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Abstract 

The finite element implemented Koiter’s initial post-buckling analysis has not managed to 

convince commercial FE code developers to incorporate it into their codes to benefit structural 

designers and analysts.  Three key obstacles have been identified.  With two of them being 

resolved recently, the present paper addressed the remaining one, viz. the efficient solution of 

the second order perturbation equation.  A closed-form solution is obtained which is more 

computationally efficient than any approach adopted in the past.  The closed-form solution is 

obtained mathematically rigorously and in the meantime it is computational efficient.  The 

approach applies also to problems where buckling is of multiple modes.  The solution 

procedure established in this paper has been verified and demonstrated through a structural 

application.  
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Nomenclature 

a First initial post-bucking coefficient 

b Second initial post-buckling coefficient 

B Breadth of plate 

E Young’s modulus 

f  or fi Right-hand term of secondary perturbation equation 

f   The same as f but with kth row removed 

g   The same as the kth column of the K matrix but with kth row removed 
0

UF ,
1

UF  & 
2

UF  In-plane stress resultant in the x direction for pre-buckling, buckling and 

secondary perturbation, respectively 
0

VF ,
1

VF  & 
2

VF  In-plane stress resultant in the y direction for pre-buckling, buckling and 

secondary perturbation, respectively 

i and j Degree of freedom (dof) numbers in a finite element model (i,j=1,2,…, n) 

k The number of dof at which the magnitude of buckling mode is maximum 

K or Kij Tangential stiffness matrix, which is a singular, as the coefficient matrix of 

governing equation for buckling as well as the secondary perturbation 

K   The same as K but with kth row and kth column removed 
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K0 Stiffness matrix for linear problems 

0


K  Initial stress or geometric stiffness matrix 

L Length of plate 

m Multiplicity of the buckling modes 

n Total number of dofs in the finite element model 

N1 & N2 Nonlinear stiffness matrix as linear and quadratic functions of displacement 
0

xxN ,
1

xxN  & 
2

xxN  In-plane membrane in the x direction for pre-buckling, buckling and 

secondary perturbation 
0

yyN ,
1

yyN  & 
2

yyN  In-plane membrane in the y direction for pre-buckling, buckling and 

secondary perturbation 
0

q  Pre-buckling displacement as a function of loading parameter 
0

cq  Pre-buckling displacement at the critical point of bifurcation 

c
q  Derivative of the pre-buckling displacement with respect to the load 

parameter at the critical point of bifurcation 
1

q  or 
1

iq   Buckling mode and also the first order of perturbation displacement 

2
q  or 

2

iq  Secondary perturbation displacement (SPD) 

c
q  Complementary solution for SPD 

 k
q  The kth buckling mode in the SPD in a multiple mode buckling case 

p
q  or 

p

iq  Particular solution for SPD 

p
q   The same as qp but with kth row removed 

0

p
q   A special case of p

q  with p

kq  set to zero 
p

kq  The nodal displacement at the kth dof in the particular solution 

s Magnitude of complementary solution, i.e. buckling mode, in the SPD 

s(r) Magnitude of the rth buckling mode in the SPD in a multiple mode buckling 

case (r=1,2,…, m) 

t Thickness of plate  

T  Arbitrary positive definite matrix to deliver the orthogonality condition 

u & v In-plane displacement in the x and y direction 

ui, vi & wi Nodal displacements at the ith node 

, &a a a

i i iu v w   Analytical displacements at the point of the coordinates of the ith node 

U0, U1 & U2 Common values of displacement in the x direction on sides perpendicular to 

the x-axis for pre-buckling, buckling and secondary perturbation 

V0, V1 & V2 Common values of displacement in the y direction on sides perpendicular to 

the y-axis for pre-buckling, buckling and secondary perturbation 

w Lateral displacement in the z direction 

 Loading parameter 

c Buckling load 

s The load at snap-through point on the equilibrium path of the structure with 

initial imperfection 

 Amplitude of initial imperfection 

 Poisson’s ratio 

 Perturbation parameter and the amplitude of the buckling mode as a part of 

the post-buckling displacement 
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I. Introduction 

The provision of buckling strength predictions from mainstream commercial finite element 

(FE) codes is generally unsatisfactory for practising structural designers and analysts, despite 

the ever-improving modelling capability.  Nonlinear solvers available nowadays are in fact 

sufficient for the class of the so-called snap-through buckling problem, which features a 

maximum load point on the equilibrium path where snap-through takes place. The equilibrium 

path before snap-through is usually highly nonlinear due to finite deformation.  There is another, 

practically larger, class of buckling problem characterised by a bifurcation preceded by a 

usually fairly linear pre-buckling equilibrium path, as will be the focus of the present paper.  

The prediction of such bifurcation point is straightforward as an eigenvalue problem.  However, 

designers are well aware of the fact that it is simply not reliable to treat the predicted the 

bifurcation load as the buckling strength of the structure.  Some structures can sustain much 

higher loads above the bifurcation load with increasing deformation such that the so-called 

secondary buckling becomes an issue, e.g. [1], while others could collapse at load levels much 

lower than the bifurcation load.  As an example of the latter, cylinders under axial compression 

collapse over a wide range scattered between 20% and 50% of that as predicted by the classic 

buckling theory [2].  This phenomenon started troubling researchers in 1940s [3] which led to 

great efforts trying to obtain the post-buckling equilibrium paths, e.g. [4,5], in order to 

understand why.  The campaign ended rather abruptly with the advent of Koiter’s initial post-

buckling theory in late 1960s [6], established in 1945 but unnoticed in the English world until 

1963 [7], although the search for post-buckling equilibrium paths seems to find its way back 

in its computational form due to inavailability of convincingly FE implemented Koiter’s initial 

post-buckling analysis in mainstream commercial FE codes.  In essence, Koiter’s theory 

revealed the true significance of the post-buckling behaviour on the buckling load.  It was in 

fact not the whole post-buckling equilibrium path but the stability of the equilibrium state at 

the bifurcation point on the post-buckling path.  In other words, being able to find the post-

buckling equilibrium path is not enough, no matter how far one could follow the path beyond 

the bifurcation point.  In order to assess whether the predicted bifurcation load can be used as 

the design load, one only needs the stability state of the equilibrium on the post-buckling path 

at the bifurcation point, which is not available from the existing mainstream commercial code 

in a straightforward manner.  If one could assess the stability state, there would not be a need 

to go very far beyond the bifurcation point before one could conclude if there would be any 

risk of premature collapse.  Koiter proved that the state of stability also dictated the sensitivity 
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of the actual buckling load to the initial imperfection the presence of which is inevitable in 

reality due to manufacturing or testing practicality.  Structures of a stable initial post-buckling 

state are insensitive to imperfection and hence able to sustain higher loads while those tend to 

collapse prematurely are due to their unstable initial post-buckling state and hence extreme 

sensitivity to imperfection.  Koiter did not only prove the qualitative relationship as stated 

above, he also managed to express the actual collapsing load quantitatively and simply as a 

function of the magnitude of the initial imperfection in an asymptotic manner.  Although 

Koiter’s theory had the word of ‘post-buckling’ in its title, and it indeed generated the post-

buckling equilibrium path in an asymptotic manner, it was more for effective and 

comprehensive understanding of the buckling behaviour but from the perspective of post-

buckling.  It should therefore not to be mixed with post-buckling analysis, especially those 

traced far into advanced post-buckling regime.  In fact, to be able to trace the post-buckling 

path alone does not necessarily resolve the problem of lack of consistency in the buckling 

behaviour of structures. 

