. The 

spatial second derivatives in temperature in EQUATION 1 are approximated with a second-order Taylor series 

approximation. This gives EQUATION 2 which is then solved for each numerical point over a defined time domain. 

 

 

 

Figure 1: XY plane showing a 3x3x3-cell system. Dots depict the solutions generated by the FDTD method. (Colour required) 

 

𝑑𝑇

𝑑𝑡
|
𝑗𝑘𝑙

≈ 2𝛽 (
𝑇(𝑗+1)𝑘𝑙 − 2𝑇𝑗𝑘𝑙 +  𝑇(𝑗−1)𝑘𝑙

𝛿𝑥(𝑗+1)𝑘𝑙
2 + 𝛿𝑥(𝑗−1)𝑘𝑙

2 +  
𝑇𝑗(𝑘+1)𝑙 − 2𝑇𝑗𝑘𝑙 + 𝑇𝑗(𝑘−1)𝑙

𝛿𝑦𝑗(𝑘+1)𝑙
2 +  𝛿𝑦𝑗(𝑘−1)𝑙

2 + 
𝑇𝑗𝑘(𝑙+1) − 2𝑇𝑗𝑘𝑙 + 𝑇𝑗𝑘(𝑙−1)

𝛿𝑧𝑗𝑘(𝑙+1)
2 + 𝛿𝑧𝑗𝑘(𝑙−1)

2 ) + 
𝛽

𝑘
 2𝜋𝐹휀0휀′′|𝐸|2 

Equation 2: Second-order Taylor series approximation of the heat equation.  

2.2 Predicted Temperature distribution  
EQUATION 1 is solved for a range of input parameters to give a series of temperature-time relationships, which are 

the required output. Outputs are presented according to the key physical and process variables, which are the 

dielectric loss factor (휀′′), electric field intensity (E), biomass size and thermal conductivity (k). A single 

independent parameter was varied, keeping all other parameters constant. TABLE A1 (APPENDIX A) summarises the 

universal constants used for the heating rate (EQUATION 1), while TABLE A2 (APPENDIX A) summarises the variables 

and constants for the different analyses conducted. 



 

 

 

 

2.2.1 Effect of Dielectric Loss Factor (ɛ’’biomass ,  ɛ’’solvent) 

The value of 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 was fixed at 25, while 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡  was varied from 0 (∆휀" = 25) to 50 (∆휀" = −25). This is 

not intended to represent a particular physical condition, but will span the full range from a microwave-transparent 

solvent to one that absorbs much more strongly than the biomass itself. k was fixed at 0.05 𝑊𝑚−1𝐾−1, E was 

taken as 10000 Vm-1 which the limit for single-mode microwave cavities [36], and the solvent was assumed to 

have a boiling point of 100 ℃. FIGURE 2 shows the temperature increase with time for both the solvent and a single 

cell for the two extreme cases of ∆휀". For simplicity, the solvent’s temperature corresponds here to that of a 

numerical point at the edge of the cell cluster. In reality the solvent will only have a homogeneous temperature 

when at the boiling point. 

 

 

 

 

 

 

 

 

 

 
Figure 2: Temperature for a single cell in solvent during microwave heating. (A) Microwave-transparent solvent - ∆ε"=25; (B) Microwave-

absorbent solvent - ∆ε"=-25. (Colour required) 

 
FIGURE 2A shows that the cell is at a higher temperature than the solvent during the heat-up period, which is to be 

expected given that the solvent is microwave-transparent, and only heats indirectly due to heat transfer from the 

cell. The solvent temperature plateaus at the boiling point (100°C) and the cell temperature continues to increase. 

The cell temperature plateaus shortly after the solvent temperature, which is due to thermal equilibrium between 

volumetric heating and heat transfer to the surrounding solvent. In FIGURE 2A the cell temperature is around 0.4°C 

higher than the surrounding solvent at thermal steady state under these physical conditions. For the microwave-

absorbent solvent, FIGURE 2B shows that the solvent temperature is higher than the cell temperature during the 

heat-up period, which is to be expected given that the solvent absorbs more energy volumetrically than the 

biomass. The solvent attains its boiling point temperature in around 0.5 seconds in this case, compared to 5 seconds 

for the case of a microwave-transparent solvent. Whilst the solvent temperature is limited to the boiling point the 

same is not true for the cell, so although it absorbs less energy volumetrically than the solvent it can continue to 

heat beyond 100°C. In this case the cell temperature plateaus at around 100.4°C as a thermal steady state is 

reached, which is identical to the equilibrium temperature in FIGURE 2A. The outcomes shown in FIGURE 2 indicate 



 

 

 

 

that the steady state temperature of a single cell of biomass is independent of the dielectric loss factor of the 

solvent, and always higher than that of the solvent given that the cell absorbs microwaves. 

