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Abstract
Blow-up solutions to a heat equation with spatial periodicity and a quadratic
nonlinearity are studied through asymptotic analyses and a variety of numerical
methods. The focus is on tracking the dynamics of the singularities in the com-
plexified space domain all the way from the initial time until the blow-up time,
which occurs when the singularities reach the real axis. This widely applicable
approach gives forewarning of the possibility of blow up and an understanding
of the influence of singularities on the solution behaviour on the real axis,
aiding the (perhaps surprisingly involved) asymptotic analysis of the real-line
behaviour. The analysis provides a distinction between small and large nonlin-
ear effects, as well as insight into the various time scales over which blow up is
approached. The solution to the nonlinear heat equation in the complex spatial
plane is shown to be related asymptotically to a nonlinear ordinary differential
equation. This latter equation is studied in detail, including its computation
on multiple Riemann sheets, providing further insight into the singularities of
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blow-up solutions of the nonlinear heat equation when viewed as multivalued
functions in the complex space domain and illustrating the potential intricacy
of singularity dynamics in such (non-integrable) nonlinear contexts.

Keywords: nonlinear blow up, complex singularities, matched asymptotic
expansions, Fourier spectral methods, Padé approximation

Mathematics Subject Classification numbers: 35B44, 32S99, 35C20, 41A21,
65N99

1. Introduction

The nonlinear heat equation (NLH)

∂u
∂t

=
∂2u
∂x2

+ u2, (1)

is known to exhibit finite-time blow up on the real line; see [1–5] for reviews and figure 1
for typical solution profiles. The NLH is a model for reaction-diffusion processes and has
appeared in numerous applications including fluid dynamics [6–8], chemical kinetics [9–11]
and biology [12]. The blow-up behaviour of solutions to the NLH and more general nonlinear
parabolic PDEs has been studied extensively on the real line; see the previously mentioned
review papers as well as [13–15]. The novel approach of the present paper is to investigate
in detail how the blow up relates to singularity dynamics of the solution when it is viewed
as an analytic function in the complex z plane, with z= x+ iy (only the spatial variable is
complexified here). We adopt a combination of asymptotic and numerical methods with the
goal of obtaining a comprehensive description of the complex-plane behaviour leading to blow
up on the real line.

The complex-analytic viewpoint for the NLHwas introduced in [16], which was inspired by
similar approaches to the Burgers equation [17–20] and the Korteweg–de Vries equation [21].
The particular example of [16] involved a real-valued, 2π-periodic solution in x, associated
with the initial condition

u(x,0) = αcosx, (2)

with only α= 1 considered in that paper. Here, we consider all α> 0 and will thus be able to
distinguish between initially small (α� 1) and large (α� 1) nonlinear effects.

Viewed in the complex z plane, the initial condition (2) is an entire function. For small
t> 0, singularities are born at infinity and the ones closest to the real axis, which we locate at
y= Im z=±σ(t), rapidly move along the imaginary axis towards the real axis, with u real on
the imaginary axis for |y|< σ(t). Figure 2 shows the position of the closest singularity on the
positive imaginary axis for the solutions in figure 1. (The numerical methods used to generate
figures 1 and 2 will be discussed in section 2.) Since the solution in the upper and lower half
planes are equal up to complex conjugation (u(z, t) = u(z, t), z= x+ iy), we shall consider the
solution only in the upper half-plane.

The singularity dynamics in figure 2 exemplify the competing effects of diffusion and non-
linearity in the NLH. For large enough α, as in the top left frames of figures 1 and 2, the focus-
sing nonlinear term dominates diffusion in the sense that the singularity approaches the real
axis monotonically, albeit not at constant speed. The solution profile on the real axis steepens
as the singularity approaches the real axis, with point blow up occurring when the two closest
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Figure 1. Solution profiles for blow up in the PDE (1) for decreasing values of α in the
initial condition (2). (Note that the scales on the time axes are different in each case.)
In the α= 0.5 case blow up appears to be uniform; however, in section 6 we shall show
that in fact point blow up occurs at x= 0.