According to Koiter’s theory, the way in which a structure buckles can be fully described 

as sketched in Fig. 1, depending on two values, a and b, the initial post-buckling coefficients.  

In general, if a0 or a=0 and b<0 as in Fig. 1(a) and (b), respectively the post-buckling 

equilibrium is unstable at the bifurcation point and the structure is therefore sensitive to the 

initial imperfection.  In presence of the initial deflection in the shape of the buckling mode at 

different amplitudes, , the equilibrium paths are shown in dashed curves and the actual 

buckling takes place as snap-through at s as indicated in the figure.  In fact, the sensitivity is 

infinite in an asymptotic sense as illustrated in Fig. 1(d) where the slope of the drop in buckling 

load is infinite at =0.  For structures in this category, with cylinders under axial compression 

as a typical example [2], for which new understanding has been achieved recently [8], wide 

scatters in the experimentally obtained buckling load are expected.  On the other hand, in the 

case of a=0 and b>0 as in Fig. 1(c), the post-buckling equilibrium is stable at the bifurcation 

point and the structure can take loads higher than the predicted buckling load while undergoing 

increasing deformation.  Flat plates and straight beams are typical structures in this category.  

The assessment of the buckling behaviour of a structure assisted with Koiter’s theory is not 

only informative but also simple because one only needs to obtain two scalar values, a and b, 

in addition to the buckling load, although the underlying theory is sophisticated and the 

derivations of the expressions of a and b are demanding.  However, once implemented through 
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the finite element method (FEM), their numerical evaluation is almost computationally 

effortless. 

 

(a)  (b)  

(c)  (d)  

Fig. 1  A schematic presentation of the outcomes of Koiter’s theory (a) asymmetric bifurcation, 

a0; (b) symmetric bifurcation with a=0 and b<0; (c) symmetric bifurcation with a=0 and b>0; 

and (d) imperfection sensitivity, a0 or a=0 and b<0 

The 1970s as Koiter’s theory was made widely known were also the era when modern 

commercial FE codes started being incubated.  Half a century on, the development of FE 

capabilities of these codes has been phenomenal.  However, given the practical significance of 

Koiter’s theory in the problem of structural stability and given the attempts of its FE 

implementation since early 1970s [9], it is still unavailable from any mainstream commercial 

FE code, for which disappointment is an understatement.  As a result, the research activities on 

Koiter’s theory declined, given sparsely populated publications [10-23] as a representative 

spectrum of them from various perspectives, without occupying the length of this paper for a 

comprehensive literature review while a reasonable coverage can be found in relatively recent 

publications [24,25].  The reality is that for, most structural designers and analysts, Koiter’s 
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theory is becoming distant past instead of useful tool at their fingertips.  A closer examination 

suggests that it has been in this position not without genuine reasons, owing much to the 

following obstacles. 

1) A key output from Koiter’s theory, coefficient b, has been found mesh sensitive.  While 

several techniques had been proposed [10-13], an effective approach has been 

demonstrated very recently by the authors in [26], simply by adopting the N-notation in 

FEM. 

2) To evaluate the same coefficient b, a set of special simultaneous linear equations as the 

governing equations has to be solved for the secondary perturbation displacement (SPD), 

where a convincing solution technique lacks.  A more detailed description will be provided 

later as the subject of the present paper. 

3) As far as plates and shells are concerned, FE predictions had not been verified by 

comparing with available analytical results until recently [24], although analytical 

solutions, e.g. in the case of a simply support plate under bi-axial compression [27], was 

available in early 1970s.   

The present paper is devoted to the second obstacle as identified above as a final hurdle in 

fully establishing the FE implemented Koiter’s theory.  A crucial step of the initial post-

buckling analysis according to Koiter’s theory is to evaluate a and b, as they contain the full 

information about the state of stability of the post-buckling equilibrium path at the bifurcation 

point and hence the buckling behaviour, as depicted in Fig. 1.  The evaluation of a requires 

little more information than the outcomes of conventional buckling analysis.  If a≠0, the 

analysis can be concluded at this point.  However, there is a large family of structures of which 

a=0 while b≠0.  One requires the value of b in order to assess the stability of the post-buckling 

equilibrium path at the bifurcation point. 

In order to evaluate b, one has to conduct the second order perturbation.  This includes 

obtaining the SPD that plays an essential part in the expression of b.  A set of simultaneous 

linear algebraic equations will have to be solved.  The difficulty associated with this set of 

equations is that the coefficient matrix is singular and they are topped up with some 

orthogonality conditions.  If the problem involved only a small number of equations, as it was 

often the case in analytical solutions, one or more redundant equations could be easily 

identified.  However, in an FEM scenario, one often faces a large number of simultaneous 

equations.  Which of them should be filtered out and replaced by the orthogonality conditions 

does not seem to be a straightforward decision to make.  Even if one identified the redundant 

equation, simply replacing it with the orthogonality condition would spoil the symmetric and 
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banded appearance of the coefficient matrix in FEM.  An alternative is to solve the singular set 

of equations along with the orthogonality condition as a set of over determined simultaneous 

equations using the least square method, as was employed in [25].  Again, the solution demands 

a new solver since the banded numerical feature of the coefficient matrix have been spoiled.  

The efficiency of FEM counts heavily on the special numerical features of the coefficient 

matrix.  The equation solvers employed in all FE codes are usually based on these features.  

The last thing commercial FE code developers want is to introduce a new solver specifically 

for this particular problem.  Therefore, this presents an obstacle to the FE implementation of 

Koiter’s theory. 

Given the fact that every attempt to the FE implementation of the theory has to face this 

practical problem, there has not been much effort in order to resolve the problem in the 

literature, except those to be described in the next two paragraphs.  In fact, most accounts in 

the literature tended to avoid mentioning it as a problem.   