When multiple cells are considered there is a gradient in temperature, with a maximum in the centre of the cluster 

and a minimum at the biomass-solvent boundary. FIGURE 3 shows an example of the temperature distribution at 

steady state for a biomass system consisting of 1000 cells, with 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 20 and 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5. In this case 

the temperature difference between the centre of the cell cluster and the surrounding solvent is around 1 ℃. The 

maximum temperature difference between biomass and solvent at thermal steady state (ΔTmax), for different-sized 

clusters and different values of dielectric loss factor of biomass and solvent, are summarised in ERROR! REFERENCE 

SOURCE NOT FOUND..  

 

 

 

 

 

 

 

 

 
 

 

 Number of cells 

𝜺"𝒔𝒐𝒍𝒗𝒆𝒏𝒕 𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔 1 125 1000  

5 

0 0.000 0.000 0.000 

10 0.012 0.143 0.477 

20 0.025 0.285 0.953 

25 0.031 0.357 1.192 

20 

0 0.000 0.000 0.000 

10 0.012 0.143 0.477 

20 0.025 0.285 0.953 

25 0.031 0.357 1.192 

Table 1: Maximum temperature difference between biomass and solvent at thermal steady state (ΔTmax) 

for variable dielectric loss factors and biomass geometry. k  = 0.6 Wm-1K-1 and E = 10000 Vm-.1 

ΔTmax is a function of the size of the cell cluster and the dielectric loss factor of the biomass (휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ), but is 

independent of the dielectric loss factor of the solvent (휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ). In this case the largest ΔTmax was just 1.2°C for 

a 1000 cell cluster and biomass loss factor of 25. The biomass material will attain steady state temperatures that 

are higher than that of the solvent phase provided that 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is greater than zero.  

Figure 3: Temperature distribution at thermal steady state for an XZ plane, 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 20; 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5. 

 k  = 0.6 Wm-1K-1, E = 10000 Vm-1. (Colour required) 



 

 

 

 

2.2.2 Effect of Electric Field Intensity (E) 

Electric field intensity (E) was varied at a constant k value of 0.6 Wm-1K-1, and for a case where the biomass heats 

selectively over the solvent; 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10, 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5. The maximum temperature difference between biomass 

and solvent at thermal steady state (ΔTmax) is shown in  

. 

 Number of cells 

Electric Field Intensity (𝑽𝒎−𝟏) 1 125 1000 

0 0.000 0.000 0.000 

2000 0.001 0.006 0.019 

4000 0.002 0.023 0.076 

6000 0.005 0.051 0.172 

8000 0.008 0.091 0.305 

10000 0.012 0.143 0.477 

Table 2: Maximum temperature difference between biomass and solvent at thermal steady state (ΔTmax) for variable Electric 

field intensity (E) and biomass geometry. 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10, 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5, k = 0.6 Wm-1K-1. Solvent temperature is 100℃ and 

biomass temperature is higher. 

 

It is shown in  

 that ΔTmax increases non-linearly with electric field intensity (E), with the effect being more pronounced for larger 

cell clusters. Higher E results in more volumetric energy dissipation within the biomass, and so higher temperature 

differences are required between the biomass and solvent phases to increase heat transfer into the solvent phase 

and achieve thermal steady state. When E = 0 𝑉𝑚−1 no microwave power is applied, and hence the system 

resembles the case of conventional heating with no temperature differential between the biomass and the solvent.  

2.2.3 Effect of Thermal conductivity (k) 

Thermal conductivity was varied at a constant of E=10000 Vm-1; 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10 and 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5. The maximum 

temperature difference between biomass and solvent at thermal steady state (ΔTmax) is shown in TABLE 3. 

 Number of cells 

Thermal Conductivity (𝑾𝒎−𝟏𝑲−𝟏) 1 125 1000 

0.050 0.144 1.655 5.526 

0.075 0.096 1.103 3.686 

0.100 0.072 0.827 2.764 

0.200 0.036 0.414 1.382 

0.300 0.024 0.276 0.922 

0.400 0.018 0.207 0.691 

0.600 0.012 0.143 0.477 

1.000 0.007 0.083 0.276 

Table 3: Maximum temperature difference between biomass and solvent at thermal steady state (ΔTmax) for variable thermal 

conductivity (k) and biomass geometry. 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10, 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 5, E = 10000 Vm—1. Solvent temperature is 100℃ and 

biomass temperature is higher. 