singularities in the upper and lower half planes collide on the real axis. If α is small enough, as
in the bottom row of figures 1 and 2, diffusion dominates initially and we see that the solution
profile flattens while the singularities reverse direction after zooming in from infinity to move
away from the real axis. However, even as the solution flattens, its mean increases4 and thus
eventually nonlinearity reasserts itself, the solution profile becomes steeper, the singularity
changes direction again and rapidly moves towards the real axis and point blow up ensues. For
the case α≈ 1.2 in the top-right frame of figure 2 there is a balance between nonlinearity and
diffusion in which the singularity is near stationary for a while after zooming in from infinity
and before zooming in again as point blow-up occurs.

With the initial data (2), the solution has a point blow up at x= 0 for any α> 0. The blow up
may occur at other points, however, or not at all. For example, note that α< 0 corresponds to a
translation of the solution x 7→ x±π and thus shifts the blow-up location from the maximum
of the initial data (2) at x= 0 to x=±π. On the other hand, we shall also consider

u(x,0) = αcosx+β, (3)

briefly in an appendix. If β is sufficiently large negative for a fixed α, then the solution does
not blow up but extinguishes (‘heat death’ occurs) according to u∼−1/t, t→∞; see the

4 The mean of the solution, ⟨u⟩, satisfies d
dt
⟨u⟩= ⟨u2⟩, as can be derived from (1) using integration by parts.
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Figure 2. The (numerically computed) singularity locations at±i y as functions of time,
for the solutions shown in figure 1. For a description of the numerical method, see
section 2.

left frame of figure 3. Otherwise, point blow up occurs at (i) x= 0 if α> 0 and at (ii) x=
±π if α< 05. For an example of (i), we perturb the initial data of the heat-death solution in
figure 3 and obtain the solution in the right frame of figure 3. For the heat-death solution, the
singularities zoom in from infinity, change direction and then move back (linearly in time, as
we shall show) to infinity, see figure 4. This figure also shows that when perturbing the heat-
death solution, the singularities can switch direction a second time and move towards the real
axis, which leads to blow up.

In our analysis of the solution in the blow-up limit, we shall also briefly consider the blow-
up scenarios, and associated singularity dynamics, for initial data with two local maxima.
Figure 5 shows two possibilities: blow up occurs at two distinct points for even initial data with
two sufficiently separated and concentrated peaks (left frame) and (right frame) two maxima
are sufficiently close to diffuse and combine into a single maximum, and then blow up occurs
at a single point. We shall also consider the non-generic blow up that occurs when the two
maxima combine precisely at the blow-up time, which represents the borderline between the
cases shown in figure 5.

5 On the (unstable) borderline between blow up and extinction one has u∼ Ke−t cosx as t→∞.
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Figure 3. Numerical solutions to the NLH for the initial data (3) with β =−5,
α= 7.856 (left) and β =−5, α= 7.892 (right) (the numerical method is described in
section 2). On the left, heat death occurs, but with a small perturbation in the initial
condition the solution blows up, same as in figure 1.

Figure 4. Singularity location of the solution in the left frame (blue curve) and right
frame (red curve) of figure 3.

Other complex-plane studies of the NLH have been reported in [22, 23]. In both papers
the equation was studied numerically in the complex t-plane. Related studies reported in [24]
focused on the case of nearly flat initial data

u(x,0) =
1

α− ϵcosx
, 0< ϵ� α. (4)

The properties of blow up were investigated but singularity dynamics in the complex x-plane
were only mentioned briefly.