A complete description of the solution procedure could be found in a number of 

publications [11,13,28] in the literature where an iterative scheme was proposed.  In addition 

to the increased computational cost and loss of numerical accuracy, a rigorous proof of the 

convergence of the iterative scheme is absent, although it was claimed to be rapid.  

To the authors’ best knowledge, there has been only one account in the literature, which 

described a non-iterative approach intuitively as ‘the solution can therefore be found simply by 

adding a support that eliminates the singularity and afterwards the orthogonality condition can 

be applied’ [12].  However, no instruction was given where the support should be added and 

why.  While the intuition stood some truth, it was far from rigorous and it did not seem to have 

attracted much attention afterwards either.  In the present paper, a systematic approach along 

this line will be established leading to a closed-form solution of mathematical rigor.  The 

governing equations will be expressed in this paper using the N-notation finite element 

formulation as established in [26].  As it is a closed-form solution, no iteration will be required.  

Mathematically it is an exact solution if numerical errors involved in the eigenvalue extraction 

for the buckling load and the solution of a set of simultaneous linear equations are excluded.  

More importantly, this approach does not spoil the symmetric, positive definite and banded 

nature of the coefficient matrix in any way so that the same solver in the conventional FEM, 

such as the LDLT decomposition method [29], can be employed to solve the simultaneous 

equations while the remaining manipulations, though essential, are trivial in terms of 

computational cost. 
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After a brief recapitulation of FE implemented Koiter’s theory associated with SPD in the 

next section, the approach to the closed-form solution will be presented in Section III based the 

mathematical principle of the construction of solutions for linear equations in general in terms 

of the sum of the complementary solution and a particular solution.  The existence and 

uniqueness of the solution has also been discussed.  The applicability of the solution technique 

for problems of multiple buckling modes has been delivered in Section IV before various 

examples as verifications or applications are presented in Section V. 

 

II. FE initial post-buckling analysis and the secondary perturbation displacement 

With the fully established N-notation [26], governing equation for buckling is given as  

    0 0 1

0 1 2c c  K N q N q q 0         (1) 

where 0K  is the stiffness matrix for the linear problem, and 1N  and 2N  are the stiffness 

matrices due to geometrical nonlinearity, which are linear and quadratic functions of 

displacement, respectively, and q1 is the buckling mode.  They can be obtained explicitly and 

uniquely [26].  
0

cq  is defined as follows.  The fundamental path is a function of load parameter 

λ, defined as 

 0 0 q q .          (2) 

In general, it can be expressed into a series as Taylor’s expansion at the point of buckling, i.e. 

 0 0 0

c c c    q q q .        (3) 

where c  is the lowest eigenvalue of (1), i.e. the buckling load.  Then  0 0

c cq q , and 
0

cq  is 

the 1st order derivative with respect to λ at c .  The fundamental path expressed either in (2) or 

(3) is assumed to be known.   

Equation (1) defines a nonlinear eigenvalue problem.  In most practical problems, the 

fundamental path is linear, i.e. (2) is a linear function of .  Even so, (1) is still a quadratic 

eigenvalue problem in general.  However, if the pre-buckling deformation state on the 

fundamental path is also in a membrane state, (1) can be simplified to  

  1

0 0c

 K K q 0          (4) 

where 0


K  is the so-called initial stress or geometric stiffness matrix with detailed expression 

provided in [26] after the initial stresses have been normalised by the load parameter .  

Equation (4) is then a conventional generalised eigenvalue problem.  In the examples later, the 
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buckling problem will be solved using (4).  However, to keep the generality of the presentation 

in the discussion to follow, (1) will be kept as the governing equations. 

The 2nd order perturbation is required if the first initial post-buckling coefficient vanishes, 

i.e. a=0.  In this case, the governing equations for the SPD, q2 can be given as follows [26]. 

        0 0 2 1 1 1 0

0 1 2 1 2

1

2
c c c    K N q N q q N q q N q q     (5) 

where the coefficient matrix on the left hand side is identical to that of (1), which is therefore 

singular.  Under the same conditions that helped reducing (1) to (4), this coefficient matrix can 

also be replaced by that in (4).   

The orthogonality condition between buckling mode and SPD can be given as [26]  

 1 2 0
T

q Tq           (6) 

where T can be an arbitrary positive definite matrix and the superscript T on q1 indicates 

transposition.  A conventional choice of T and its positive definitiveness will be justified in 

Appendix for the sake of completeness.   

With q1 and q2 found, the initial post-buckling coefficients can be obtained as [26] 

       

       

1 1 1 1 1 0

1 2

1 1 0 0 1 0

1 2

21

2 2

T T

c

T T

c
c c c

a



 



q N q q q N q q

q N q q q N q q

      (7) 

          
       

1 1 1 2 0 0 2

2 0 1 2

1 1 0 0 1 0

1 2

61

3 2

T T

c c

T T

c
c c c

b


  
 



q N q q q K N q N q q

q N q q q N q q

  (if a=0)  (8) 

Noticing the typographic errors in the above expressions as presented in [26] in the second 

term in the denominators of (7) and (8), which have been corrected here.  The significance of 

a and b has been described in the previous section through Fig. 1.  It is obvious that in order to 

evaluate b, it is essential to find q2.  The problem of finding q2 can be presented mathematically 

as solving governing equations (5) subjected to orthogonality condition (6).  It will be shown 

that a closed-form solution can be obtained in the next section. 

 

III. The closed-form solution for the secondary perturbation displacement 

A. The mathematical problem and the construction of the solution 

For the derivation in this section, the buckling will be assumed to be of a single mode.  For 

the convenience in mathematical manipulations, (5) is abbreviated as  
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2 Kq f  or 

2
1,1 1, 1, 11

2
,1 , ,

2
,1 , ,

k n

k k k k n kk

n n k n n nn

K K K fq

K K K fq

K K K fq

    
    
       

     
     
     
         

.   (9) 

Similarly, eigenvalue problem (1) or (4) is denoted as 

1 Kq 0 .          (10) 

The mathematical problem to be addressed is (9) as a set of nonhomogeneous simultaneous 

linear equations with a singular coefficient matrix as the governing equations which should be 

solved subject to condition (6).  This is a linear problem mathematically.   

In general, the solution to a linear problem can always be constructed from a 

complementary solution qc and a particular solution qp.  The complementary solution qc 

satisfies the homogeneous counterpart of (9) 

 c Kq 0           (11) 

while the particular solution qp can be anyone satisfying (9).  Apparently, none of the 

complementary solution qc and the particular solution qp is unique, given the singularity of K.  

