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Abstract In this study, a multiple algorithm approach to the analysis of GNSS coordinate time series for
detecting geohazards and anomalies is proposed. This multiple algorithm approach includes the novel use
of spatial and temporal analyses. In the spatial analysis algorithm, the spatial autoregressivemodel was used,
assuming that the GNSS coordinate time series from a network of stations are spatially dependent.
Whereas in the temporal analysis algorithm, it is assumed that the GNSS coordinate time series of a single
station is temporally dependent and an artificial neural network is used to extract this dependency as a
nonparametric model. This multiple algorithm approach was examined using (i) the BIGF network of GNSS
stations in the British Isles and (ii) the GNSS stations of the GEONET network in Japan for the Tohoku‐Oki
2011 Mw9.0 earthquake. It was demonstrated in these case studies that this multiple algorithm approach
can be used to detect the effect of a geohazard such as an earthquake on the GNSS network coordinate time
series and to detect regional anomalies in the GNSS coordinate time series of a network. The spatial analysis
algorithm seemed to be more suitable to detect coordinate offsets in the low‐frequency component and/or
variations in the long‐term trends of the GNSS coordinate time series, while it is less reliable in detecting
sudden large magnitude coordinate offsets due to earthquakes, as the effects at one station propagate to
nearby stations. In contrast, the temporal analysis algorithm detects coordinate offsets in the high‐frequency
component which makes it effective in detecting sudden large coordinate offsets in the GNSS coordinate
time series such as those due to earthquakes. Thus, it was shown the complementary of the temporal and
spatial analysis algorithms and their successful application for the magnitude and frequency content of the
anomalies in the two case studies.

1. Introduction

Monitoring and early warning (EW) systems for the detection of natural hazards are usually based on a net-
work of sensors and related to developments in geospatial engineering (Bhattacharya et al., 2012), which
enable the protection of infrastructure and populations, and the mitigation of long‐term consequences
(Kubo et al., 2011). The developments of GPS technology, that is, sampling rate up to 100 Hz (Häberling
et al., 2015; Zhou et al., 2018), the introduction of additional satellite systems as GLONASS, BeiDou,
Galileo, and so forth (Msaewe et al., 2017; Teunissen et al., 2014), and the broad operation of permanent
GNSS networks (Bock & Melgar, 2016) provide continuous time series of GNSS products, which can reflect
potential ground deformation (Liu et al., 2017; Reilinger et al., 2006) and troposphere/ionosphere abnorm-
alities (Wielgosz et al., 2005), all of which are related to geohazards. More specifically, GNSS coordinate
time series are used in applications for the estimation of earthquake magnitude (Blewitt et al., 2006;
Wright et al., 2012) and earthquake characteristics (Geng et al., 2013; Melgar et al., 2013; Psimoulis
et al., 2014), tsunamis (Ohta et al., 2012), hydrological loadings (van Dam et al., 2001; Tregoning et al.,
2009), vertical land movements and sea‐level rise (Teferle et al., 2006), and ionospheric storms (Wielgosz
et al., 2005).

The processing mode of the GNSS network data and the analysis of the resulting GNSS coordinate time ser-
ies vary according to the network characteristics (e.g., size and density) and the characteristics of the mon-
itored phenomenon (deformationmagnitude, time scale, etc.). For instance, in the application of earthquake
early warning systems, high‐rate (i.e., 1 Hz or higher) GNSS coordinate time series usually derived from
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precise point positioning (PPP) mode are used in real time or near real time, to complement existing early
warning systems in order to provide the amplitude of the coseismic displacement, ground motion character-
istics (PGD, PGV, etc.), and the seismic wave detection (Pérez‐Campos et al., 2013) or to predict the genera-
tion of tsunamis (Blewitt et al., 2009). A similar approach is also followed for the application of GNSS
networks in the monitoring of landslides and the modeling of ground motion (Benoit et al., 2015; Zhou
et al., 2018). Furthermore, recent studies have revealed the potential contribution of high‐rate GNSS data
in earthquake early warning systems by estimating the predominant period (Psimoulis, Houlié, & Behr,
2018) and the peak displacement (Crowell et al., 2016) of the P‐waves, supplementing the current seismic
data‐based early warning techniques.

On the other hand, long‐term daily GNSS coordinate time series derived from PPP or double differencing are
used to study slow ground motions (Herring et al., 2016), related to tectonic motions (DeMets et al., 2000;
Reilinger et al., 2006), vertical land movement (Teferle et al., 2006), volcanic activity (Larson, 2013), and
geothermal activity (Fournier & Jolly, 2014).

The analysis of these time series is focused on the detection of changes in the long‐period signal by (1)
estimating the linear trend (Blewitt et al., 2016; Santamaría‐Gómez et al., 2011; Serpelloni et al., 2013)
and periodic signals (Amiri‐Simkooei, 2013; Chen et al., 2013; Penna et al., 2007), (2) modeling the GNSS
coordinate time series noise (Amiri‐Simkooei et al., 2007; Dmitrieva et al., 2015; Williams, 2003b), and
(3) correcting potential offsets (Gazeaux et al., 2013; Williams, 2003a), in order to detect low‐
frequency motions.

However, most of the abovementioned studies analyze the GNSS coordinate time series individually for each
station, without considering the whole network in the analysis process. Only a few studies used the network
mainly for studying wave patterns by visually showing the dynamics of ground motion (Grapenthin &
Freymueller, 2011) or as a spatial check to filter out false alarms and outliers in early warning methods
(Psimoulis, Houlié, Habboub, et al., 2018). On the other hand, some studies used the concept of spatial
dependency within the surrounding stations to remove the common‐mode error (CME) within a regional
network of stations. Themain adopted strategies were based on the method of stacking the residual time ser-
ies of the stations (Wdowinski et al., 1997) or the advancedmethod of weighted stacking (Bock et al., 2000) or
spatial weighting (Tian & Shen, 2016). Hence, the spatial analysis of GNSS network data has not been exten-
sively used in early warning applications yet.

Therefore, the aim of the current study is to develop a multiple algorithm approach for the analysis of
GNSS coordinate time series to detect potential geohazards and/or anomalies. The multiple algorithm
approach is based on spatial and temporal analysis methods, which were used to develop two algorithms:
the spatial analysis algorithm, which studies each station in relation to its surrounding stations, and the
temporal analysis algorithm, which studies each station to its historical record. More specifically, the spa-
tial autoregressive model is used for the spatial analysis algorithm, assuming that the GNSS coordinate
time series of a network of stations are spatially dependent; consequently, any station that behaves differ-
ently to its surrounding stations will be considered anomalous. Whereas, for the temporal analysis algo-
rithm, an artificial neural network is used to extract the temporal dependency of the GNSS coordinate
time series for a single station; therefore, any station that behaves differently to its historical record will
be considered anomalous.