The paper consists of seven sections and six appendices, the latter containing the bulk
of the more technical analyses. In section 2 we review two numerical approaches based on
Fourier analysis for locating and classifying the singularities alluded to above. In section 3
we complement the numerical investigation by a local analysis that characterises the type of
singularities admitted by the equation. Sections 4–6 are devoted to the analysis and numerical
verification of the dynamics of the singularities and the relation of the NLH solution in the
neighbourhood of the singularities to certain nonlinear ODE solutions. The ODE solutions are
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Figure 5. NLH solutions for two-peaked initial data defined by u(x,0) =
αexp(µcos(x+ δ)−µ)+αexp(µcos(x+ δ)−µ). For both solutions, α= 6,
µ= 50, while on the left, δ = π/2 and on the right, δ = 0.4π. The red dots in the right
frame indicate the maxima of the solution.

studied in detail in B. Section 4 and appendix A concern the small-time limit t→ 0+ for all
amplitudes α> 0. Section 5 and appendix C consider the large-amplitude limit, α→∞, and
section 6 and appendix D treat the small amplitude limit, α→ 0. As figures 1 and 2 indicate,
the small-amplitude singularity dynamics are the most complicated. This will be borne out by
the asymptotic analysis, in which a complete description requires five distinct time scales. To
complete our study, in section 7 and appendix E we consider the solution in the blow-up limit.
Sections 4–7 focus on NLH solutions subject to the initial data (2) but the final appendix, F,
considers NLH solutions corresponding to the more general initial condition (3). Throughout
we shall reuse symbols with different meanings in different sections.

2. Numerical method and singularity tracking

The numerical solutions reported in this paper were computed by a Fourier spectral method.
Considering solutions 2π-periodic in space, the approximation is based on the Fourier series

u(x, t) =
∞∑

k=−∞

ck (t)e
ikx. (5)

When this is substituted into (1) an infinite dynamical system for the evolution of the coef-
ficients ck(t) is obtained. Upon truncation to modes |k|⩽ N, a finite-dimensional system is
obtained, which we integrated in timewith the adaptive time-step functions ode45 and ode15s
available in MATLAB. The main advantage of these integrators is the error control that they
provide. By experimentation, the number of modes, 2N+ 1, was chosen sufficiently large so
that all results presented here have fully converged.

For computing solutions close to blow up, a powerful strategy has been suggested in [15]
and used in [24]. Namely, the substitution u= 1/v converts (1) into an equivalent PDE whose
solution approaches zero rather than infinity at the blow-up point. This method can maintain
high accuracy for blow-up solutions for values on the order of u= 1/v=O(1/ε), where ε here
denotes the machine precision, which can be made arbitrarily small with variable precision
arithmetic but which is approximately 10−16 for IEEE double precision. In the present paper,
we use the Fourier spectral method in the variable v whenever u is strictly positive, otherwise,
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Figure 6. Estimated values of µ as defined in (7). Only two of the cases of figures 1
and 2 are displayed here, the others being qualitatively similar. The numerical results
single out the value µ= 2, which suggests poles of order 2 as the nearest singularities
to the real axis. The true nature of the singularities is more complicated, involving a
logarithmic branch point, as the analysis of section 3 will show.

if u changes sign on [−π,π], we solve the PDE in the u variable. The latter method is accurate
for solution values only up to approximately 108 in double precision. If u changes sign and
arbitrarily large solution values are required then more complicated numerical methods such
as domain decomposition, dynamical rescaling and/or adaptive mesh refinement are needed;
see [13, 14].

As for singularity tracking, there are two main numerical techniques. The first is based on
the examination of the rate of decay of the Fourier coefficients in (5). The other is based on
Fourier-Padé methods for numerical analytic continuation.

The first of thesemethods is described in the well-known paper by Sulem et al [25]. Suppose
at a fixed time t the coefficients ck of the series (5) are available. If the singularity closest to
the real axis is at z∗ = x∗ + iy∗ and

u(z)∼ C(z− z∗)
−µ
, z→ z∗, (6)

for some constant C, then [25]

|ck| ∼ |C|kµ−1e−ky∗ , k→+∞. (7)

Given values of ck for a range k� 1, the values of µ and y∗ can be estimated by a linear least
squares fit, after taking logarithms in (7). The singularity locations shown in figure 2 were
computed by this method.

In the next section we proceed with a theoretical analysis of the singularities of (1), but we
assume for now an expression of the form (6). The least-squares procedure then produces the
estimates for the exponentµ shown in figure 6. These results suggest that the singularities could
be poles of order two, except in an intermediate asymptotic sense for initial times and as blow
up is approached. The asymptotic analyses in the next sections will clarify these numerical
estimates.