When thermal conductivity (k) is low there is more resistance to heat flow, so materials possessing very small 𝑘 

values are expected to attain much higher steady state temperatures than the solvent. In this case for a 1000-cell 

cluster a temperature difference of over 5.5°C is apparent when k = 0.05 Wm-1K-1, compared to just 0.28°C when 

k = 1.0 Wm-1K-1. Compared to TABLE 1 the magnitude of the temperature variation in this case is much higher, 



 

 

 

 

which indicates that thermal conductivity has a more dominant effect on equilibrium temerpature than the loss 

factor of either the biomass or the solvent. 

2.3 Assessment of steam rupturing theory 

The enhanced understanding of heat flows and temperature during microwave processing can be used to evaluate 

the likelihood of intracellular steam generation. Using a similar approach to that shown in TABLE 1 - TABLE 3, the 

physical and process parameters are investigated within ranges that are realistic for microwave-assisted extraction 

and biomass feedstocks. E is fixed at 10000 Vm-1, which the limit for single-mode microwave cavities [36]. The 

limit for 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is set at 35, as the largest reported 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠  is around 30 at 2.45 GHz [37]. The minimum limit 

for 𝑘 was set at 0.1 𝑊𝑚−1𝐾−1 as values as low as 0.2 have been reported for fruits and vegetables with 80% 

moisture [38]. The biomass geometry has been modified here to better resemble experimental situations. The 

number of cells in each dimension is defined so as to constitute a cube with dimensions ranging from 0.1 – 0.5 

mm. 

 

(A) 

𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔 = 𝟑𝟓;  
Variable 𝒌 (𝑾𝒎−𝟏𝑲−𝟏) 

(B) 

𝒌 = 𝟎. 𝟐 𝑾𝒎−𝟏𝑲−𝟏; 
Variable 𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔  

Particle size (mm) 0.1 0.2  0.4 5 20 35  

0.1 5.4 2.7 1.3 0.4 1.5 2.7 

0.2 17.1 8.6 4.3 1.2 4.9 8.6 

0.3 34.4 17.2 8.6 2.5 9.8 17.2 

0.4 56.8 28.4 14.2 4.1 16.2 28.4 

0.5 83.8 42.0 21.0 6.0 24.0 42.0 

Table 4: Maximum temperature difference between biomass and solvent at thermal steady state (ΔTmax), for a realistic range of 

physical conditions and E = 10000 Vm-1. Solvent temperature is 100℃ and biomass temperature is higher. 

TABLE 4 shows that the largest ΔTmax is around 84 ℃ and occurs under the extreme conditions of electric field 

intensity, particle size, thermal conductivity and loss factor. Under more realistic conditions it is likely that a 

temperature difference of just 10-20°C is achieved, and it should also be noted that the highest temperature will 

occur within the centre of the biomass, with lower temperatures towards the surface where it approaches the 

solvent temperature. For cell rupture to occur, the internal pressure must exceed the mechanical resistance of the 

cell walls. If the pressure is generated from steam created during microwave heating, then the boiling temperature 

must be consistent with the higher internal cell pressure. Under the most extreme conditions the maximum 

temperature that can occur within biomass during an ambient-pressure extraction process is 184 ℃ (i.e. the solvent 

temperature of 100 ℃ and temperature difference of 84 ℃). At 184°C the steam pressure equates to 10 atm, which 

is sufficient to cause rupture within some types of cell. However, away from the centre of the biomass and under 

realistic physical and processing conditions the temperature and pressure will be much lower. Cell rupture due to 

intracellular steam generation could therefore occur at the extreme fringes of physical and experimental 



 

 

 

 

conditions, but it is highly unlikely to be as widespread as previously proposed. An alternative mechanism must 

exist for the generation of internal cell pressure during microwave heating. 

3 Cell pressure during microwave heating 
Lee et al. [24] were the first to highlight the possibility of Temperature-Induced Diffusion due to microwave 

heating. This section extends their initial work to encompass a realistic range of physical and heating conditions, 

and introduces mechanical and kinetic elements to understand the impact on cell pressure, and ultimately whether 

cell rupture can occur within the timeframes reported in empirical studies. 

3.1 Methodology 

3.1.1 Chemical potential and mass transfer 

The chemical potential of a component in a mixture is a universal property that dictates the direction and 

magnitude of the driving force for mass transfer. The chemical potential of a component “i” in a mixture at given 

temperature and pressure, and with fixed activity of the component “i”, is expressed in EQUATION 3. Refer to 

Robinson et al. [26] for derivation. 

𝜇𝑖 = 𝜇𝑖
0 + 𝑣𝐿𝑃𝐿 − 𝑠𝑖(𝑇0)(𝑇 − 𝑇0) + 𝑅𝑇𝑙𝑛 (

𝛼𝑖

𝛼0
𝑖

) 

Equation 3: Chemical potential for variable pressure, temperature and activity. Refer to nomenclature. 