In fact, for any constant s, one can easily verify that sqc also gives a complementary solution 

while sqc+qp is also a particular solution.  According to linear algebra [30], if the buckling is 

of a single mode, the rank of K is (n-1), i.e. the solution to (11) is determined to a single 

arbitrary constant which can be s as introduced above.  Thus, the complete solution to (9), if it 

exists, can be expressed as 

 c ps q q q .          (12) 

With the solution mathematically constructed as above, a closed-form solution will be sought 

for in the following subsections with appropriate mathematical considerations duly made. 

B. The complementary solution and its implication 

Given the buckling equations (10), q1 apparently satisfies (11).  It is clear that the buckling 

mode q1 is a complementary solution.  Thus 

 
1 1 1 1 1 1

1 1 1

T
c

k k k nq q q q q 
    q q .     (13) 

Equation (10) can be re-written into 

 

1,1 1,1 ,1 1,1 ,1

1 1 1 1 1
1, 1, , 1, ,1 1 1

1, 1, , 1, ,

k k k n

k k k k k k k n kk k k n

n k n k n k n n n

K K K K K

K K K K Kq q q q q

K K K K K

 

  

 

         
         
         
         

               
         
         
                  

0

0

0

 
 
  
 
 
 
  

.  (14) 
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Assuming that the kth component of q1 is of the highest absolute magnitude, one is sure that 

1 0kq  .          (15) 

Otherwise, the buckling mode would be a null vector that is not allowed as the buckling mode 

is supposed to be a non-trivial solution to (10).  With (15), one can re-write (14) into 

 

,1 1,1 1,1 1,1 ,1

1 1 11
1 11

, 1, 1, 1, ,1 1 1 1

, 1, 1, 1, ,

k k k n

k k n
k k k k k k k n k

k k k k

k n n k n k n n n

K K K K K

q q qq
K K K K K

q q q q

K K K K K

 

 
 

 

        
        
        
        

              
        
        
                










.   (16) 

The above equations can be stated as the kth column of the K matrix can be linearly expressed 

in terms of other columns of the same matrix, with k corresponds to the row number of the 

buckling mode of the highest absolute magnitude.  As K is a symmetric matrix, the above 

statement can be made equally for the ith row of matrix K, i.e. the ith row of K can be linearly 

expressed in terms of the remaining rows of the same matrix. 

C. Existence of a solution for the linear nonhomogeneous simultaneous equations 

In Koiter’s theory, there has never been rigorous proof of the existence of the solution for 

the secondary perturbation equations.  In analytical approaches, usually the proof came with 

the fact that a solution had been actually found for a specific problem.  This is not an ideal 

position.  If a numerical algorithm fails to work, e.g. lack of convergence in the iterative scheme 

following [11,13,28], one would not be sure if it was because of the inexistence of a solution 

or the incapability of the iterative algorithm.  A clear statement on the existence of a solution 

is therefore helpful from both mathematical and practical point of view.  For (9) to have a 

solution, strictly according to linear algebra, one should have 

 

1,1 1, 1, 1,1 1, 1, 1

,1 , , ,1 , ,

,1 , , ,1 , ,

rank rank

k n k n

k k k k n k k k k n k

n n k n n n n k n n n

K K K K K K f

K K K K K K f

K K K K K K f

      
      
      
      
      
      
      
      

. (17) 

This will be satisfied if 
kf  can be linearly expressed by the rest of the components of f in the 

same way as the kth row of K is expressed in terms of other rows of K as in (16), i.e. 

1 1 11
1 11

1 1 11 1 1 1

k k n
k k k n

k k k k

q q qq
f f f f f

q q q q

 
        . or 1 0T f q  (18) 

If so, condition (17) will be satisfied and existence of solution will be proven.  The satisfaction 

(18) can be easily argued as follows.  Given f as defined on the right hand side of (5), fTq1 
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reproduces the numerator of the expression of a as provided in (7).  Condition (18) is therefore 

satisfied if a=0.  The satisfaction of (18) will not be compromised even if a0, as elaborated in 

Appendix.  In other words, (18) is always satisfied and so is (17), whether a vanishes or not.  

The existence of a solution to (9) or (5) is thus proven.  Although this is a simple argument 

mathematically, the explicit proof has been absent, whether for FE represented problem or for 

its analytical counterpart, e.g. from [6,27].  The proven existence of a solution lays down one 

of the cornerstones for the FE implementation of the Koiter’s theory in a mathematical sense. 

D. The particular solution 

Equations (16) and (18) imply that the kth equation in (9) can be linearly expressed by the 

remaining equations in (9) and therefore it is redundant.  After removing the kth equation and 

with the terms corresponding to the kth column of the coefficient matrix moved to the right-

hand side, the governing equation (9) can be re-written into 

1,1 1, 1 1, 1 1, 11

1,1 1, 1 1, 1 1, 11

1,1 1, 1 1, 1 1, 11

,1 , 1 , 1 ,

p
k k n

p
k k k k k k n kk

p
k k k k k k n kk

p
n n k n k n n nn

K K K K fq

K K K K fq

K K K K fq

K K K K fq

 

      

      

 

    
    
   
   

   
   
   
   

        

1,

1,

1,

,

k

k kp

k

k k

n k

K

K
q

K

K





 
 
 
 

  
 
 
 

   

  (19a) 

denoted as 

p p

kq Kq f g          (19b) 

where g is the kth column of the K and a tilde on top of any quantity means the same but with 

the kth degree of freedom (dof) removed.  The coefficient matrix K  on the left hand side of 

(19) is now positive definite, given the single mode buckling assumption.  Apparently, 
p

kq  is a 

free factor that can be set to any fixed value before solving (19) to deliver a particular solution.  

As stated previously, the particular solution is not unique and only one of them is required.  

Given the arbitrariness of 
p

kq , one can choose 0p

kq  , i.e.  

0

p Kq f          (20) 

which will be of exactly the same effect as constraining the dof 
p

kq  from (9), i.e.   

1,1 1, 1, 11

,1 ,

,1 , ,

p
k n

p
k k n kk

p
n n k n n nn

K K K fq

K K fq

K K K fq

    
    
       

     
     
     
         

     (21) 



Accepted for publication in AIAA J, Dec. 2019 

13 

 

where ∞ is infinity but can be represented numerically by sufficiently high positive value 

computationally, as the higher it is, the closer will 
p

kq  be to zero and hence more accurately 

(21) be satisfied.  With the dof corresponding to 
p

kq  constrained, the singularity of K has been 

eliminated.  If the solution to (21) is denoted as 0

p
q , the difference between 0

p
q  and 0

p
q  is that 

the former is of n dofs with the kth, i.e. 
p

kq  equal to zero, while the latter has (n-1) dofs with the 

kth dof eliminated.  Thus, 0

p
q  satisfies (9) if it satisfies (21), given (19), and therefore it is a 

particular solution to (9). 

