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One-Sentence summary: An increase in Indigenous population around 6,000 years ago across 45 

southeastern Australia led to increased impact from anthropogenic fire regimes, and the 46 

reduction of shrub fuel loads. 47 

 48 

Abstract 49 

Wildfires in forests globally have become more frequent and intense due to changes in climate 50 

and human management. Shrub layer fuels allow fire to spread vertically to forest canopy, 51 

creating high-intensity fires. Our research provides a deep-time perspective on shrub fuel loads 52 

in fire-prone southeastern Australia. Comparing 2,833 records for vegetation cover, past climate, 53 

biomass burning, and human population size across different phases of human occupation, we 54 

demonstrate that Indigenous population expansion and cultural fire use resulted in a 50% 55 

reduction in shrub cover, from approximately 30% from the early-mid Holocene (12-6 ka) to 56 

15% during the late-mid Holocene (6-1 ka). Following British colonization, shrub cover has 57 

increased to the highest ever recorded (mean of 35% land cover), increasing the risk of high-58 

intensity fires. 59 

 60 

Main Text 61 

We live in a flammable world where forest fires are projected to increase with anthropogenic 62 

climate change (1). Forested areas of western North America and southeastern Australia are 63 

wildfire epicentres, with devastating economic and societal repercussions (2). Australia’s fires 64 

are increasing in frequency and extent (3), fueled by anthropogenic warming, droughts (4), and 65 

increased biomass (5). The extreme wildfires of 2019/2020 occurred in the dense Eucalyptus 66 

woodlands and forests of southeastern Australia (4, 6) during extreme fire weather (3). Regarded 67 
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as ‘catastrophic’ from both a socio-economic and an environmental perspective (3, 4) the fires 68 

burned more than 21% of forest area during this occasion, in comparison to annual averages of 69 

2-3% since 2000 (7). Along with climate change, forest management and fire suppression have 70 

allowed the accumulation of shrubby biomass which fuels more intense fires (8–10). An 71 

important component of overall fuel load, known as ladder fuels, is the shrub layer that allows 72 

ground fire to spread to the tree layer causing crown fires (11, 12).  73 

 74 

For thousands of years, humans have harnessed fire for various purposes, including fire 75 

management itself (13). Cultural burning refers to the practice of systematically applying 76 

frequent low-intensity fire to the land, as employed by many Indigenous groups globally (14, 77 

15). Cultural burning relies on an intimate relationship with the land, creating fine-scale spatial 78 

heterogeneity that promotes high biodiversity, improves hunting opportunities, interrupts fuel 79 

load connectivity and serves various cultural and spiritual purposes (16, 17). In North America, 80 

suppression of Indigenous cultural burning has had major consequences for forest composition 81 

and fuel connectivity (10, 18, 19). For example, in the Klamath Mountains (California) the 82 

cessation of Indigenous cultural burning drastically increased biomass in post-colonial times 83 

(14). In Australia, Indigenous peoples arrived at least 65,000 years ago (20) and likely used fire 84 

to care for Country. Country is an Indigenous Australian term to describe relationships and 85 

interconnections between lands, waterways and people (21). British colonization disrupted 86 

cultural burning in southeastern Australia, and eucalypt-dominated vegetation communities now 87 

burn at extreme intensities (3), in part due to abundant ladder fuels (12, 22). Colonisation of 88 

Indigenous lands has suppressed the customary burning practices that maintained open forest 89 
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structures. This, in combination with the active suppression of forest fires in the 20th century, has 90 

caused fuel loads to increase (5, 14).  91 

 92 

While traditional burning practices have important benefits (23), quantitative data on Australian 93 

vegetation structure under Indigenous management is lacking. Understanding the mechanisms 94 

behind extreme wildfires (6) under different management approaches, from Indigenous cultural 95 

burning to post-colonial practices, can inform better fire management in the future. 96 

Palaeoecological evidence is becoming an invaluable tool to assess linkages between wildfire 97 

extent and changing fuels following colonial invasion of Indigenous lands (10, 14). In this work, 98 

we adopted a multidisciplinary approach compiling multi-site data focused on the most densely 99 

populated region of Australia, to uncover the regional dynamics of vegetation, fire histories, 100 

human activity and paleoclimates (Fig. 1; Fig. S1).  101 

 102 

Previous work focused on past fuel loads (e.g. 6) overlooked the fact that fuel abundance in 103 

different vegetation strata and fuel continuity influence fire spread and intensity (24). Mariani et 104 

al. (5), focusing on the last 1,000 years, hypothesized that the post-European disruption of 105 