In this paper, the main principles of neural networks and spatial autoregressive models are explained, and
the development of the multiple algorithm approach is presented. The development of the multiple algo-
rithm aims to enable this approach to detect potential rapid or low‐frequency changes in the GNSS coordi-
nate time series, covering the broader spectrum of geohazards, from earthquakes to slow land movements.
To evaluate the multiple algorithm approach, it was applied in two different applications: (i) the analysis of
the long‐term, daily GNSS coordinate time series of the BIGF network in the British Isles, which have small
coordinate offsets in long‐term time series (greater than a few years) within a relatively small network, and
(ii) the 1‐Hz GNSS coordinate time series of the GEONET network in Japan, corresponding to the Tohoku‐
Oki 2011 Mw9.0 earthquake, where short‐term (<300 s), large (up to few meters), and spatially correlated
coordinate offsets occurred across the GNSS network. The performance of the multiple algorithm approach
in detecting anomalies for the two case studies is assessed, and how the type (magnitude and frequency con-
tent) of the anomaly affects the detection is discussed.
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2. Temporal and Spatial Dependencies
2.1. Temporal Dependency

Temporal dependency is mainly used in stochastic models, where the value of each observation (or measure-
ment) at a time is a function of the values of previous observations within a level of uncertainty (Maybeck,
1982). The form of which these observations are ordered in relation to each other is called a time series (Fu,
2011). Since time series have an explicit order dependence between observations, researchers have used this
to analyze the temporal dependency between observation values, where the goal is to develop a mapping
function that expresses the relation between the input variables (e.g., past values in the time series) into out-
put variables (e.g., future values in a time series). The structure of this function can either be considered
known, parametric models (e.g., autoregressive and moving average models) (Cohen, 2014; Connor et al.,
1994), or unknown, nonparametric models (Chen et al., 1997).

The nonlinear autoregressive artificial neural network (NAR‐ANN) is one of the most common nonpara-
metric machine learning models used in generic time series prediction (Ahmed et al., 2010; Fu, 2011) and
in GNSS applications, such as GNSS/INS integration (Wang et al., 2007) or structural monitoring (Kaloop
& Hu, 2015). It defines a complex, nonlinear form of the mapping function, with weights to fit the given data
(Zhang, 2019).

Τhe main principle of a NAR‐ANN is based on a model which consists of (i) the input observation
values, yt − 1, yt − 2,…,yt − p, (ii) the hidden layer(s) containing a number of neurons, and (iii) one output
predicted value,byt, which corresponds to the observed value, yt, and the weights associated with the input
values that are to be optimized. Figure 1 represents the flow of the NAR‐ANN for the case of two input
observation values (p = 2) and a hidden layer with three neurons. Each single neuron works as a compu-
tational unit that adds up the weighted inputs and passes them to a so‐called “nonlinear activation func-
tion” which, in turn, controls the neuron output (i.e., to be passed to the next neuron or not). The sigmoid
function, which is considered the most common nonlinear activation function, was used in the temporal
analysis algorithm, and it is expressed by the equations:

Ti ¼ 1
1þ e−ai

; (1)

ai ¼ bi þ∑p
j¼1gijyj; (2)

where Ti is the output observation value of the function at neuron i, ai is the weighted sum at the neuron i
from the input of the neurons in the previous layer, bi is the bias term of the neuron i, and gij are the weights
to be optimized connecting the p inputs to neuron i.

The cost function which represents the error in the estimation (i.e., the difference between the predicted
value, byt , and the observed value, yt) shows how optimal the weights are given by the equation:

J θð Þ ¼ 1
2
∑i yt−bytð Þ2; (3)

where J(θ) is the cost function of the weight θ.

Accordingly, this error will be propagated backwards, in a process called “backpropagation” (Hecht‐Nielsen,
1989), by apportioning it to each assigned weight according to the amount each weight is responsible for, in
order to minimize this error through optimizing techniques such as the Bayesian regularization training
function (Ali, 2009; Jiang et al., 2008) or the Levenberg‐Marquardt (Kumar & Rajasekhar, 2017).

Since the performance of the NAR‐ANNmodel depends on so many factors, such as the chosen architecture
(i.e., the number of layers and the number of neurons), and the training functions (Zhang, 2019), it is always
recommended to examine different NAR‐ANN architectures in order to assess their normalized mean
square error, which is expressed by the following equation:

10.1029/2019JB018104Journal of Geophysical Research: Solid Earth

HABBOUB ET AL. 3 of 21



NMSE ¼ 1
N

∑
N

i¼1

byi−yið Þ2
1
N ∑N

i¼1byi� �
× 1

N ∑N
i¼1yi

� � ; (4)

whereN is the number of epochs within the time series data set andbyi is the predicted observation value of yi.

In this research, NAR‐ANN is preferred to the parametric models (e.g., autoregressive and moving average
models), as it does not require predetermination of the target function to model the time series while it is
preferred to Kalman filter as the latter requires some prior models of the signal (e.g., linear or nonlinear)
and noise type (e.g., Gaussian noise) to be addressed to optimally estimate the filter parameters.
Moreover, NAR‐ANN surpasses Kalman filter in the sense of its ability to extract the temporal dependency
in both long‐term (i.e., periodic signals) and short‐termmemories, depending on howmany previous epochs
are included, while Kalman filter practically provides predictions that reflect short‐term memory.

Figure 1. Representation of the procedure of (a) the training stage and (b) the prediction stage of NAR‐ANN. In the train-
ing stage, yt − 1 and yt − 2 are used to estimate yt as byt using sigmoid (sig) functions, and the weights (presented as solid
arrows) of the functions are defined in the training stage.
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2.2. Spatial Dependency

With spatial dependency, a variable is a function of space as its observation value in one location is related to
the observation values of that variable in other locations (Griffith, 2003; Thanos et al., 2016). This spatial
relationship between locations is expressed by the so‐called “spatial weight matrix” which represents the
spatial influence of the locations of observed values relative to each other. Spatial weights are based on
the distances between the locations of these observation values, which is expressed as power distance
weights:

wij ¼
d−αij

∑j≠id
−α
ij

0≤dij≤d

0 dij>d

8><
>: ; (5)

where wij is the spatial weight which reflects the spatial influence of an observation at a location j on the
desired location i, dij is the Euclidean distance between location j and location i, and α is the distance expo-
nent value which identifies the “distance decay function.” The α takes the values of 2 or 3 (De Mesnard,
2013) to parabolic (Fann et al., 2012) or cubic (Bell, 2006) decay functions, respectively, and d is a cap dis-
tance which is used sometimes to exclude values farther than a certain distance, d.