For water as the solvent the input parameters for the chemical potential expression are: 𝜇𝑊
0 = 0 𝐽𝑚𝑜𝑙−1, 𝑇0 =

25℃; 𝑠𝑊(𝑇0) = 70 𝐽𝑚𝑜𝑙−1𝐾−1 [61] and 𝛼0
𝑊 = 1. If the system temperature is constant then the chemical 

potential expression becomes analogous to the classical osmotic pressure expression. If both the temperature and 

the pressure are constant, the spatial gradient of the chemical potential quantity reverts to an analogous form of 

Fick’s law of diffusion. EQUATION 4 is the expression governing mass transfer through the chemical potential 

analogy presented here. 

𝑑𝑀𝑖

𝑑𝑡
= 𝐿𝛿𝑉∇2(𝜇𝑖) 

Equation 4: Mass transfer equation. Refer to nomenclature. 

It is assumed that the biomass-solvent system contains two species: the solvent, which exists in pure form in the 

solvent phase and is able to diffuse into the cells, plus a solute which only exists within the cells. The rate-limiting 

step is assumed to be diffusion though the cell membrane, and component activity is assumed to equal molar 

concentration in this case (ideal mixture). The diffusion coefficient, 𝐿, is estimated from the molar diffusivity 

[25], which is taken as 10−12 𝑚2𝑠−1 [39] and varied by an order of magnitude as part of a sensitivity analysis. 



 

 

 

 

Solving the partial differential mass equation (EQUATION 4) requires a second-order Taylor series approximation 

(EQUATION 5), which is then solved numerically.  

𝑑𝑀

𝑑𝑡
|
𝑗𝑘𝑙

≈ 2𝐿 (
𝜇(𝑗+1)𝑘𝑙 − 2𝜇𝑗𝑘𝑙 +  𝜇(𝑗−1)𝑘𝑙

𝛿𝑥(𝑗+1)𝑘𝑙
2 +  𝛿𝑥(𝑗−1)𝑘𝑙

2 + 
𝜇𝑗(𝑘+1)𝑙 − 2𝜇𝑗𝑘𝑙 + 𝜇𝑗(𝑘−1)𝑙

𝛿𝑦𝑗(𝑘+1)𝑙
2 + 𝛿𝑦𝑗(𝑘−1)𝑙

2 +  
𝜇𝑗𝑘(𝑙+1) − 2𝜇𝑗𝑘𝑙 + 𝜇𝑗𝑘(𝑙−1)

𝛿𝑧𝑗𝑘(𝑙+1)
2 + 𝛿𝑧𝑗𝑘(𝑙−1)

2 ) 𝛿𝑉𝑗𝑘𝑙  

Equation 5: Second-order Taylor series approximation of the mass equation. Refer to nomenclature. 

3.1.2 Cell Expansion 

Cells see an increase in pressure if mass influx of liquid takes place, or if the liquid density decreases due to an 

increase in temperature. The increase in pressure takes place due to the resistance to volumetric expansion 

provided by the rigid wall that surrounds each cell, with internal pressure directly related to stress in the cell wall. 

A cell wall fragment can be envisaged as a polymer constituted of cellulose microfibrils contained within an 

amorphous matrix [40-42]. Therefore, cell wall fragments are expected to exhibit mechanical behaviour similar 

to that of typical rubber materials, but with significantly higher elastic moduli due to the reinforcing components 

present. This has been supported experimentally for hydrated cell wall fragments of onion epidermis [31]. The 

stress-strain behaviour of a typical non-lignified cell wall fragment can be represented mathematically using an 

expression for rubber materials (EQUATION 6) [43] that is subsequently fitted to empirical data for biomass to yield 

the adjustable parameters.  

𝜎
𝑊⁄ = ( (1 + 𝑍𝜖)−1 − (1 + 𝑍𝜖)−2 ) exp 0.38( (1 + 𝑍𝜖) − (1 + 𝑍𝜖)−1) 

Equation 6: Stress-strain behaviour of typical non-lignified cell wall fragment. Refer to nomenclature. 

The parameters 𝑊 and 𝑍 are manipulated to fit experimental stress-strain curves, with the additional constraint 

that their product is equal to 𝑌, the elastic modulus of the fragment at zero strain. The value of Y is taken as 800 

MPa so as to reproduce experimental findings [31], and is varied as part of a sensitivity analysis (TABLE A2). 