Indigenous cultural practices led to an expansion of shrubs in the understory of eucalypt forests 106 

in eastern Australia, exacerbating recent fire events by providing ladder fuels. In this study we 107 

build further from this hypothesis with a temporally expanded dataset to quantify shrub cover 108 

across key periods of human occupation in Australia, gauging changes to the risk of high-109 

intensity crown fires (Figure 1a). To achieve this, we reconstructed shrub cover during periods 110 

of: 1) no human activity (Last Interglacial = Marine Isotopic Stage (MIS) 5e; 130-115 ka), 2) 111 
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low human activity (early-mid Holocene, ending at 6 ka), 3) intensified human activity (mid-late 112 

Holocene, 6-1 ka) and 4) post-colonial cultural burning suppression (from 1788 CE). 113 

Past land cover and ladder fuels 114 

Detecting cultural burning activity in archaeological and palaeoecological contexts is 115 

challenging. Previous Australia-wide research combined data from various bioclimatic and 116 

cultural areas, and failed to detect cultural burning (25, 26). In contrast, local-scale studies, 117 

which reflect the scale at which people alter landscapes (15), find strong links between historical 118 

occupation and vegetation changes, suggesting an increased tree abundance during low 119 

occupation phases (27, 28). Examples of these investigations include coupled archaeological-120 

palaeoecological records from Tasmania (27, 28), the Australian Alps (29), New South Wales 121 

(30) and Bass Strait islands (31).  122 

 123 

We reconstructed shrub cover using pollen assemblages from 31 sedimentary deposits (from 124 

wetlands and lakes) with a minimum age of 1000 years before present across southeastern 125 

Australia (Fig. 2a,b; Table S1). Two pollen records (Caledonia Fen and Lake Wangoom) 126 

covering parts of the Last Interglacial MIS 5e (130,000 – 115,000 years BP, hereon Last 127 

Interglacial) were included to examine vegetation patterns before human arrival, and under 128 

climates similar to the Holocene (Table S1; Fig. S2). The Regional Vegetation Estimates from 129 

Large Sites (REVEALS) model (32) provides a regional-level reconstructions of above-ground 130 

plant cover by structural type (i.e., trees, shrubs, herbs and grasses) (5). REVEALS modelling 131 

overcomes biases in pollen production and dispersal that commonly overrepresent trees and 132 

underrepresent shrub and herb/grass cover (32). We used the reconstructed cover of shrub taxa to 133 

indicate ladder fuel availability across the study area. 134 
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 135 

Regional biomass burning was inferred from 108 sedimentary charcoal records (Fig 2c, Table 136 

S2). Charcoal influx was calculated, time series were square-root transformed, and min-max 137 

transformed series were averaged to create a regional record of palaeofire activity for 138 

southeastern Australia (33) (see Material and Methods). Trends in human activity sensu Peros et 139 

al. (34) were tracked using over 2,000 radiocarbon ages from archaeological sites (Fig. 2c), 140 

obtained from the SahulArch database (35, 36). We calculated summed probability density 141 

(SPD) to infer past changes in human activity (34, 37). We corrected for detection biases using 142 

an exponential-logistic model on the archaeological ages (37) (see Materials and Methods). We 143 

mapped the distribution of archaeological radiocarbon ages between 9-6 ka and 6-3 ka (Fig. 2c) 144 

to trace changes in population size and landscape use. 145 

 146 

To understand interactions between moisture availability and palaeofire, five terrestrial 147 

palaeomoisture records (lake level, salinity and rainfall) from southeastern Australia were 148 

compiled by smoothing z-scores (Fig. 2a,b; see also Fig S3 and Table S3). All trends were then 149 

smoothed with Generalized Additive Models (GAMs) and the first derivative was calculated to 150 

highlight significant trends in the time-series. Generalized linear modelling was used to identify 151 

the main drivers of change in Holocene shrub cover with climate, palaeofire and human 152 

population size as predictors (Table S4). A GLM was also used to predict how shrub cover might 153 

change if human activity was excluded from the landscape (Fig. 4c).   154 

 155 

 156 

 157 
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Reconstructed shrub cover under varying levels of human activity 158 