Most algorithms of spatial dependency follow three main approaches: the spatial interpolation methods
(e.g., Kriging) (Oliver & Webster, 1990); the spatial autocorrelation indices (e.g., Moran's index) (Griffith,
2003); and the spatial regression models (e.g., spatial autoregressive model) (LeSage & Pace, 2009;
Elhorst, 2010).

In this study, the spatial regression approach (equation (6)) is preferred to spatial interpolation methods due
to its simplicity and ability to be extended using exogenous variables (Manski, 1993). Furthermore, spatial
regression models are preferred to the spatial autocorrelation index methods as the latter provides an overall
index measuring the degree of spatial influence exerted by something over its neighbors (Griffith, 2003) with
no site‐specific estimation while the former provides both. In this study, the spatial autoregression (SAR)
model is used among the spatial regression methods due to a lack of explanatory variables (i.e., external time
series), and it is expressed by the following equation:

Y ¼ ρWY þ ε; (6)

where Y (n × 1 vector) represents the values of the low‐frequency time series of the n stations for a specific
time, ρ is the spatial autoregressive parameter to be estimated using maximum likelihood estimate (MLE)
(LeSage & Pace, 2009; Elhorst, 2010), W is the hollow n × n spatial weight matrix, which is formed by the
spatial weights (see equation (5)) and defines the spatial relation between the n stations, and ε is the spatial
residuals when assumed to be white noise. SinceW is a hollow matrix, the derived values of the Y vector (yi)
are equal to the weighted sum of the Y values of the rest of the stations (i.e., yj ≠ i).

3. Methodology

The GNSS coordinate time series provided as North, East, Up (NEU) displacements were combined to form
GNSS coordinate time series of 3‐D displacements to be used as inputs for the two developed analysis algo-
rithms (Figure 2). Any gaps in the time series were allowed to remain, without applying interpolation so as
not to alter the time series using artificial data and potentially increase the uncertainties.

The main concept of this approach is to model the normal and expected behavior of the temporal and spatial
dependencies of GNSS time series and then to assess the difference between these modeled behaviors against
the actual GNSS time series. The temporal and spatial analysis algorithms aim to detect potential anomalies
occurring in the high‐frequency and low‐frequency component of the GNSS coordinate time series, respec-
tively. To model the behavior of each GNSS coordinate time series, they were chronologically split into two
data sets: (i) an algorithm training data set, using the beginning of the time series, and (ii) an algorithm test-
ing data set, which follows the algorithm training data set as shown in Figure 3i. The training and testing
data sets play different roles in the temporal and spatial analysis algorithms. For the temporal analysis,
the algorithm training data set is used to train the NAR‐ANNs and to define station‐specific temporal
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Figure 2. Flowchart of the testing phase of the multiple algorithm approach for the (a) temporal and (b) spatial analysis
algorithms. SR = spatial residuals; TR = temporal residuals.

10.1029/2019JB018104Journal of Geophysical Research: Solid Earth

HABBOUB ET AL. 6 of 21



analysis thresholds, while for the spatial analysis, it is only used for the determination of station‐specific
spatial analysis thresholds. For the testing data set, the trained NAR‐ANNs, as well as the SAR models,
are applied for the temporal and spatial analysis algorithms, respectively, and the predicted value is
compared against the real sample to evaluate their difference with respect the corresponding
predetermined thresholds (i.e., in the training data set).

The preliminary analysis in the algorithm training data set, common in both the temporal and spatial ana-
lysis algorithms, is to detrend by removing any long‐term linear trend (i.e., tectonic motion) from each GNSS
coordinate time series. Each detrended time series is then analyzed by using the discrete Fourier transform
(DFT) to determine a cutoff frequency which separates the low frequencies, expressing the long‐period beha-
vior of the GNSS coordinate time series, from the white noise, represented by a flat spectral. Then a low‐pass
first‐order Butterworth filter (Boore et al., 2002; Colombelli et al., 2013) is applied to filter out the frequencies
higher than that cutoff frequency of the detrended time series, leading to a less noisy time series representing
the expected long‐period behavior of the GNSS station. This resultant time series will be referred to as the
“low‐frequency” time series and will be applied in both the temporal and spatial analyses (Figure 3ii).

3.1. The Temporal Analysis Algorithm

The main hypothesis in the temporal analysis approach is that the GNSS coordinate time series of each sta-
tion, i, consists of (i) a linear trend, (ii) a low‐frequency component (i.e., without white noise) correlated in
time, and (iii) a high‐frequency component, including white noise and potential anomalies. In the temporal
analysis algorithm (Figure 2a), the training algorithm data set was analyzed to train the NAR‐ANNs by using
the low‐frequency time series of each GNSS station and model the corresponding low‐frequency behavior.
By applying the NAR‐ANN model, the next epoch value of the low‐frequency time series, yit , is predicted

by using the previous p epochs (Zhang, 2007). The predicted low‐frequency time series, byi (Figure 3a,iii),
is subtracted from the detrended time series, xi (Figure 3a,ii), resulting in the temporal residuals, δi

(Figure 3a,v), which include the high‐frequency component (i.e., white noise and any high‐frequency

Figure 3. PERS station (see BIGF case study) (i) corrected 3‐D time series, (ii) detrended and the low‐frequency time series, (iii) low‐frequency time series and its
predicted values using NAR‐ANN (only for temporal analysis), (iv) estimated values of low‐frequency component using SAR model (only for spatial analysis), and
(v) residuals and their corresponding thresholds, using the (a) temporal and (b) spatial analysis. The blue‐dashed line indicates the end of the algorithm training
data set and the start of the algorithm testing data set. (a,iv) and (b,iii) are not applicable in the temporal and spatial analysis, respectively.
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anomaly) and any abnormalities in the low‐frequency components that the NAR‐ANN could not predict.
The temporal analysis algorithm is expressed by the following equations:

byit ¼ h yit−1; y
i
t−2;…; y

i
t−p

� �
; (7)

δit ¼ xit−byit; (8)

where yit, x
i
t, and δ

i
t are the low‐frequency, the detrended, and the temporal residual values at a time t and h is

the mapping function.