As solvent diffuses into the cell the volume expands, leading to a strain in the cell wall that can be calculated from 

the change in volume. The stress can then be calculated from EQUATION 6 and used to infer cell pressure. It is 

assumed that cell expansion is accompanied by a reduction in the wall thickness [28, 40-42], and that cells will 

only experience strain in their largest dimension [29, 42]. A numerical analysis was conducted (APPENDIX B) to 

construct the cell pressure-volume relationship and thus define the cell expansion mechanics. This relationship is 

shown in (FIGURE B1), where a cell pressure value can be interpolated if its volumetric strain is known, and vice 

versa.   



 

 

 

 

3.1.3 Combining heat transfer, mass transfer and cell expansion 

The temperature gradient between cell and solvent calculated from EQUATION 1 provides an additional driving 

force for mass transfer between the biomass and the solvent phase, and this extra driving force is included within 

the chemical potential gradient (EQUATION 3). The mass transfer rate is subsequently calculated using EQUATION 4, 

which consequently changes the pressure within the cell (due to volumetric expansion) and the activity (due to 

dilution). As activity and pressure change the chemical potential gradient also changes, which in turn influences 

the mass transfer rate. The interdependence of the different parameters is illustrated in FIGURE 4. The novelty of 

this work is that it combines heat transfer, mass transfer and cell mechanics into a single mathematical framework, 

which is able to calculate cell temperature and pressures over time for clusters of cells.  

 
 

 

3.2 Predicted Pressure Distribution 

Cell pressure is a function of time, electric field intensity, dielectric properties, thermal conductivity, diffusivity, 

cell cluster size, elastic modulus and the solvent activity within the cell. The model outputs are presented in the 

first instance for variable process conditions with physical properties set at realistic values for biomass and solvent 

extraction. A sensitivity analysis is subsequently carried out to determine the effect of physical properties on cell 

pressure. TABLE A2 (APPENDIX A) summarises the variables and constants for the different analyses conducted. 

3.2.1 Effect of microwave heating parameters 

A biomass-solvent system consisting of a single cell was initially considered, with E = 10000 Vm-1, k = 0.05 Wm-

1K-1, 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠= 35 and 휀"𝑠𝑜𝑙𝑣𝑒𝑛𝑡  = 5. The resulting pressure is shown in FIGURE 5, along with the corresponding 

cell and solvent temperature. 

Chemical Potential

Mass Transfer

Temperature

PressureActivity

Input Parameters

Figure 4: Numerical computation framework. 



 

 

 

 

 

  

Under these conditions the cell pressure is induced during microwave heating rises to around 50 bar before 

appearing to reach equilibrium. The pressure build-up occurs in less than two minutes, which is well within the 

timeframe of numerous experimental microwave extraction studies [18, 20, 21, 24, 44-49]. 

It has been shown in section 2 that multicellular biomass materials exhibit a temperature distribution during 

microwave heating. Consequently, for clusters of cells a range of pressures are to be expected with a maximum 

around the centre of the cluster where the temperature is highest. FIGURE 6 illustrates an example of the pressure 

distribution at equilibrium when 𝐸 = 10000 𝑉𝑚−1, 𝑘 = 0.2 𝑊𝑚−1𝐾−1, 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10 and the total particle 

size = 0.3 mm (30 x 6 x 3 cells).  

 

 

 

 

 

 

 

For the cluster of 540 cells that comprise the 0.3mm particle the pressure within the centre cells is over 200 bar, 

whilst pressures on the outer edges of the cluster are still of the order of 50 bar. The pressure in this case is 

Figure 5: Cell pressure with time and corresponding cell/solvent temperature (Colour required) 

Figure 6: Pressure distribution at equilibrium for a YZ plane. 𝐸 = 10000 𝑉𝑚−1; 𝑘 = 0.2 𝑊𝑚−1𝐾−1, 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10; particle size = 0.3 mm.  

(Colour required) 



 

 

 

 

primarily the result of the temperature that results from selective heating, and its subsequent effect on mass transfer 

and cell expansion. FIGURE 7 shows how the maximum pressure (Pmax) within the cluster varies with both total 

particle size and the electric field intensity (E).  

 

 

It is shown in FIGURE 7 that the maximum equilibrium pressure in a cell cluster (Pmax) increases with both the 

cluster size and the electric field intensity (E). Pmax is more sensitive to E with larger particles, indicating that 

while particles of all sizes see the same pressure profile under conventional heating (i.e. E = 0 V/m), they develop 

increasingly different pressure profiles according to their size and geometry as the input microwave power 

increases. FIGURE 7 includes a reference pressure of 70 bar as a rupture pressure for cells [24], and it is clearly 

evident that pressures beyond this threshold are entirely possible for a realistic range of particle size and E. When 

conventional heating is considered, i.e. the cell and solvent temperature both peak at 100°C, the cell pressure does 

not exceed 33.9 bar, which is well below the pressure needed for rupture in most cases. The cell pressure for a 

broader range of process conditions is shown in TABLE 5. 