Our data track major structural changes in vegetation from the Last Interglacial to the post-159 

colonial landscape. In the Last Interglacial, shrub, tree and herb/grass cover each comprise ~30-160 

34% (Fig. 3), with shrub cover ranging from 13-80% in this period. Whilst there is no regional 161 

charcoal compilation from the Last Interglacial due to the scarcity of records and dating 162 

uncertainties, the recently published individual charcoal record from Lake Couridjah spans the 163 

Holocene and the Last Interglacial (30). This study demonstrated higher levels of charring 164 

intensities from biochemical data, most likely reflecting a high abundance of woody fuels that 165 

burned at higher intensities (22) during the Last Interglacial.  166 

 167 

During the early-mid Holocene, with human presence (Fig. 3), the cover of the three structural 168 

plant groups diverged. Comparing this period to Last Interglacial, median tree cover declined by 169 

~10%, herb and grass cover increased by ~10%, and median shrub cover remained at a similar 170 

level. However, there was high variability in cover of each stratum during the early-mid 171 

Holocene, as in the Last Interglacial, ranging from 5 to 55% (Fig. 3). High charcoal influx 172 

persisted during the early-mid Holocene, reaching a maximum at 6 ka (Fig. 4d). From 6 to 1 ka, 173 

median shrub cover decreased to below 15% (Fig. 4c, Fig. S4), accompanied by a gradual 174 

decline in charcoal influx until 1 ka (Fig. 4d, h).  The charcoal compilation, interpreted as 175 

biomass burning, shows a decline during the period 6-1 ka likely due to limited availability of 176 

woody fuels, as large particles deriving from wood preserve better in sediment records (38). We 177 

also found a large increase in herbs and grasses, from less than 40% prior to 6 ka to over 60% 178 

from 6 to 1 ka (Fig. S4-5). Shrub cover percentage changes observed between pre-human 179 

contexts and Holocene (both 12-6 ka and 6-1ka) are statistically significant (Table S5). 180 
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 181 

During the colonial era (i.e., the last ~200 yrs), herbs and grasses comprise ~60% median cover, 182 

and tree cover declined to <10%. Over this same period, shrubs increased to ~35%, substantially 183 

greater than both the Indigenous-managed Holocene landscapes, and slightly higher than the 184 

unpopulated landscapes of the Last Interglacial (Fig. 3). We note a high variability in the post-185 

colonial dataset, likely due to the impact of agricultural practices (5). 186 

 187 

These changes in shrub cover occurred during periods with different underlying levels of human 188 

activity and climatic conditions. The SPD of radiocarbon ages indicates increased human activity 189 

after 6 ka across SE Australia (Fig. 4b, c, f, see also Fig. S6). The distribution of archaeological 190 

ages indicates the spatial expansion of human activity during the 6-3 ka period (Fig. 2c), 191 

suggesting either an increase in population size, an increase in population mobility and extensive 192 

land use, or a combination of both during the mid-late Holocene. This phase of increased human 193 

activity occurs after moisture availability peaked at 7 ka following an initially drier early-mid 194 

Holocene (Fig. 4a). After human activity increases, moisture levels were more stable but drier 195 

until ~2 ka (Fig. 4a, e).  196 

 197 

Human activity (SPD of radiocarbon ages) was the strongest predictor (p < 0.01) of shrub cover 198 

changes in the Holocene up to 1 ka (Table S4, Fig. S7-10), with declining shrub cover associated 199 

with increasing population and/or more extensive land use. Further, the reduction in shrub cover 200 

variability from early-mid to mid-late Holocene (Fig. 3) might be reflecting a regional-scale 201 

stabilization of cultural burning practices alongside population expansion. When shrub cover for 202 

the mid-late Holocene is predicted without archaeological data (an uninhabited scenario) using 203 
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early-mid Holocene model which includes all predictors as training dataset, GLM-predicted and 204 

observed results diverge by ~50%. Predicted non-anthropogenic median shrub cover was ~30% 205 

for the mid-late Holocene, compared with observed values of ~15% (Fig. 4c, orange line). This 206 

suggests that increasing human activity after 6 ka influenced shrub cover. 207 

 208 

Discussion 209 

 210 

Holocene shrub cover and ladder fuels under intensified cultural burning 211 

For the first time, we document a regional-scale decline in Holocene shrub cover across 212 

southeastern Australia, which corresponds with evidence for increased Indigenous population 213 

size and/or expanded Holocene land use (after 6 ka). Therefore, we suggest that the decline in 214 