The temporal residuals of the training data set for each GNSS station were used to compute the mean μ and
the standard deviation σ and to define the corresponding temporal threshold, as μ ± 3σ range (Figure 3a,v).
For the testing data set, if any temporal residual exceeds the corresponding temporal thresholds, it will be
considered as a potential event (Figure 3a,v). To distinguish between any site‐specific errors (e.g., outliers,
multipath, and monumentation) and large‐scale events, whenever a potential event is detected, a spatial
search (i.e., buffer) is conducted to check if any of the surrounding stations also have potential events at that
epoch (Psimoulis, Houlié, Habboub, et al., 2018). If this is the case, the algorithm considers that potential
event as a geohazard; otherwise, it is considered as an outlier or site‐specific anomaly if the detection
remains for several samples (Figure 2a). The search buffer of the spatial search depends on the density of
the network and the phenomenon to be monitored/detected. A large search buffer may be less effective as
it may include stations that considered to be faraway whereas a small search buffer could isolate stations.

For the purpose of this study, different NAR‐ANN architectures were examined, and their normalized mean
square error (NMSE) were assessed. For the prediction of each low‐frequency sample, the previous two
epochs (p = 2) were used in order to make the algorithm more applicable for real‐time applications and
for GNSS time series with potential data gaps.

3.2. The Spatial Analysis Algorithm

In the spatial analysis algorithm (Figure 2b), the spatial weight matrix of the SAR model (equations (5) and
(6)) was formed from the geometry of the GNSS network stations; two distance decay exponent values were
used: α = 2 and α = 3 to examine the sensitivity of this parameter. For the training algorithm data set, the
SAR model was applied independently for each epoch of each GNSS station time series to compute the
low‐frequency component (Figure 3b,iv), then to compare it to the corresponding GNSS low‐frequency time
series, and finally to compute the spatial residuals ε. The mean μ and standard deviation σ of the spatial resi-
dual time series were computed to define the corresponding spatial thresholds, as μ ± 3σ range, for each
GNSS station. Then the same process was followed for the testing algorithm data set, to compute the spatial
residuals for each GNSS station for each epoch and compare them against the corresponding spatial thresh-
olds. If any spatial residual exceeds these thresholds, it will be considered as a potential event (Figure 3b,v).
Likewise to the temporal analysis, a spatial search is used to distinguish between a geohazard and site‐
specific anomalies.

3.3. Case Studies and Evaluation

The multiple algorithm approach was applied in two case studies, which cover different aspects: the size of
the network (e.g., small vs. large network), the length of the time series (e.g., long‐term vs. short‐term time
series), and the temporal resolution of the time series (daily vs. 1‐Hz time series), as well as the dynamics
(e.g., high‐frequency vs. low‐frequency), the size (large vs. small), and the type (spatially correlated vs.
site‐specific) of the chosen phenomena.

The first case study is based on the analysis of the long‐term, daily GPS coordinate time series of the BIGF
network of stations in the British Isles and was seen as a relatively small network (22 stations) with long‐
term (>5 years) daily time series. Due to the fact that these GPS coordinate time series were provided by
BIGF with all within‐outliers were removed as well as with all documented changes were provided, it was
seen to be useful to test the ability of the multiple algorithm to detect these known documented changes
and also to examine whether the multiple algorithm can detect any other anomalous behaviors in the time
series. The BIGF network data were also used to evaluate the different NAR‐ANN architectures.
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The second case study is based on the analysis of the 1‐Hz GPS coordinate time series of the GEONET sta-
tions in Japan for the Tohoku‐Oki 2011 Mw9.0 earthquake, which was seen as a relatively large network
(>800 stations) with short‐term (<1 day), 1‐Hz time series with a large and spatially correlated phenomenon
to be monitored (e.g., the Tohoku‐Oki 2011 Mw9.0 earthquake).

To evaluate the performance of the multiple algorithm approach, the detected anomalies were compared
against those that were detected by using a method which is based on considering as anomalies (i) the values
exceeding the range μ ± 3σ, where μ and σ are the mean average and standard deviation of a moving win-
dow, and (ii) fulfill the spatial search. This method, which will be called the “conventional method,” was
adopted to develop the RT‐SHAKE algorithm and successfully applied in Psimoulis, Houlié, Habboub,
et al. (2018), to detect the ground motion using GPS network data for the Tohoku 2011 Mw9.0 earthquake.
In that study, it was proved that the detection using GPS data was consistent with that of strong‐motion data.
Similar approaches to the conventional method have also been adopted by other studies and current early
warning systems (Allen & Ziv, 2011; Colombelli et al., 2013). However, in the current study, the conven-
tional method is only used as reference and guidance for the evaluation of the reliability and validity of
the detection by using the temporal and spatial analysis algorithms.

4. Case Study: The BIGF Network of GNSS Stations in the British Isles

The British Isles continuous GNSS Facility (BIGF) holds data and products dating back to 1997 (BIGF, n.d.;
Hansen et al., 2012). For some stations, the long‐term, daily GNSS coordinate time series have coordinate
offsets, which can be due to documented changes (i.e., receiver and/or antenna equipment change) or undo-
cumented changes. The cumulative effect of even small coordinate offsets can significantly alter velocity esti-
mates that are used for the determination of long‐term land movement. In the following sections, therefore,
the multiple algorithm approach was evaluated by examining its ability to detect any site‐specific anomalies
due to documented and undocumented changes.

4.1. Available Data and Preprocessing

From a processing using Bernese software version 5.2 and GPS only to output Cartesian (XYZ) coordinate
estimates in daily SINEX files, data were provided by BIGF as long‐term, daily GNSS coordinate time series
of North, East, Up (NEU), expressed as displacements with respect to reference coordinates. A total of
approximately 150 stations in the British Isles was included in the BIGF processing along with some 200+
IGS stations. For the processing the daily coordinate estimates were created using (i) C13 (CODE
repro2/repro_2013) reanalyzed satellite orbit and earth orientation parameter products; (ii) a global network
of reference stations and the IGb08 reference frame; (iii) mitigation of first‐ and higher‐order (second and
third order and ray bending) ionospheric effects; (iv) a priori modeling of troposphere effects using
VMF1G and mitigation using zenith path delay and gradient parameters; (v) I08.ATX models for satellite
and receiver antenna phase center offsets and variations; (vi) ambiguities fixed, where possible; and (vii)
models for Solid Earth tides, ocean tidal loading and atmospheric tidal loading.

As part of this process, any days that have one or more of the NEU displacements identified as an outlier at
this stage are removed; an outlier is identified as a residual greater than three times the weighted RMS of a
detrended time series with coordinate offsets due to documented changes accounted for.