 

(A) 
𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝒔𝒊𝒛𝒆 = 𝟎. 𝟑 𝒎𝒎; 

𝒌 = 𝟎. 𝟐 𝑾𝒎−𝟏𝑲−𝟏; 
Variable 𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔  

(B) 
𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝒔𝒊𝒛𝒆 = 𝟎. 𝟑 𝒎𝒎; 

𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔 = 𝟏𝟎; 
Variable 𝒌 (𝑾𝒎−𝟏𝑲−𝟏) 

(C) 
𝒌 = 𝟎. 𝟐 𝑾𝒎−𝟏𝑲−𝟏; 

𝜺"𝒃𝒊𝒐𝒎𝒂𝒔𝒔 = 𝟏𝟎; 
Variable particle size (mm) 

𝑬 (𝑽𝒎−𝟏) 5 10 20 0.1 0.2 0.4 0.1 0.3 0.5 

0 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 

2000 37.5 41.2 48.2 48.4 41.2 39.1 34.9 41.2 51.3 

4000 48.2 62.8 89.9 90.9 62.8 50.2 38.0 62.8 101.6 

6000 65.8 97.8 157.8 160.1 97.8 68.4 43.2 97.8 185.0 

8000 89.9 146.1 257.1 257.1 146.1 93.2 50.3 146.1 306.9 

10000 120.3 210.2 387.3 387.3 210.2 124.4 59.4 210.2 466.1 

Figure 7: Maximum equilibrium cell pressure against E for different biomass particle sizes. 𝑘 = 0.2 𝑊𝑚−1𝐾−1 and 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 10.. 

(Colour required) 



 

 

 

 

Table 5: Maximum cell pressure at mass equilibrium (Pmax) for variable E, k, 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠  and particle size. 

TABLE 5 indicates a general increase in Pmax with higher values of E under all process conditions. Furthermore, it 

is evident that Pmax increases with any change in the process conditions so as to increase ΔTmax (see section 2). 

Hence, Pmax is more sensitive to E when 휀"𝑏𝑖𝑜𝑚𝑎𝑠𝑠 and particle size are larger, and when k is smaller. It can be seen 

that, while the process conditions presented in TABLE 5 are physically realistic, the differences between Pmax values 

are very large, with the smallest value of 33.9 bar occurring with conventional heating (i.e. E = 0 V/m), and the 

largest value of 466.1 bar occurring with E = 10000 V/m, 𝑘 = 0.2 𝑊𝑚−1𝐾−1, ε"biomass = 10 and a particle size 

of 0.3 mm. Considering 70 bar as a reference cell rupture pressure [24], it is clear again that pressures beyond this 

threshold are entirely possible for a realistic range of process conditions. 

3.2.2 Sensitivity to physical properties 

The sensitivity of the maximum equilibrium cell pressure (Pmax) to a secondary set of parameters was investigated. 

These were the initial cell water activity (𝛼𝑊0−𝑐𝑒𝑙𝑙), diffusivity (𝐷𝐴𝐵) and the elastic modulus of the cell at zero 

strain (𝑌). For this analysis the electric field intensity was set at 6000 Vm-1, the thermal conductivity was 0.2 Wm-

1K-1, ε"biomass = 10  and particle size 0.3 mm. 

𝜶𝑾𝟎−𝒄𝒆𝒍𝒍 𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓𝒈) 

0.97 111.1 

0.98 97.8 

0.99 83.2 

Table 6: Maximum cell pressure at mass equilibrium (Pmax) for variable 𝛼𝑊0−𝑐𝑒𝑙𝑙.  

 

𝒀 (𝑴𝑷𝒂) 𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓𝒈) 

250 88.2 

400 91.4 

600 95.2 

800 97.8 

1000 99.3 

1500 100.8 

2000 101.3 

5000 101.9 

Table 7: Maximum cell pressure as mass equilibrium (Pmax) for variable 𝑌. 

 

𝑫𝑨𝑩 (𝒎𝟐𝒔−𝟏) 𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓𝒈) 𝒕𝟗𝟗(𝒔) 
𝟏𝟎−𝟏𝟑 97.8 2890.0 

𝟏𝟎−𝟏𝟐 97.8 289.0 

𝟏𝟎−𝟏𝟏 97.8 28.9 

Table 8: Maximum cell pressure at mass equilibrium (Pmax) and time taken to 

approach 99% of this value (t99), for variable 𝐷𝐴𝐵. 