shrub cover can be attributed to intensified cultural burning practices. The sharp decline in shrub 215 

cover from 6-5 ka likely reduced vertical fuel pathways, due to lower ladder fuels and altered fire 216 

behavior. The steady decline in biomass burning up to 1 ka is unlikely related to moisture levels, 217 

which remained relatively stable (Fig. 4). Projected shrub cover over the mid-late Holocene 218 

without considering human population density (28% of land cover; Fig. 4c, orange line) differs 219 

significantly to that observed (15% of land cover). Shrub cover during the mid-late Holocene did 220 

not return to levels seen during the early-mid Holocene, with less ladder fuels and lower 221 

connectivity likely leading to lower charcoal influx (Fig. 4d). This supports the mechanism 222 

hypothesized in this study, as cultural burning is generally targeted at fine fuels within the 223 

ground stratum, which results in overall lower charcoal production (39, 40). Tree and grass 224 

components both increased at this time (Fig. S5), suggesting a shift to open savanna-like 225 

landscapes with a more open mid-story, reducing the risk of crown fires (24, 41).  226 
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 227 

An increase in population and more extensive land use, including the use of new resource zones, 228 

in the mid-late Holocene is a well-established phenomenon in southeast Australia (42, 43) 229 

although its drivers are contested (44). Combined, the results of this multi-proxy work suggest a 230 

large-scale reduction of shrub cover which altered fuel connectivity and hence fire intensity in 231 

southeast Australia throughout the mid-late Holocene following population increase, probably 232 

through the application of Indigenous management practices, including cultural burning. 233 

 234 

Cultural landscapes 235 

Whilst we recognize that climate modulates vegetation cover and fire regimes in many 236 

Australian contexts (e.g., Bowman et al. (45)), our findings show a decoupling between moisture 237 

availability, vegetation and biomass burning in the mid-late Holocene (Fig. 4). We suggest this is 238 

due to an intensification of cultural burning, as the stability in available moisture during this 239 

period (Fig. 4a) would not have produced a decline in shrub cover without anthropogenic 240 

forcings (Fig. 4c). Moisture levels of the mid-late Holocene are similar to the conditions existing 241 

prior to the moisture peak at 7 ka, but in this period human activity was lower and shrub cover 242 

was higher. This suggests that cultural burning practices may have overridden climatic controls 243 

on vegetation structure (Fig. 4a, c). 244 

 245 

As climate would have had similar effects on vegetation dynamics in the early-mid and mid-late 246 

Holocene, it seems likely that increased Indigenous cultural burning drove the change in 247 

vegetation towards low shrub cover in the latter (Fig. 4c). Indigenous Australians actively and 248 

extensively managed Country through cultural burning practices, keeping fuel levels low, until 249 
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colonial invasion in 1788 (5). Our evidence corroborates Indigenous oral history and the 250 

landscape descriptions recorded by early European colonists (16), who both characterized the 251 

landscape with widely spaced trees creating open woodlands. These descriptions were likely 252 

accurate portrayals of cultural landscapes maintained through cultural burning practices. This 253 

also corroborates local-scale evidence from other Australian regions (28, 39). 254 

 255 

We recognize that our understanding of vegetation cover at the time of initial human occupation 256 

of Australia ~65 ka is limited due to the sparseness of long sedimentary sequences, poor dating 257 

quality in older records and lack of vegetation quantifications (see Florin et al. (46)). A recent 258 

study from Northern Australia’s tropical savanna zone found a clear onset of human-managed 259 

fire regimes starting around 11 ka (47), pre-dating the human expansion we observe in southern 260 

temperate Australia (this study) by about 5,000 years. However, an earlier long record from 261 

Lynch’s Crater, located at the tropical rainforest–savanna ecotone, suggests that human influence 262 

on fire regimes and rainforest landscapes was already in place by around 40 ka (48, 49). This 263 

disparity in fire regimes contributes to our growing understanding of cultural burning, and other 264 

caring-for-Country practices, as greatly variable and shaped by long-term trajectories of 265 

localized human-environment interaction across Australia.  266 

 267 

Future outlook: cultural burning and climate change 268 

Considering the pressing influence of anthropogenic climate change in modulating recent high-269 

intensity and frequent wildfires (50), our work suggests that reconstructed post-colonial shrub 270 

cover, an important ladder fuel, is unusual from a long-term perspective. The evidence supports 271 

the reduction of shrub cover and ladder fuels as an effective way to limit high-intensity crown 272 
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fires in the flammable forests of Australia and beyond (22). Currently, fuel reduction strategies, 273 

such as mechanical thinning and prescribed burning, are especially focused on trees (51), but 274 

effective fire management also requires targeting ladder fuels (22).  275 

 276 

This work highlights how cultural burning, over millennia, likely resulted in landscapes with less 277 

intense wildfire activity due to reduced vertical connectivity of fuels. A wide-scale reintegration 278 

of traditional cultural burning, undertaken in combination with Western management techniques 279 