All of the available daily GNSS coordinate time series were then considered in order to eliminate any stations
with short time series and any stations with a single gap of 10% of the data, which leads to better trend extrac-
tion, spectral analysis, and NAR‐ANN learning. Furthermore, the stations were preferred to have coordinate
offset due to documented changes in the period of the algorithm testing data set for validation purposes.
However, since the majority of the documented changes occurred in 2009 (antenna changes), the algorithm
training data set was chosen to be from 2000 to 2008 and the algorithm testing data set from 2008 to 2010. As
a result, a total of 22 stations of the BIGF network was included in the analysis using the multiple algorithm
approach (Figure 4).

Figure 5 illustrates the long‐term 3‐D displacements for all 22 stations for the time period from 2000 to 2010.
The dates of the documented changes are provided by BIGF; the magnitude of the coordinate offsets, how-
ever, has to be estimated and the daily GNSS coordinate time series corrected accordingly. A cutoff frequency
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of 0.1 day−1 was identified from the analysis of the DFT spectra of the training data set of the GNSS coordi-
nate time series.

To examine the performance of the algorithm, it was applied twice (i.e., two runs): (i) after correcting coor-
dinate offsets due to documented changes in the algorithm training data set only; the two analysis algo-
rithms were applied to detect any anomalous behaviors in the algorithm testing data set due to
documented changes (supporting information Figure S1); and (ii) after correcting the coordinate offsets

Figure 4. The selected 22 stations from the BIGF network.
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due to documented changes in both the algorithm training and testing data sets; the two analysis algorithms
were applied to detect any further anomalous behaviors in the algorithm testing data set, including those due
to undocumented changes.

To correct a coordinate offset due to a documented change in the algorithm training data set, the weighted
meanmethod was applied (Montillet et al., 2015; Williams, 2003a). Then, if there are any offsets due to docu-
mented changes in the testing data set, the estimated linear trend from the training data set is extended to
detrend windows of n days before and after the epoch of the documented change, and then the mean values
are subtracted from each other. This technique is based on the conventional averaging method (Blewitt,
1993; Bock et al., 1997; Montillet et al., 2015). The width of these windows, n, is subjective to the data avail-
ability and how close the analysis is to a real‐time scenario. The wider this window, the better as it then con-
siders including seasonal variations (Montillet et al., 2015). However, a very wide window will be less
suitable for real‐time analysis as well as introduce more complications in a case where two offsets appear
within one window frame. In this research, a 30‐day window was found to be optimal for the used data
set. Finally, following a spatial search (last step in Figure 1), the anomalous behaviors in this case study were
all considered to be site‐specific, and none were considered as geohazards, which is due in part to the small
number of stations as well as the large distances between them.

4.2. Results
4.2.1. NAR‐ANN Architectures
NAR‐ANN architectures of different (i) number of layers, (ii) number of neurons per layer, and (iii) for two
training functions (Bayesian regularization and Levenberg‐Marquardt) were assessed for the 22 GPS BIGF
time series, to define the optimum NAR‐ANN algorithm, using as criterion the normalized mean square
error (NMSE; Table 1). The overall performance of the Bayesian regularization is better than Levenberg‐
Marquardt as the latter gives higher NMSE. Moreover, the difference between the training data set and test-
ing data set is larger using Levenberg‐Marquardt which might be due to the fact that Levenberg‐Marquardt
is more vulnerable to “overfitting problem” than the Bayesian regularization as the latter uses only the non-
trivial weights between neurons in the trained NAR‐ANN oppose to using all weights in a NAR‐ANN

Figure 5. Long‐term 3‐D displacements of the selected 22 stations of the BIGF case study, after correcting for any coordinate offsets due to documented changes in
the training data set only, and detected potential events in the testing data set at each station using the spatial (red) and temporal (blue) analysis algorithms. The
dashed blue line separates the training from the testing data set. The documented changes are marked with black circles.
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(Burden &Winkler, 2008). Overfitting can happen when the NAR‐ANN
learns the details and noise in the data to the extent that it negatively
impacts the performance of the model on new data which in turn leads
to higher NMSE in the testing than the training data set.

Furthermore, even though the NMSE values of different architectures
using the Bayesian regularization method are almost the same, using
a two‐layer NAR‐ANN slightly enhanced the training process as
reflected by the lower NMSE. However, a two‐layer network with 10
neurons per layer was preferred as opposed to 20 neurons per layer as
the former gives a slightly better result on the testing data set and to
reduce the complexity of the NAR‐ANN.
4.2.2. The Multiple Algorithm
The application of the multiple algorithms led to the detection of poten-
tial events for each station. Figure 5 shows the first run, where the coor-
dinate offsets due to documented changes were corrected in the

algorithm training data set and 11 out of 14 offsets due to documented offsets were detected in the testing
data set by at least one of the two algorithms.

Figure 6 shows the second run (i.e., after correcting for coordinate offsets due to documented changes in
both the algorithm training and testing data sets) which illustrates the different nature of the detected
anomalies in both the temporal and spatial analysis algorithms. Table 2 presents the number of the detected
anomalous behaviors at each station for the two different analysis algorithms (temporal and spatial).
However, to check the sensitivity of distance decay exponent value (equation (5)) on the spatial analysis
algorithm results, two distance decay exponent values, α = 2 and α = 3, were used. The table also shows
the temporal and spatial thresholds values for each station (i.e., derived from the algorithm training data
set residuals), the standard deviation of the detrended time series of the algorithm training data set, and
the calculated documented offsets in the algorithm testing data set.

Table 1
The Average Value of the Normalized Mean Square Error (NMSE) of the 22
Stations in the BIGF Network of GNSS Stations in the British Isles Case Study
Using Different NAR‐ANN Architectures and Two Training Functions:
Levenberg‐Marquardt (LM) and Bayesian Regularization (BR)

Training
function

No. of
layers

No. of neurons
per layer

(NMSE)
Training

(NMSE)
Testing

LM 1 5 1.96 × 10−06 2.79 × 10−06

LM 1 10 1.91 × 10−06 2.41 × 10−06

LM 2 10 1.92 × 10−06 2.64 × 10−06

LM 2 20 1.91 × 10−06 2.52 × 10−06

BR 1 5 1.82 × 10−06 2.08 × 10−06

BR 1 10 1.84 × 10−06 2.09 × 10−06

BR 2 10 1.76 × 10−06 2.09 × 10−06

BR 2 20 1.76 × 10−06 2.12 × 10−06

Figure 6. Long‐term 3‐D displacements of the selected 22 stations of the BIGF case study, after correcting for any coordinate offsets due to documented changes, in
both training and testing data sets, and detected potential events in the testing data set at each station using the spatial (red) and temporal (blue) analysis algorithms.
The dashed blue line separates the training from the testing data set. The documented changes are marked with black circles.
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4.3. Analysis