It is important to point out that the way of imposing constraints to displacement in (21) is 

also typical in FEM in general as it does not upset the appearance of the coefficient matrix that 

should remain symmetric and banded.  The constraint as imposed in (21) turns the singular 

coefficient matrix into positive definite.   

Although a particular solution could be found after constraining a dof as suggested in [12], 

it cannot be an arbitrary dof.  If the dof had not been properly chosen, for instance, if the chosen 

dof of the buckling mode happened to have a zero value, (16) and (18) would not apply.  Even 

if the component of the buckling mode associated with the dof was not exactly zero, the 

problem could become ill-conditioned if it was small relative to the amplitude of the buckling 

mode.  Choosing the kth component of q1 of the highest absolute magnitude is to ensure that a 

redundant equation is eliminated on one hand and that the problem is numerically well-posed 

on the other hand. 

E. Orthogonality condition, the closed-form solution and its uniqueness 

Having obtained the complementary solution and a particular solution as presented in the 

previous subsections, the complete solution can be constructed according to (12), which 

satisfies the governing equations (9) identically.  However, it does not necessarily meet the 

requirement of the orthogonality condition (6).  To impose it, given qc=q1, one has 

        1 1 1

0 0
T T

c p ps s   q T q q q T q q      (22) 

There is only one special value of s that will satisfy the orthogonality condition and it can be 

determined as follows. 

    1 1 1

0

T T
ps   q Tq q Tq        (23) 

The SPD can thus be obtained as 



Accepted for publication in AIAA J, Dec. 2019 

14 

 

 
 

 

1

02 1

0
1 1

T
p

p

T
  

q Tq
q q q

q Tq
.       (24) 

This uniquely determines the SPD in a closed form.  Mathematically, after removing the 

redundant equation and topping up with the orthogonality condition (6), one has n independent 

simultaneous linear equations and they should uniquely determine a solution.   

In terms of computational efforts in order to obtain the closed-form solution, one has to 

solve only a set of simultaneous linear equations as given in (21) to obtain a particular solution 

0

p
q  while q1 has been made available already through the conventional buckling analysis.  The 

coefficient matrix of (21) should also be readily available from the preceding buckling analysis 

without having to generate it again.  Appropriate boundary conditions should be imposed as 

defined by the problem along with an additional constraint at the kth dof as illustrated in (21).  

Then, the SPD can be obtained according to (24), which is computationally effortless. 

Simultaneous linear equations (21) pose a well-presented problem as the coefficient matrix 

is symmetric, positive definite and, more importantly, banded in an identical form to the 

stiffness matrix of the structure concerned for its conventional linear analysis.  Reflecting on 

the statement made in [12] as quoted in the Introduction, the present paper has turned it into a 

practical procedure users can follow with mathematical rigor, which can be extended to 

embrace broader generality as will be addressed in the next section. 

 

IV. Secondary perturbation displacement in the case of multiple modes buckling 

When the buckling is of multiple modes, the closed-form solution can be constructed in a 

similar way.  Assume that, corresponding to the buckling load, the eigenvalue is repeated m 

times, there are m independent eigenvectors, denoted as q(r)
 (r=1,2,…, m), and these 

eigenvectors as well as the buckling load have all been obtained already, where superscript r 

in brackets is to be distinguished from displacement perturbations q2, q3, etc.  For each of 

eigenvectors, the row number of the component of the highest absolute magnitude can be 

identified and denoted as i(r).  All eigenvectors are orthogonal to each other, i.e. 

    
0

T
h r

q Tq  if  hr  (h, r=1,2,…, m)   (25) 

The complementary solution can then be constructed from these eigenvectors as a linear 

combination of them. There are m redundant equations in (9) which can be eliminated by 

constraining the k(r)-th dof (r=1,2,…, m) in the structure, where k(r) is defined as the row or dof 
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number of the highest magnitude in the r-th eigenvector.  After constraining these dofs, the 

positive definiteness of K is recovered and Equation (9) can be solved for a particular solution 

qp.  Then the complete solution to the governing equations can be constructed as  

  2

1

m
r p

r

r

s


 q q q .        (26) 

In the case of multiple eigenvectors, as opposed to (6), the orthogonality conditions become 

   2 0
T

r
q Tq   (r=1,2,…,m)     (27) 

Given the orthogonality conditions above, constants rs  can be determined as 

 
         1,2,

T T
r r rp

rs r m  q Tq q Tq    (28) 

Substituting the above into (26), one obtains a closed-form solution again  

 

  
    

 2

1

T
r p

m
rp

T
r r

r

 
q Tq

q q q

q Tq

.      (29) 

The derivation is equally rigorous as the single mode buckling scenario.  Apparently, the single 

mode case can be considered as a special case of the present multiple mode formulation when 

m=1.  The existence and uniqueness of q2 can be argued in the same way as that for the single 

mode buckling case as provided in the previous section. 

 

V. Numerical examples 

A. A verification through a manually solvable case  

A simple example can be introduced as follows with 

0

3 1 0

1 2 1

0 1 3

 
 

  
 
  

K ,    
0

1 0 0

0 1 0

0 0 1



 
 

 
 
  

K ,    

1 0 0

0 1 0

0 0 1

 
 


 
  

T  and 

1

1

1

 
 

  
 
 

f  

Substituting them into Equation (4), a single eigenvalue and its corresponding eigenvector can 

be found as 

 1c      and     1 1 2 1
T

q . 

Given the magnitudes of the components of q1, one can easily identify that i=2.  Apparently, f 

satisfies (18).   The governing equations for q2 becomes  
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2
1

2
2

2
3

2 1 0 1

1 1 1 1

0 1 2 1

q

q

q

    
     

       
         

. 

Solving 

1

2

3

2 1 0 1

1 1 1

0 1 2 1

p

p

p

q

q

q

    
     

        
         

  one obtains 

0.5

0

0.5

p

 
 

  
 
 

q . 

After determining s according to (23), the complete solution can be obtained from (24) as 

  2 1
1 1 1

3

T
 q . 

If the obtained result is substituted back into both the governing equations (5) and the 

orthogonality condition (6), they are satisfied exactly.  The solution has therefore been verified. 

In order to draw a comparison with Lanzo’s iterative approach [11] to offer an indication 

of the rate of convergence, results are also obtained from such scheme and those after 6 and 12 

iterations are shown as follows, respectively, along with the initial value 

 
2
0-iteration

0

0

0

 
 

  
 
 

q ,   
2
6-iterations

0.33325

0.33325

0.33325

 
 

  
 
 

q    and 
2
12-iterations

0.33333331

0.33333331

0.33333331

 
 

  
 
 

q . 