(52), is crucial in a context where increasing fire weather and expanding population levels 280 

intersect (2). There are ecological benefits to reintroducing cultural burning, including wildfire 281 

prevention and carbon storage, as well as enormous socio-cultural benefits for Indigenous 282 

communities (e.g., (25, 53)). However, without more support for Indigenous capacity-building 283 

and community-led cultural burns over wider areas, the benefits of cultural burning in the 284 

prevention of wildfires are unlikely to be achieved (15, 52). Through detailed histories of 285 

Indigenous burning regimes across the world and Indigenous-led collaborations in contemporary 286 

wildfire management projects, we can inform sustainable and healthy solutions that “tame the 287 

flames” threatening global socio-environmental systems.  288 

 289 

 290 
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 587 

Figure captions 588 

Figure 1. Flowchart explaining the approach used in the present study to quantify past 589 

changes in fuels within the shrub layer (i.e., ladder fuels). a) Schematic illustrating typical 590 

fuel layers in Australian sclerophyll forests; b) Approach used to reconstruct Holocene trends in 591 

human population, hydroclimate, fire activity and vegetation cover; c) Approach used to 592 

reconstruct pre-human vegetation cover (because no other proxies are available for this period); 593 

d) The generalized linear model (GLM) is fitted to predict shrub cover during the period 6-1 ka 594 

in a scenario without human influence, with only palaeoclimate index and charcoal composite set 595 

as  predictors. The GLM for the preceding 12-6 ka period which includes palaeoclimate index 596 

and charcoal, as well as human occupation as predictors, is used as the training dataset for the 6-597 

1 ka period model; e) Schematic of hypothesized mechanism investigated in the study. All icons 598 

used in the illustrations are Creative Commons. 599 

 600 

Figure 2. Map showing site locations in a) and b) for pollen, paleoclimate and charcoal records. 601 

Location of archaeological radiocarbon dates are shown in c); light orange dots are locations 602 

only present in the mid-late Holocene period (n=1,204), dark grey dots are locations only present 603 

in the early-mid Holocene (n=758), dark orange dots represent locations dated during both early-604 
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mid Holocene and mid-late Holocene (n=401). The climatic and vegetation gradients for the 605 

study area are presented in Fig. S1. 606 

 607 

Figure 3. The lowest shrub cover was found during the mid-late Holocene (6-1 ka), while 608 

the current post-colonial landscape (0.2 ka to present) hosts the highest median shrub 609 

cover. Summary schematic illustrating vegetation changes through time and associated boxplots 610 

(n= number of sites used in the land-cover estimation using REVEALS). The timeline goes from 611 

youngest to oldest (left to right). Total annual rainfall (TAR; mm) and mean annual temperature 612 

(MAT, °C) modelled for the Holocene (6 ka) and Last Interglacial are shown below the grey 613 

arrow (further details Fig. S2), alongside present (post-colonial) regional averages. 614 

 615 

Figure 4. A ~50% average reduction in shrub cover (c) following expansion of Indigenous 616 

populations (c) in the mid-late Holocene (6 to 1 ka) is concurrent with a reduction in 617 

biomass burning (e). Stacked diagram showing Holocene trends for a) GAM-smoothed 618 

palaeoclimate index; b) summed probability density (SPD) of archaeological radiocarbon dates 619 

corrected for preservation/detection biases; c) GAM-smoothed shrub cover % and d) GAM-620 

smoothed charcoal influx. Asterisk (*) indicates predictive generalized linear modelling result 621 

(GLM) in a scenario without human presence (here inferred from SPD) in the landscape (orange 622 

dotted line in c). Panels e), f), g) and h) show the respective first derivatives to highlight major 623 

significant trends (blue= declining trend; red= increasing trend). The timeline goes from 624 

youngest to oldest. 625 
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