The other method for singularity tracking is based on Fourier–Padé methods as considered
for the NLH (and other PDEs) in [16]. The Fourier series (5) is converted to rational trigono-
metric form, which can be continued into the complex plane to some strip around the real axis.

7
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Figure 7. Approximate complex phase plots of the α= 1 solution when continued from
the real line into the upper half of the complex z-plane. The colours indicate the phase
ϕ(z, t) ∈ [−π,π) of the solution (where u(z, t) = |u(z, t)|expiϕ(z, t)) according to the
colour wheel at the top (taken from [29]). In the first frame the singularity travels down
the imaginary axis, until it momentarily stops and turns around at the location in the
second frame. It then moves away from the real axis until it reaches the position of the
third frame, at which time it turns around once more and rushes onto the real axis and
blow up occurs. The first three frames suggest the singularity is a second-order pole
while in fourth frame, the characteristics of a branch cut become evident. The analysis
of the next section will clarify these plots.

The advantage of this method over the method (6) and (7) is that it often gives information
further into the complex plane, beyond the singularities closest to the real axis. In a further
improvement this method was recently extended to quadratic Fourier–Padé, which incorpor-
ates a square-root singularity into the approximant in an attempt to capture branch point sin-
gularities more accurately [26].

In figure 7 we show phase plots for the caseα= 1, computed by this quadratic Fourier–Padé
method. (It provides a different view of the singularity dynamics shown in the third frame of
figure 2.) This improves on the figure given in [16, figure 5.2], which was computed with the
standard Fourier–Padé approach. In the first three frames, the fact that the colours go twice

8
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around the colour wheel when encircling the singularity suggests the dominant contribution
is a pole of order two, as was evident in figure 6 as well. In the last frame, the discontinuity
in the phase above the singularity and along the imaginary axis indicates the presence of a
branch cut and hence a branch point singularity. This will be analysed in the next section. (The
interpretation of complex phase plots is discussed in [27] and plotting software can be found
at [28].)

3. Local analysis of the singularities

In this section we examine more closely the nature of the singularities described in sections 1
and 2. Locating a singularity in the complex plane at x= iσ(t) and setting x= iσ(t)+ ζ gives

∂u
∂t

− iσ̇
∂u
∂ζ

=
∂2u
∂ζ2

+ u2, (8)

where the dot represents differentiation with respect to t. The right-hand side dominates the
local behaviour, so that as ζ→ 0,

u∼− 6
ζ2
.

Setting

u=− 6
ζ2

+V(ζ, t) ,

and linearising, at leading order the ‘complementary function’ V satisfies the Euler equation

∂2V
∂ζ2

− 12
ζ2
V= 0,

so that

V∼ A(t)ζ−3 +B(t)ζ4.

Self-consistency requires A= 0 (this contribution being associated with the ζ-translation-
invariance of (8)), but σ(t) and B(t) are arbitrary in terms of the local analysis, representing
the two degrees of freedom expected of a generic singularity in this second-order problem.
Reinstating the intervening terms in the local expansion about the singularity in (8), one finds
that

u∼− 6
ζ2

+
6iσ̇
5ζ

− 1
50
σ̇2 + a(t)ζ + b(t)ζ2 + c(t)ζ3 + d(t)ζ4 logζ +B(t)ζ4, ζ → 0,

(9)

where

a(t) =− i
250

σ̇3 − i
10
σ̈, b(t) =

σ̇
(
7 σ̇3 + 190 σ̈

)
5000

,

c(t) =
79i

75000
σ̇5 +

229i
7500

σ̇2σ̈+
i
60
σ̈, d(t) =

18
21875

σ̇6 +
108
4375

σ̇3σ̈+
16
875

σ̇σ̈+
6
875

σ̈2.

9
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Note that the presence of the d(t)ζ4 logζ term implies that the singularity is actually a branch
point. However, the double-pole nature of the dominant term in (9) significantly precedes this
in the local expansion. This explains why both singularity tracking methods in section 2 sug-
gested the presence of a second-order pole.