In the first run (Figure 5), 78.5% of the offsets due to documented changes in the algorithm testing data set
were detected along with other anomalous behaviors. The magnitude of these documented offsets is shown
in Table 2.
4.3.1. The Temporal Analysis Algorithm
The temporal analysis algorithm was able to detect the documented offsets at SCAO, KING, INVR, and
MALX stations as the offset values are relatively large (i.e.,−10 to−19mm), even compared to their standard
deviation (Table 2), but it missed all the smaller offsets. This is due to the fact that NAR‐ANN predicts the
next epoch of the low‐frequency time series using the previous two epochs; therefore, if the offset appears
after a missing observation (i.e., gap), it won't be detected as the first two epochs after the gap will be the
inputs. This explains why the temporal analysis could not detect the documented changes such as SHAM
and NCAS. Similarly, if an offset happened gradually (i.e., the difference between the two successive epochs
is small), the temporal analysis may miss the offset as the NAR‐ANNwill cope with such offsets especially if
they are of small magnitude.

After correcting the coordinate offsets in the algorithm testing data set (i.e., the second run), the temporal
analysis algorithm was only able to detect a few anomalies for the stations (i.e., ≤13 days per station).
4.3.2. The Spatial Analysis Algorithm
The spatial analysis algorithm shows a better performance in detecting the documented offsets, by detecting
those at BLAP, CARL, DARE, EDIN, INVR, KING,MALX, NCAS, NEWL, and SCAO stations. However, the
coordinate offsets due to documented changes were not detected at GLAS, LEED, and SHAM stations. This
might be due to the relatively small amplitude of these offsets with respect to the corresponding standard
deviation (see GLAS and SHAM; Table 2) or due to the impact of the nearby stations with large offsets which
masks the offset of the examined station. For instance, the offset of LEED station with magnitude−3.97 mm

Table 2
The Number of Detected Potential Events (NDPE) at Each Station Using the Temporal and Spatial Analysis Algorithms in the BIGF Case Study After Correcting for
Any Coordinate Offsets Due to Documented Changes, in Both Training and Testing Data Sets (i.e., the Second Run), the Temporal and Spatial Residuals Thresholds,
and the Standard Deviation of the Detrended Time Series (Algorithm Training Data Set) With the Calculated Documented Offsets in the Algorithm Testing Data Set of
the Detrended Time Series

Name

NDPE Temporal
residuals
thresholds

(mm)

Spatial
residuals
thresholds

(mm)

Standard
deviation
(mm)

Offset 1
(mm)

Offset 2
(mm)

Temporal
analysis

Spatial analysis

α = 2 α = 3

BARK 6 5 6 9.33 7.86 3.89 — —

BLAP 7 15 15 6.53 4.70 2.59 1.95 —

CAMB 7 4 4 6.32 3.24 2.23 — —

CARL 4 4 2 6.93 3.94 2.58 4.82 —

DARE 3 — — 6.72 4.33 2.60 −5.73 —

EDIN 4 9 10 6.56 3.15 2.30 4.62 —

GLAS 4 7 6 6.91 3.17 2.39 −0.84 —

HERT 7 — — 6.93 3.98 2.52 — —

IESG 12 31 30 6.29 2.78 2.25 — —

INVR 7 — — 6.65 2.96 2.30 −16.81 —

KING 4 1 5 6.42 3.53 2.36 −10.05 —

LEED 7 3 3 6.86 4.01 2.58 −3.97 —

LERW 5 2 2 6.00 2.90 2.08 — —

LOWE 13 364 354 5.94 3.35 2.29 — —

MALX 2 5 5 7.84 4.26 2.76 −12.87 —

NCAS 6 — — 7.13 5.42 2.76 6.26 —

NEWL 8 16 15 6.44 3.27 2.27 −7.07 −1.94
PERS 6 — — 6.54 3.35 2.39 — —

PMTG 7 — — 6.66 8.04 3.57 — —

SCAO 4 3 3 6.90 5.84 2.92 −19.05 —

SHAM 3 31 30 6.36 3.49 2.42 −2.12 —

SHEE 5 — 1 6.76 7.48 3.45 — —
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was not detected, as LEED is surrounded by stations with large negative offsets (e.g., SCAO:−19.05 mm and
DARE: −5.73 mm) which masked the anomalous behavior at LEED station.

After correcting for the coordinate offsets due to documented changes in the algorithm testing data set (i.e.,
the second run), long‐term trend problems were still observed at LOWE station (Figure S2), which justifies
the high number of anomalous days in Table 2, as the detected potential events happened at certain times
and continue through time. This behavior is a result of either variations in the long‐term trend or of a
gradual/small coordinate offset due to an undocumented change as the NAR‐ANN could not detect
this change.

The GNSS stations with temporary anomalous behaviors, however, have a relatively low number of detected
anomalous days (e.g., BLAP and IESG stations). It is worthy to compare the spatial analysis results of CAMB
station, as it does not have any documented changes in the algorithm testing data set, but there is a differ-
ence in the detected events between Figures 5 and 6. This is due to the fact that the offset in the testing data
set at NEWL station of Figure 5 was left uncorrected and it affected the estimation of the CAMB station
through the spatial regression analysis.

Regarding the impact of the distance decay exponent value, α, it was insignificant, as the number of detected
anomalous days was similar for different values of α, mainly due to the relatively small amplitude of the off-
sets and large distances between the stations. Furthermore, the conventional method failed to detect any of
the potential events for the 22 stations which were detected by the temporal and/or spatial analysis algo-
rithm. This is due to the fact that the GNSS coordinate time series were free of outliers and the potential
anomalies were of too small a magnitude to be detected by the conventional method (i.e., μ ± 3σ).

5. Case Study: The GEONET Network of GNSS Stations in Japan in Relation to
the Tohoku‐Oki 2011 Mw9.0 Earthquake

The Tohoku‐Oki Mw9.0 earthquake occurred at 05:46:23 UTC on 11 March 2011, and it was recorded by the
GEONET network of GNSS stations operated by the Geospatial Information Authority of Japan (GSI).
Numerous studies have used the GNSS network data to estimate the coseismic and transient displacement,
in order to model the fault rupture and earthquake characteristics (Ohta et al., 2012; Wright et al., 2012). In
this case study, the performance of the multiple algorithm approach was examined for relatively short GNSS
coordinate time series (i.e., ~6 hr) with rapid large magnitude coordinate offsets (i.e., up to 5–6 m) in a very
short time period (i.e., <300 s).