Each of the latter two could offer an approximation depending on the required accuracy.  It is 

clear that the approximation, no matter how accurate it is, is unnecessary if a closed-form 

solution can be found, especially if the closed-form solution can be obtained with less 

computational effort and perfect mathematical rigor. 

B. A manually solvable case involving multiple eigenvectors 

If one replaces the K0 matrix as in the previous subsection by the one below 

0

1 2 2

2 2 4

2 4 2

 
 

  
 
  

K  

while everything else remains the same, one finds a repeated eigenvalue at 

   1 2
2c c   . 

The eigenvectors associated with the repeated eigenvalue are 

   1
2 1 0

T
 q    and    2

2 4 5
T

q      satisfying     1 2
0

T

q T q . 

Given the magnitudes of the components of the eigenvectors, one can easily identify that the 

first and the third equations can be eliminated from the governing equations for q2  
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2
1

2
2

2
3

1 2 2 1

2 4 4 2

2 4 4 2

q

q

q

     
     

      
          

      to give 

1

2

3

2 2 1

2 4 4 2

2 4 2

p

p

p

q

q

q

     
     

      
          

 

leading to  

 
1

0 1 0
2

Tp  q . 

From (28), one has 1 1 10s    and 2 2 45s  , and (29) leads to  

 2 1
1 2 2

9

T
  q  

which satisfies both the governing equations (5) and the orthogonality conditions (27) and 

therefore is a solution and the only solution. 

C. An examples of structural application 

While verifying the derived solution obtained in this paper at a basic level, the simple 

examples as shown in previous subsections have illustrated the closed nature of the solution as 

well as the procedure of its application.  As a proper verification of the FE implemented 

Koiter’s theory, it will be applied to a structural problem with the results compared with 

available analytical solution.  The in-house developed FE code to facilitate the Koiter’s theory 

and applied in [26] was employed to conduct the FE analysis.  As mentioned in the Introduction, 

such a meaningful comparison had remained one of the obstacles for the wide acceptance of 

FE implemented Koiter’s theory for nearly half a century and it had not been achieved until the 

publication of [24] as the very first proper attempt of successful verification FE implemented 

Koiter’s theory for its application to plates and shells (in modern FEM, shells have been unified 

with plates in terms of element formulation).  The way of prescribing boundary conditions in 

the numerical models in [24] followed the approach proposed in [25] maintaining full 

consistence with those in analytical solution for a simply supported plate.  These boundary 

conditions were also implied in the analytical solution as presented in [27]. 

(1) The problem to be analysed and the boundary conditions 

The problem to be analysed is as sketched in Fig. 2 where a simply supported homogeneous 

and isotropic plate is subjected to biaxial compression for which an analytical solution is 

available [27].  Relevant parameters involved in the problem are as shown in Fig. 2.  The 

boundary conditions consistent with the analytical solution [27] for pre-buckling, buckling (1st 

perturbation) and post-buckling (2nd perturbation) regimes are presented in Table 1.  Uniaxial 
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compression as analysed in [11, 26] can be considered as a special case when one of the 

prescribed membrane forces vanishes.   

While the boundary conditions presented in Table 1 are in perfect consistence with 

analytical solution, why they should be in this form for each of the three phases of analyses for 

general applications of Koiter’s theory remains a subtle problem to be addressed since 

insufficient details could be found in [24].  As will be established later through numerical result, 

the key to the reproduction of analytical results using FEM relies on the correct representation 

of the boundary conditions.   

 

 

Fig. 2 A simply supported plate under biaxial compression 

 

Table 1 Boundary conditions consistent with the analytical solution and also among all three 

phases involved 

 0 &x L  0 &y B  

Nature of BC Essential Natural Essential Natural 

In-plane boundary conditions 

Pre-buckling 
0 0

0 orx L
u U


   0 0 0, 0

U xx xy
F N B N   0 0

0 ory B
v V


   0 0 0, 0

V yy xy
F N L N   

Buckling 
1 1

0 orx L
u U


   

1 10, 0
U xy

F N   
1 1

0 ory B
v V


   1 10, 0

V xy
F N   

Post-buckling 
2 2

0 orx L
u U


   2 20, 0

U xy
F N   

2 2

0 ory B

v V


   2 20, 0
V xy

F N   

Out-of-plane boundary conditions 

Pre-buckling 0 0w   
0 00, 0
xx xy

M M   0 0w   
0 00, 0
yy xy

M M   

Buckling 1 0w   
1 10, 0
xx xy

M M   1 0w   
1 10, 0
yy xy

M M   

Post-buckling 2 0w   
2 20, 0
xx xy

M M   2 0w   
2 20, 0
yy xy

M M   
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The simply supported boundary conditions for the out-of-plane deformation are uniquely 

defined and do not need any further discussion but included in Table 1 for completeness.  The 

in-plane boundary conditions need some attention.  In general, in order to reproduce the 

analytical result, the FE model should represent the boundary conditions in the analytical 

solution precisely.  The trouble is that the in-plane part of analytical solutions, such as that in 

[27], were often obtained using the so-called semi-inversed method as in the theory of elasticity 

[32] based on Airy’s stress function where in-plane boundary conditions were not provided 

explicitly.  However, this does not mean that boundary conditions do not exist.  One can always 

obtained the membrane forces from the Airy’s stress function.  The values of the normal and 

tangential components of the membrane forces at boundary conditions are the traction 

boundary conditions the solution satisfies.  Alternatively, from the membrane forces, one can 

work out the strains using the generalised Hooke’s law before integrating the strains through 

the kinematic equations to derive the displacement field.  The in-plane displacement boundary 

conditions can then be obtained as the values of the displacement field at the boundary.  

Obviously, for the problem to be well-pose mathematically, one should not prescribe all the 

obtained boundary conditions at the same time, even though they are compatible with each 

other.  Correct prescription of them can be in one of the three forms: 

i) Displacement boundary conditions (normal and tangential to the boundary); 

ii) Traction boundary conditions (normal and tangential membrane forces); 

iii) A logical combination of selected components of the above two, e.g. displacement 

normal to the boundary and membrane force tangential to the boundary. 