The expansion also points towards why the method (6) and (7) suggests simple pole singu-
larities near t= 0 and near blow up; see figure 6. This is because the second term on the right
in (9) has a residue proportional to σ̇, and this value is large initially and again near blow up,
as can be confirmed in figure 2. A more detailed asymptotic analysis is required fully to clarify
the matter, however, and will be described in the next section and in appendix A (see (A.5) in
particular).

The method based on the quadratic Fourier–Padé method loses accuracy with the distance
from the real axis. Hence, in the first three frames of figure 7, when the singularity is relat-
ively far away from the real axis, the method is not accurate enough to identify the presence
of a branch cut; however, the leading-order double-pole nature of the singularity is correctly
identified. In the final frame of figure 7 the singularity is sufficiently close to the real axis
for the method to classify the singularity as a branch point correctly. The approximant is a
two-valued function, so it is unable to capture the logarithmic singularity perfectly, but at least
the presence of a branch point is indicated strongly. As will be discussed in the concluding
section 8, numerical approaches based on directly solving the NLH in the complex x-plane (to
be pursued in future work) may give more accurate approximations further away from the real
axis (and possibly on the Riemann surface of the solution).

4. Small-time limit: singularity dynamics and singularity structure

In the first of our appendices, appendix A, it is shown that for the initial condition (2) and for
small values of t, the NLH solution on the real axis is

u(x, t) = αcosx+ t

(
−αcosx+ 1

2
α2 (1+ cos2x)

)
+O

(
t2
)
, t→ 0.

Furthermore, it is shown that the singularity closest to the real axis on the positive imaginary
axis is located at z= iσ(t)∼ i log(2/(αt)), t→ 0. In the vicinity of iσ(t), the solution to the
NLH in the complex plane is given by

u(z, t)∼ ϕ(ζ)

t2
, z= i(log(2/(αt))+ 2t log(1/t)− (ζ + 1) t) , t→ 0, ζt= o(1) ,

(10)

where ϕ is the solution to the nonlinear ODE

d2ϕ
dζ2

− dϕ
dζ

= ϕ2, (11)

subject to the asymptotic condition

ϕ =
1
ζ
+

2log(ζ)
ζ2

+ o
(
ζ−2
)
, ζ →∞. (12)

Let ζ∗ be the first singularity that is encountered on the real axis as the ODE problem (11)
and (12) is integrated from ∞, then it follows from (10) that a small-time approximation to

10
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Figure 8. The solution to (11) satisfying (12). The modulus is shown as the height,
and the phase is represented according to the colour wheel at the top of figure 7. The
plot reveals a branch cut along the negative real axis originating from a singularity at
ζ∗ = 0.05695. The initial conditions used for this solution are given in (B.13) and were
computed with more than 800 terms of the asymptotic expansion (12), which are shown
in figure B2.

the singularity location is given by z= iσ(t), where

σ (t)∼ log(2/(αt))+ 2t log(1/t)− (ζ∗ + 1) t, t→ 0. (13)

In subsequent sections, we shall find that the ODE (11) subject to (12) or variations thereof
arises repeatedly in our analysis of NLH solutions in the complex plane. Consequently, a
detailed analysis of these ODE solutions is given in appendix B.

Figure 8 shows the solution to (11) and (12), revealing that ζ∗ ≈ 0.05695. In appendix B,
higher-order terms in the asymptotic expansion (12) are derived in order to compute the initial
condition to an accuracy on the order of machine precision. The solution to the ODE (11)
is then computed in the complex ζ-plane using the ‘pole field solver,’ a method based on an
adaptive Padé one-step method [30, 31].

Figure 9 shows the estimate (13) compared to the numerical estimate of the singularity
location described by (6) and (7). Both the graphical and the numerical comparisons confirm
that the asymptotic and numerical estimates match well for small t. As to be expected, the
accuracy of the asymptotic estimate deteriorates as t increases.