The initial cell water activity (𝛼𝑊0−𝑐𝑒𝑙𝑙) was varied between 0.97 and 0.99, which is a realistic range for plant cell 

water activities [24]. The base value used in all previous analyses is 0.98. It can be seen in TABLE 6 that Pmax 

increases as activity decreases, with a variation of around ±15 𝑏𝑎𝑟 across the range of 𝛼𝑊0−𝑐𝑒𝑙𝑙  investigated in 



 

 

 

 

this case. This is because the lower activity implies a higher concentration of solute, which in turn increases the 

osmotic pressure of the cells.  

On the other hand, the parameter 𝑌 was varied between 250 MPa and 5000 MPa. The base value used in all 

previous analyses is 800 MPa, which matches experimental data on the elasticity of cell walls of onion epidermis 

[31] (APPENDIX B). TABLE 7 shows the variation of Pmax with Y, where it is seen in this case that the maximum 

equilibrium pressure varies within around ±7 𝑏𝑎𝑟 across the range of elastic modulus values tested. Pmax varies 

nonlinearly with Y, in that the sensitivity of Pmax to Y becomes less pronounced as Y increases. At low modulus 

values the cell tends to expand more readily upon water uptake. The increase in water content increases water 

activity, which in turn reduces the equilibrium pressure. At high modulus values the cell wall is much stiffer. In 

this case, less water uptake is needed to increase the pressure, and the water activity is lower than the case at low 

modulus values. 

Diffusivity (𝐷𝐴𝐵) was varied by an order of magnitude and TABLE 8 shows that there was no influence on the 

maximum equilibrium cell pressure (Pmax). As it is a resistance term it does, however, influence the kinetics. TABLE 

8 shows the time required to attain a pressure that is 99% of the equilibrium value (t99) when 𝐷𝐴𝐵 is varied by an 

order of magnitude. It is seen that t99 increases as 𝐷𝐴𝐵  is decreased, and that it decreases as 𝐷𝐴𝐵  is increased. While 

at 10−12 𝑚2𝑠−1 t99  is equal to 289 seconds, an increase in 𝐷𝐴𝐵  by an order of magnitude decreases t99 to 28.9 

seconds, and similarly a decrease in 𝐷𝐴𝐵  by an order of magnitude increases t99 to 2890 seconds. 

3.3 Assessment of Temperature-Induced Diffusion for cell rupture 

The model results confirm that Temperature-Induced Diffusion can lead to pressures that are high enough to 

achieve cell rupture, even when the temperature difference between the biomass and the surrounding solvent is 

relatively small. High pressures can exist within a realistic timeframe, and with realistic values for electric field 

strength, dielectric loss factor, thermal conductivity and biomass particle/cell cluster size. The pressures do not 

show significant sensitivity to water activity or the elastic modulus of the cell wall. Diffusivity through the cell-

cell wall boundary has a direct effect on the kinetics of the pressure increase, but not the equilibrium value, and 

across a realistic range of diffusivity values the time required for the cell pressures to increase is consistent with 

the duration of empirical studies carried out by numerous different researchers. 

Further developments will be introduced to this model to make it applicable to wider range of experimental 

settings. For instance, it is important to remove the current restriction on solvent choice which in this work can 

only be high-purity water. Furthermore, future iterations of this predictive tool should consider extracts originating 

from the cell wall rather than the cell only. Hence, it is required to consider the cell wall as a distinct phase in 



 

 

 

 

which the kinetics of water and solute flow and the kinetics of desorption from the cell wall are characterised. 

Also, the rates of solute generation within the cell wall should be considered, given that according to recent 

literature microwave heating is capable of enhancing reaction speeds [50] and overcoming some reaction rate-

limiting steps constituted under conventional heating [51]. This work is intended as a first step towards a broader 

predictive tool that combines both theoretical and experimental approaches. 

4 Conclusion 
A new model was developed to describe the action of microwave heating on biomass-solvent systems, which 

includes microwave volumetric heating, heat transfer, mass transfer and cellular expansion mechanics. The model 

explains how temperature gradients arise within clusters of cells due to competing effects of volumetric heating 

and conventional heat transfer. Electric field strength, dielectric loss factor, thermal conductivity and the number 

of cells were all found to affect the internal cell temperature. However, in all but the most extreme of cases the 

magntidue of the temperature difference obtained under microwave heating was less than 40  ℃, which is not 

sufficient to underpin the steam-rupturing hypothesis. The multitude of empirical observations of cell rupture 

during microwave heating are therefore caused by another mechanism. The model was applied to the alternative 

hypothesis of Temperature-Induced Diffusion that was introduced by Lee et al. [24]. The kinetics of the pressure 

increase due to Temperature-Induced Diffusion are of the order of minutes, well-within the timeframes of 

empirical observations; pressures >70 bar can readily occur, which are high enough to cause cell rupture. It was 

found that pressures needed to cause cell rupture could be readily achieved within a range of processing conditions 

that are consistent with previous laboratory studies, and that there was little sensitivty to changes in initial water 

activity, diffusion coefficient and elastic modulus. The Temperature-Induced Diffusion model developed here 

provides a significant advance in the mechanistic understanding of microwave heating and mass transfer within 

biomass, and for the first time allows an experimentally-observed phenomenon to be rationalised with a realistic 

set of physical parameters. Further work will combine theoretical and experimental approaches to develop this 

new model into a broader predictive tool that can determine the suitability of different biomass feedstocks for 

microwave extraction processes based on widely available physical properties. 
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Appendix A: Variables and input parameters 
 