5.1. Available Data and Preprocessing

The 1‐Hz GNSS coordinate time series of North, East, Up (NEU) displacements for 847 GNSS stations from
the GEONET network, covering the period of 5 hr and 47 min before and 1 hr after the earthquake, were
available. The GNSS data, which were processed in Bernese software version 5.2, using PPP processing mode
have been successfully applied for the definition of the earthquake characteristics (Psimoulis et al., 2014,
2015; Michel et al., 2017) and in the application of RT‐SHAKE for ground motion detection (Psimoulis,
Houlié, Habboub, et al., 2018). More details about the GNSS network data processing can be found in
Psimoulis et al. (2014, 2015).

For the application of the analysis algorithms, the 5 hr and 40 min of the 1‐Hz GNSS coordinate time series
were used as the algorithm training data set, followed by 12 min for the algorithm testing data set, corre-
sponding to 7 and 5 min before and after the earthquake, respectively.

Due to the fact that the GEONET stations form a dense network and the offsets in the 1‐Hz GPS coordinate
time series of 3‐D displacements are significantly large in magnitude (i.e., ~6 m), apart from using two dis-
tance exponent values (i.e., α = 2 and α = 3) in spatial analysis, different cap distances were also introduced.
More specifically, the GNSS stations that are located out of the radius defined by the corresponding cap dis-
tance are ignored (equation (5)).

In this study, three cases of spatial weight matrix were applied: one with a cap distance of 100 km; one with a
cap distance of 200 km; and one using all stations (i.e., with no cap distance applied). Moreover, since the aim
of this case study is detecting geohazards, rather than site‐specific anomalous behaviors, a spatial search was
conducted to filter out site‐specific outliers. This search buffer is chosen to be 50 km, as for that distance 96%
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of the GEONET stations are surrounded by at least three other stations, which is consistent with Crowell
et al. (2009) who used three stations or more to initiate the hypocenter estimation. A cutoff frequency of
0.1 Hz was identified from the DFT analysis and used for the filtering of the low‐frequency component.

5.2. Results

From the application of the two algorithms (temporal and spatial) along with the three cases of spatial
weight matrix, the arrival time of the seismic motion at each GNSS station was detected and analyzed with
respect their corresponding distance from the epicenter and compared with the corresponding time arrival
detection of the conventional method (Figure 7). Furthermore, the performance of the algorithms with
respect the conventional method was also examined by calculating the percent difference between the cor-
responding time arrival, as expressed by the following equation (Figure 8):

percent difference ¼ ∑n
1

ATCM−ATDA
ATCM

� �
×100; (9)

where ATCM is the detected Arrival Time using the Conventional Method, ATDA is the detected Arrival
Time using the Developed Algorithm, and n is the number of GNSS stations. The negative difference means
that the developed algorithm detected the ground motion later than the conventional method, while the
positive difference means that the developed algorithms detected the ground motion earlier than the con-
ventional method. Figure 9 presents the spatial distribution of the GNSS stations where the ground motion
due to the seismic waves was firstly detected by the temporal and spatial analyses as well as the conventional
method.

5.3. Analysis
5.3.1. The Temporal Analysis Algorithm
The temporal analysis algorithm performs similar to the conventional method (Figure 7), as in both cases
each station is analyzed separately, with no interaction between the stations in the network. However, the
temporal analysis algorithm detects potential events earlier than the conventional method (Figure 8), due

Figure 7. Distance from the epicenter versus the detected arrival time of the seismic motion by using the conventional method (black), the temporal analysis algo-
rithm (blue), and the spatial analysis algorithm (red), referenced to the origin earthquake time. The latter was examined for different distance exponents (α = 2 at
the left and α= 3 at the right) and different cap distances (100 km, 200 km, or no cap distance). The P‐waves velocity was assumed about 6 km/s (Psimoulis, Houlié,
Habboub, et al., 2018).
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to its higher sensitivity, through the NAR‐ANNmodeling and the analysis of the high‐frequency GNSS coor-
dinate time series. This led the temporal analysis algorithm to obtain an elapsed time of the first detection of
the geohazard 3 s earlier than the conventional method for the closest GNSS stations to the earthquake epi-
center (Figure 9a). It is also expected that the temporal analysis algorithm would have performed better than
the conventional method if the GPS coordinate time series had been of longer time period, where the impact
of periodic signals and linear trends would be more evident and their modeling would benefit even more by
the NAR‐ANN. In Figure 9, it is also shown that the temporal analysis algorithm led to the detection of the
groundmotion in a broader area than that of the spatial analysis algorithm. This may be due to the averaging
in the spatial regression through using the spatial weight matrix to compare the relative behaviors. Thus, the
estimation at a GNSS station by the spatial regression model is formed as a weighted average of the sur-
rounding stations; for a GNSS station with larger displacement to its neighbors, the estimated displacement
will be smaller than the true displacement of the GNSS station.
5.3.2. The Spatial Analysis Algorithm
The application of the spatial analysis algorithmwith α= 2 for the spatial weight matrix and all the available
GNSS stations (i.e., no cap distance) leads to false detection of the ground motion (Figure 7), as the corre-
sponding arrival time corresponds to a propagation velocity significantly faster than that of the P‐wave
(i.e., typical value of 6 km/s), with the latter being also estimated using strong‐motion data in Psimoulis,
Houlié, Habboub, et al. (2018). Hence, this configuration was not further analyzed; the large displacement
(reaching up to 6 m) at a station close to the epicenter affected the estimates at all stations, especially when
the decay function is not steep enough to dissipate this propagation (i.e., comparing with using α = 3).

For all of the other combinations of α and cap distance, the overall performance of the spatial analysis algo-
rithm seems similar, with the general trend being that the detected arrival time of the seismic motion is
slower than the P‐wave and slower than the conventional method (Figure 7). This is also reflected numeri-
cally (Figure 8) in the percent difference values which are all negative, meaning that the spatial analysis
algorithm detected the ground motion later than the conventional method. From all the examined config-
uration of the spatial analysis algorithm (combinations of α and cap distance), the one with α = 2 and 200
km cap distance seems to be the closest to the conventional method (Figure 8).