Even so, it is sometimes cumbersome to represent the boundary conditions as implied by the 

analytical solution in a way convenient for FE implementation of Koiter’s theory.  Some of the 

values to be prescribed, e.g. the magnitude of SPD, are unknown while the known condition is 

that the boundary should displace by a constant amount so that the corresponding membrane 

force resultant vanishes.  The success of [25] was to introduce what is conventionally called 

‘kinematic coupling’ [33] that allowed a displacement component along a part of the boundary 

to be kept the same as that at an additional dof artificially introduced.  This was brought into 

the numerical analysis of Koiter’s theory properly in [24].  The magnitude of the displacement 

at the additional dof can be prescribed as fixed value if it is so wished.  Alternatively, it can be 

left for the concentrated force on that dof to decide.  Among the three phases of analysis, the 

relevant concentrated forces associated with different sides of the boundary should be 

prescribed non-vanishing values only for pre-buckling analysis.  In both buckling and initial 



Accepted for publication in AIAA J, Dec. 2019 

20 

 

post-buckling analyses, the 1st and 2nd order perturbation displacements are independent of load 

parameter λ and their contributions to the initial post-buckling equilibrium path is through the 

perturbation parameter  according to Koiter’s theory.  This is equivalent to prescribing zero 

loads at the additional dofs artificially introduced.  In Table 1, U and V are such additional dofs, 

one for each set of edges in the direction perpendicular to the respective edges.  FU and FV are 

the concentrated forces at U and V, respectively.  The superscripts 0, 1 and 2 on them indicate 

the phases of the analysis they are associated with.  It should be pointed out that these boundary 

conditions as shown in Table 1 are of different natures, viz. essential and natural, stemming to 

the variational calculus.  Since FEM is based on variational principles, the nature of these 

boundary conditions matters, as essential boundary conditions have to be imposed and 

therefore satisfied by the solution strictly.  On the other hand, natural boundary conditions in 

FEM are prescribed in terms of load application.  In the case of zero load, no action is required 

from the user.  As they are satisfied in the sense of energy minimisation, their satisfaction is 

meant to be approximate, as accurate as equilibrium conditions are satisfied in general.  An 

important statement here is that homogeneous natural boundary conditions can be simply left 

alone while being perfectly correct in FEM in general.  Therefore, in the column under ‘Natural’ 

boundary conditions, all conditions can be ignored, except for the pre-buckling loading 

condition. 

For all three phases, the in-plane rigid body motions need to be constrained properly.  In 

the present example, they are constrained by fixing both in-plane displacements at centre of 

the plate and the displacement in y direction on the x=L side.  The out-of-plane rigid motions 

are constrained naturally through the simple support conditions.   

(2) Numerical results 

The plate under consideration was assumed to be of a breadth of 100mm; the thickness of 

plate is 1mm; the material is assumed to be homogenous, isotropic and linearly elastic with 

E=210GPa and =0.3; and the 8-noded shell elements were employed with reduced integration.  

The buckling load and the second initial post-buckling coefficient b have been included in 

Table 2.  Two types of boundary conditions have been prescribed, one consistent with those in 

the analytical solution as detailed in Table 1 and one denoted ‘Free BC’ as employed in [11] 

and confirm in [26], which is inconsistent with those in the analytical solution but obtained 

intuitively.  Converged mesh as that in [26] has been employed.  There was no mesh sensitivity 

as a result of the use of the N-notation [26].  The following measure has been adopted to assess 

the numerical errors in the obtained results as shown in Table 2. 
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 Error in q2=            
2 2 2 2 2 2

a a a a a a

all nodes all nodes
i i i i i i i i iMax u u v v w w Max u v w

   
         

   
  (30) 

where  , ,i i iu v w  are nodal displacements of the secondary perturbation at the nth node, and 

 a a a, ,i i iu v w  the displacements from the analytical solution at the location of the nth node.  It is 

clear as shown in Table 2 that the errors in the present approach are indeed insignificant for all 

the cases dealt with.  It should be noted that the sources of minor numerical errors in the 

solution obtain resulted from FEM, eigenvalue extraction and solving the simultaneous 

equations (21) for the particular solution but none from the closed-form solution for the SPD.   

 

Table 2  Results for biaxial compression 

Aspect 

ratio 

Load 

ratio 

Buckling load 

(N/mm) 
b Error in q2 

Analytical Present Analytical Present Free BC Present Free BC 

0.5 

0.2 12.65 12.57 0.3413 0.3434 0.2060 0.316% 28.9% 

1 23.73 23.63 

0.4641 

0.4652 0.06169 0.243% 110% 

5 5.649 5.625 0.4654 0.06164 0.187% 88.9% 

10 2.893 2.881 0.4654 0.06165 0.184% 88.9% 

1.0 

0.2 12.65 12.55 

0.3413 

0.3440 0.1779 0.281% 41.8% 

1 37.96 37.64 0.3440 0.1779 0.258% 41.8% 

5 12.65 12.55 0.3440 0.1779 0.281% 41.8% 

10 6.902 6.843 0.3440 0.1779 0.281% 41.8% 

2.0 

0.2 5.649 5.625 
0.4641 

0.4654 0.06164 0.187% 88.9% 

1 23.73 23.62 0.4652 0.06159 0.243% 88.9% 

5 12.65 12.57 
0.3413 

0.3434 0.2060 0.316% 28.9% 

10 6.902 6.857 0.3434 0.2059 0.316% 28.9% 

3.0 

0.2 4.585 4.574 
0.5597 

0.5600 0.01778 0.189% 94.1% 

1 21.09 21.04 0.5596 0.01775 0.275% 94.1% 

5 12.29 12.23 0.3917 0.3932 0.1213 0.708% 51.0% 

10 6.902 6.861 0.3413 0.3413 0.2147 0.778% 20.1% 

 

The results as shown in Table 2 show the reliance of the accuracy of the FEM predictions 

in comparison with those from the analytical solution on the correct interpretation of boundary 

conditions.  The FEM results become close predictions to the analytical solution if the boundary 

conditions employed in the FE analysis are consistent with those in, or implied by, the 

analytical solution.  Otherwise, as those presented in [11], they would be a completely different 
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story, not necessarily wrong, but only correct to the boundary conditions employed as 

confirmed in [26] and one cannot draw any relevance between them and the verification of the 

FE implemented Koiter’s theory against available analytical results.  The inability to verify 

against available analytical solution is an impractical position for any FEM development to be 

considered as acceptable. 

The obtained results and their accuracies in comparison with the analytical results are a 

convincing verification of the closed-form solution for the SPD, as well as the FE 

implementation of Koiter’s theory for plates and shells.   

(3) A structural example of dual mode buckling 

For the same plate as dealt with above, if the aspect ratio of it is set to 2 , the buckling 

will be of dual modes.  The obtained buckling load as a repeated eigenvalue and the buckling 

modes from the authors’ FE analysis all agree well with the analytical results and hence are not 

shown here again.  Given the two independent buckling modes, there are three sets of SPDs, 

q2(1,1), q2(1,2) and q2(2,2), corresponding to different expressions on right hand side of (9), i.e. 