Parameter Value 

𝛽 = 𝑘
𝜌𝐿𝐶𝑝

⁄  Depends on 𝑘, 𝐶𝑝 and 𝜌𝐿 

𝜌𝐿 = 1
𝑣𝐿

⁄  Depends on temperature. Water data [52] 

𝐶𝑝 4.182 𝐽𝑔−1𝐾−1 [53] 

𝐹 2.45 𝐺𝐻𝑧 

휀0 8.854 × 10−12𝑚−3𝑘𝑔−1𝑠4𝐴2 

𝐷𝑝 1 cm; typical order of magnitude for water [32] 

Table A1: Input parameters to the heat equations (EQUATION 1). 

Figure/ 

Table 
Parameter 

 
Particle/ 

cell cluster 

size 

𝜺′′𝒃𝒊𝒐𝒎𝒂𝒔𝒔 𝜺′′𝒔𝒐𝒍𝒗𝒆𝒏𝒕 
𝒌 

(𝑾𝒎−𝟏𝑲−𝟏) 

𝑬 

(𝑽𝒎−𝟏) 
𝜶𝑾𝟎−𝒄𝒆𝒍𝒍 𝑫𝑨𝑩 (𝒎𝟐𝒔−𝟏) 𝒀 (𝑴𝑷𝒂) 

FIGURE 2A 1 cell 25 0 0.05 10000 N/A N/A N/A 

FIGURE 2B 1 cell 25 50 0.05 10000 N/A N/A N/A 

FIGURE 3 
1000 

(10x10x10) 

cells 

20 5 0.6 10000 N/A N/A N/A 

TABLE 1 

1, 
125 

(5x5x5), 

1000 
(10x10x10) 

cells 

0, 10, 20, 

25 
5, 20 0.6 10000 N/A N/A N/A 

TABLE 2 

1, 

125 
(5x5x5), 

1000 

(10x10x10) 
cells 

10 5 0.6 0-10000 N/A N/A N/A 

TABLE 4A 0.1-0.5 mm 35 5 0.1, 0.2, 0.4 10000 N/A N/A N/A 

TABLE 4B 0.1-0.5 mm 5, 20, 35 5 0.2 10000 N/A N/A N/A 

FIGURE 5 1 cell 35 5 0.05 10000 0.98 10−12 800 

FIGURE 6 0.3 mm 10 5 0.2 10000 0.98 10−12 800 

FIGURE 7 
0.1, 0.3, 0.5 

mm 
10 5 0.2 0-10000 0.98 10−12 800 

TABLE 5A 0.3 mm 5, 10, 20 5 0.2 0-10000 0.98 10−12 800 

TABLE 5B 0.3 mm 10 5 0.1, 0.2, 0.4 0-10000 0.98 10−12 800 

TABLE 5C 
0.1, 0.3, 0.5 

mm 
10 5 0.2 0-10000 0.98 10−12 800 

TABLE 6 0.3 mm 10 5 0.2 6000 0.97-0.99 10−12 800 

TABLE 7 0.3 mm 10 5 0.2 6000 0.98 10−12 250-5000 

TABLE 8 0.3 mm 10 5 0.2 6000 0.98 
10−13, 10−12, 

10−11 
800 

Table A2: Value assignment for the different analyses. 

 

 

 

 

 

 

 



 

 

 

 

Appendix B: Cell pressure-volume relationship 
The cell pressure-volume relationship has been determined numerically, by defining an input cell pressure array 

with small increments and computing the stress (by Newton’s third law), strain (using EQUATION 6) and cell volume 

for each pressure value in a stepwise manner. An initial condition was defined where the cell incorporates a known 

set of input geometry, atmospheric pressure and zero stress and strain in the cell wall. A base value of the elastic 

modulus at zero strain (Y) was taken as 800 MPa, which reproduces experimental stress-strain curves reported for 

hydrated cell wall fragments of onion epidermis [31]. FIGURE B1 shows cell pressure-volume relationship. 

 

Figure B1: Cell pressure-volume relationship. 
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