Furthermore, it is observed that, for a given cap distance for the spatial regression, the smaller the α used for
the spatial weight matrix, the more the impact of the seismicmotion from far stations, whichmakes the algo-
rithm more susceptible to false detection due to large displacements from distant stations, as in the case of a
large earthquake. Likewise for a given α, the larger the cap distance, the more susceptible the spatial analysis
algorithm is to false detection due to the impact from distant stations. Therefore, the combination of the cap
distance and α should be optimized for the spatial analysis algorithm, according to the geometry of the GNSS

Figure 8. Percent difference in detected arrival time of the seismicmotion between the conventional method with the spa-
tial and temporal analysis algorithms in the GEONET case study.
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network and the expected coordinate offset due to the monitored geohazard, in order to reduce the
occurrence of displacements in the spatial residual time series, which are artifacts created by large offsets
of distant GNSS stations. However, at the beginning of the detection of the geohazard, the characteristics
of the detection (stations and time detection) were very similar regardless of the values of α and cap
distance, indicating that these parameters affect the detection of the geohazard for distant stations (Figure 9).

In Figure 9, it is also shown that potential events are firstly detected at stations 171, 176, and 550 for the tem-
poral analysis algorithm and 550 and 1179 for the spatial analysis algorithm (hollow circles). However, due
to the limited spatial buffer (i.e., 50 km) of the spatial search, they were flagged but not considered as geo-
hazards, which indicates the potential impact of the spatial buffer on the detection of the geohazard.

6. Discussion and Conclusions

The multiple algorithm approach was applied in two different GNSS networks of different data rates and
density of GNSS stations (see GEONET and BIGF characteristics) to detect different type of anomalies in
the GNSS coordinate time series: (i) rapid large magnitude changes in the time series (Tohoku Mw9.0

Figure 9. Spatial distribution of the GNSS stations where the ground motion was detected and flagged as geohazard (marked by filled circles) as well as the GNSS
stations with detected motion flagged as potential event (marked by hollow circles) through a time window of 6 s using the (a) temporal (blue) and (b) spatial (red)
analysis algorithms, along with (c) the conventional method (black). The distribution of the GNSS stations for the spatial analysis algorithm expresses the outcome
of the detection regardless the value of α or cap distance.
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earthquake) and (ii) slow and small magnitude changes in the time series (BIGF network). The two pre-
sented case studies showed that the multiple algorithm approach can be applied to detect displacement
related to geohazards and anomalies, of different magnitude and frequency content, thanks to the comple-
mentary use of the temporal and spatial analysis.

More specifically, the spatial analysis algorithm seemed to be sensitive in detecting slow and small magni-
tude changes in the GNSS coordinate time series for a station or a small cluster of stations, based on the com-
parison with surrounding stations, as in the case of BIGF stations. This makes the spatial analysis approach
effective in detecting site‐specific anomalies, due to GNSS station problems (e.g., unstable monumentation;
Hackl et al., 2011) or regional anomalies (i.e., vertical land movement; Wöppelmann and Marcos, 2016).
Also, it is less vulnerable to outliers, since outliers in the high‐frequencies content are filtered, leading to
narrow‐spread spatial residuals which is effective in detecting small long‐period offsets. Characteristic is
the example of LOWE station, where it was possible to detect an anomaly of magnitude 7 mm slowly devel-
oped in a period of 1 year (Figure S2), which could represent potential malfunction of a station (i.e., corro-
sion of GNSS antenna) or geophysical processes (e.g., postseismic relaxation; Savage et al., 2005; Broerse
et al., 2015). However, for rapid large magnitude changes in the GNSS coordinate time series, as in the case
of Tohoku‐Oki 2011 earthquake, the spatial algorithm proved ineffective, as large anomalies in specific sta-
tions bias the GNSS coordinate time series of stations which do not appear to have an anomaly at the corre-
sponding epoch; the latter is known as “spatial spillovers” (LeSage & Pace, 2009; Elhorst, 2010) and can
result in a false triggering of the detection of the algorithm at those stations. The adjustment of the para-
meters (cap distance and α) of the spatial analysis algorithm limits these biases, but still, the spatial analysis
algorithm proved less effective than the temporal analysis algorithm for rapid large magnitude changes in
the GNSS coordinate time series (e.g., earthquakes).

In contrast, the temporal analysis algorithm was proved to be more effective in the application of the
Tohoku‐Oki 2011 earthquake (i.e., rapid large magnitude changes in the GNSS coordinate time series) as
the temporal residuals are dominated by high‐frequency components, which contain the rapid displacement
signal of the ground motion. However, the high‐frequency components of the temporal residuals are also
characterized by white noise resulting in a large threshold (i.e., μ ± 3σ), which makes the temporal analysis
(i) less effective in detecting low‐frequency offsets of small magnitude and (ii) more susceptible to outliers.
The latter makes necessary the spatial check criterion in order to avoid potential outliers and false alarms.
Based on the examined case studies, an anomaly detected primarily by the temporal analysis algorithm indi-
cates a relatively rapidly developed phenomenon (high‐frequency content), which if it is not observed in sur-
rounding stations, should correspond to a site‐specific effect.

Thus, the complementary function of the temporal and spatial analysis algorithms, which could be imple-
mented even for real‐time applications, reveals their potential to support the operation of existing GNSS net-
works and contribute either to the reliable operation of the GNSS networks, by detecting site‐specific
anomalies at GNSS stations and/or inconsistencies across the GNSS network, or to supplement existing early
warning systems (e.g., seismic sensor networks) for the detection of ground motion (e.g., earthquake and
landslide). The main requirement of the multiple algorithm is a training data set to use as reference to train
the NAR‐ANN and define the thresholds, and then the multiple algorithm can be applied in real time, by
predicting epoch by epoch and comparing it with the corresponding real GNSS coordinate value.

Even though our multiple algorithm approach proved reliable in detecting small amplitude anomalies in
GNSS time series (i.e., 3‐ to 4‐mm level of anomalies in BIGF time series), further investigation is needed
to enhance the performance of the developed method and detect anomalies close to the noise floor of the
GNSS time series (i.e., 1–2 mm). For example, it is needed (i) to assess the performance (i.e., robustness
and sensitivity) of more advanced techniques for the temporal analysis (e.g., Long Short‐Term Memory
Neural Network model) and the spatial analysis (e.g., Manski model) and (ii) to adopt more sophisticated
techniques to model the noise level and the long‐period characteristics of the GNSS time series (e.g.,
Generalized Gauss Markov; Langbein, 2004; He et al., 2020; Langbein & Svarc, 2019) and to define the
threshold criteria (e.g., Pierce's criterion and modified Thompson tau test). Furthermore, the multiple algo-
rithm approach should also be applied for different type of geohazards (e.g., landslide and land subsidence),
different data sets (e.g., ionosphere and troposphere), and different sizes of monitoring networks in order to
evaluate its sensitivity for different data sets.
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