              

                

              

2 1,1 1 1 1 1 1 10 0 0

0 1 2 1 2

2 1,2 1 1 1 2 1 1 1 20 0 0

0 1 2 1 11

2 2,2 1 2 1 2 1 20 0 0

0 1 2 1 2

1

2

1 1
,

2 2

1

2

c c c

c c c

c c c

    

    

    

K N q N q q N q q N q q

K N q N q q N q q N q q q

K N q N q q N q q N q q

   (31) 

where q1(1) and q1(2) are the two independent buckling modes, respectively.  Each of the three 

independent SPDs as the solutions to the above equations, respectively, is subject to 

orthogonality conditions 

    2 , 1
0

T
i j k

q q  i, j, k =1, 2.       (32) 

For this particular structure, the SPDs obtained happen to involve only in-plane deformation 

and two of them are plotted in Fig. 3 as demonstrators of the closed-form solution technique as 

presented in this paper.  The undeformed mesh is shown as the regular grids while the shaded 

patches represent the deformed mesh with the magnitude of the deformation amplified by 1000 

times in the plots, corresponding to the buckling modes so normalised that the amplitudes of 

their deflections are both unity.  The obtained solutions agree so well with the analytical ones 

that they overlap with each other without visible differences while the actual errors are below 

1% as the numerical accuracy of the FE mesh allows.  To highlight the a characteristic feature 

of these plots, the two solutions share the common maximum in-plane displacement in the 

transverse direction.  In the loading direction, q2(2,2) is four times of q2(1,1) precisely in terms of 
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their maximum values.  This is the case because the number of half-waves of q1(2) doubles that 

of q1(1) and these half-wave numbers appear in a bilinear form in the expressions for the right 

hand sides of the secondary perturbation equations in the analytical solution.  

 

  

(a)             (b) 

Fig. 3  Patterns of the SPDs corresponding to (a) the first buckling mode q2(1,1) alone, and 

(b) the second buckling mode q2(2,2) alone 

 

It should be pointed out that the results shown here are merely meant to demonstrate the 

applicability of the solution technique for SPDs to cases of multiple mode buckling.  The third 

SPDs will be presented in a subsequent publication along with a complete initial post-buckling 

analysis which falls into a different category, viz. mode interaction, and hence beyond the scope 

of the present paper.   

 

VI Concluding remarks 

In this paper, the major obstacles in the FE implementation of Koiter’s initial post-buckling 

theory have been identified.  With two of them being resolved recently, the final one, viz. the 

solution for the secondary perturbation displacement (SPD), has been addressed as the subject 

of this paper, leading to a closed-form solution, whereas an iterative approach had been adopted 

previously.  The difficulty associated with the SPD is the singularity of the coefficient matrix 

of the governing equations although the singularity can be eliminated by the supplemented 

orthogonality condition(s).  The obtained closed-form solution is based firmly on mathematics 

and constructed rigorously from a complementary solution and a particular solution as an 

approach generally applicable to all linear systems.  The buckling mode has been identified as 

a complementary solution.  A particular solution can be obtained after constraining the dof 

corresponding to the component of the maximum magnitude in the buckling mode.  The 
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solution as a sum of the complementary and particular solutions can then be uniquely 

determined after imposing the orthogonality condition.  The mathematical rigor has been 

partially demonstrated through the proof of the existence of a solution to the governing 

equations for SPD, which has never been made clear in the past, even in the analytical 

formulation of Koiter’s theory.  The procedure has been extended to the problem of multiple 

mode buckling.  The solution is not only analytically elegant but also computationally efficient.  

The procedure has been verified through simple examples where exact solutions can be 

obtained manually.  A structural application has been shown with results compared perfectly 

with analytical solutions.  

As a most important outcome out of this paper, it has shown that all obstacles have been 

resolved and the FE implemented Koiter’s theory is ready to be incorporated in mainstream 

commercial FE codes.  While the outcomes from Koiter’s theory have significant impact to the 

conventional buckling analyses by enhancing the much-needed confidence on their buckling 

predictions, as well as a useful and simple assessment on the sensitivity to initial imperfections, 

the computational efforts required after the conventional buckling analysis are almost 

negligible, requiring no additional resources other than what have been available in the 

conventional FEM.  The required coding is most unlikely to upset any existing functionality in 

an available FE code.  
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Appendix A Matrix T for orthogonality condition (6) and its positive definiteness 

The positive definite matrix T is conventionally choose as [10-13] 

    0 0 0

1 11 ,c c c  T N q N q q .        (A1) 

where  0 0

11 ,c cN q q  is defined through 

       0 0 0 0 0 0

2 2 11 2,c c c c c c   N q q N q N q q N q .      (A2) 

It is reasonable to assume that the equilibrium on the fundamental path is stable before reaching 

the buckling point, i.e.  

    2 T 0 0

0 1 2 0      q K N q N q q   for c   and  q 0 . (A3) 

Taylor expand q0 at c   as in (3) and truncated at the linear term as 

    
      

2 T 0 0

0 1 2

T 0 0 0

1 11 , 0.

c c

c c c c

  

   

   

   

q K N q N q q

q N q N q q q
     (A4) 

Given the criterion for bucking, the first term on the right hand side of the above is semi-

positive definite.  For any c  , the 2nd term on the right hand side of (A4) must be positive 

definite to keep (A3) satisfied, i.e. 

    T 0 0 0

1 11 , 0c c c   q N q N q q q    for    q 0 .   (A5) 

Thus, matrix     0 0 0

1 11 ,c c c N q N q q  is positive definite. 

 

Appendix B Satisfaction of (18) in the case of a0 

In presence of non-vanishing a, there will be extra terms in the expression of f [9], given as in 

the present notations 
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        0 0 0 1 1 1 1 0
1 11 1 2

1
,

2
c c c c ca    f N q N q q q N q q N q q .    (B1) 

Accordingly, the expression for b will also be slightly different from that given in (8) [9] 

without being further pursue in this paper.  Given the expression of a as given in (7), one has 

       

       
        

1 1 1 1 1 0
1 2 0 0 0 1 1 1 1 0

1 11 1 2
1 1 0 0 1 0

1 2

21 1
,

2 2
2

T T

c

c c c cT T

c c c


   



q N q q q N q q
f N q N q q q N q q N q q

q N q q q N q q
. 

            (B2) 

One can readily obtain 

               1 1 1 1 1 1 0 1 1 1 1 1 0
1 2 1 2

1 1
2 0

2 2

T T T T
T

c c

 
     

 
f q q N q q q N q q q N q q q N q q  

            (B3) 

where use has been made of the commutativity of N1 and N11, i.e. 

               1 0 1 1 1 0 1 0 0 1 0 1 1 0
1 1 11 11and , ,

T T T T

c c c c c c q N q q q N q q q N q q q q N q q q  (B4) 

and the relationship  

   1 1 1
11 2, =2N q q N q .         (B5) 