The asymptotic analysis in appendix A provides another perspective on why the singularity
exponent in figure 6 increases from roughly 1 to 2 as t increases from small to intermediate
values. It is shown in (A.5) that, in the small-time limit, the leading-order behaviour of the
singularity (after a single rescaling) is that of a simple pole. It is this leading-order simple pole
nature of the singularity that is detected by the numerical method. It is only after a second
rescaling that one arrives at an equation, viz. (A.8), whose singularity type matches that of the
NLH.

The type of singularities admitted by the ODE (11) are (necessarily) of the same type as
those of the NLH: if one assumes a singularity of the ODE is located at ζ∗, then the local
expansion takes the form

ϕ(ζ + ζ∗)∼
6
ζ2

+
6
5ζ

− 1
50

+
ζ

250
− 7ζ2

5000
+

79ζ3

75000
+

18
21875

ζ4 logζ + bζ4, ζ → 0,

(14)

11
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Figure 9. The singularity locations ±i y as functions of time as estimated by the pro-
cedure of section 2, which is based on equation (7) (solid line) and the estimate of
equation (13) (dashed line).

where b is an arbitrary constant. This shows that the ODE (11) does not possess the Painlevé
property (since it has branch point singularities whose locations are dependent on the ini-
tial conditions, i.e. movable branch points), which is to be expected since the NLH is not an
integrable PDE. This also confirms that the essential singularity that is present in the initial
condition at ∞, and which (9) indicates to be incompatible with the NLH, is transformed for
any t> 0 into singularities of the compatible form (9).

Figure 8 suggests that the branch point singularity at ζ∗ is the only singularity of ϕ(ζ) on
the principal Riemann sheet of the solution to (11) and (12). It is also of interest to examine
if, and where, other singularities might occur. Integrating clockwise around ζ∗ onto the next
Riemann sheet, we obtain the solution shown in figure 10, which reveals the presence of a
multitude of singularities. Such singularities could, at least in principle, subsequently move
onto the principal Riemann sheet and influence the real-time behaviour; however, such effects
seem not to be of importance in the current context.

Appendix B.4 shows that, to leading order, the solution for ζ →∞ on the second Riemann
sheet is expressible in terms of the (equianharmonic) Weierstrass elliptic function in the vari-
able ξ = eζ/5 (see (B.8) and (B.11)). Hence, in the bottom frame of figure 8, we find that in
the ξ-plane the far-field singularities on the second Riemann sheet lie approximately on the
same lattice as the singularities of the Weierstrass elliptic function.

The asymptotic result (10) and figure 10 suggest that the essential singularity at ∞ that is
present in the initial condition is instantaneously transformed into infinitely many singularities
of the form (9) for t> 0 that lie on a non-compact (infinitely sheeted) Riemann surface.

5. Large-amplitude initial conditions

In appendix C it is shown that for the initial condition (2) with large amplitude, a leading-order
approximation to the solution on the real line is, for t=O(1/α)

u∼ αcosx
1−αtcosx

, α→∞. (15)

12
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Figure 10. Top and bottom-left: Modulus plots of the solution in figure 8 integrated
clockwise around the branch point at ζ∗ = 0.05695, hence the solution on the lower half-
planes in these figures is on the principal Riemann sheet (the sheet shown in figure 8) and
the upper half-plane lies on the next Riemann sheet. Bottom: Comparison of the pole
locations (B.12) of theWeierstrass function (with α= rexp(iθ), r≈ 0.2087, θ≈ 0.2524
and ζ0 ≈−0.5113+ 0.03149i) and the singularity locations on the upper half-plane in
the top frame of the figure after mapping to the ξ-plane (ξ = eζ/5). The bottom-left
figure illustrates how the singularities first arise in the neighbourhood of the anti-Stokes
line identified in appendix B.4.

Hence, to leading order, the singularity locations are x=±iy=±iσ(t), where

σ (t)∼ cosh−1 (1/(αt)) = log(1/(αt))+ log

(
1+
(
1−α2t2

)1/2)
, α→∞, t=O (1/α).

(16)

The formula on the right makes it clear that as t→ 0, this estimate is consistent with the result of
the small-time analysis (13). The singularities move along the imaginary axis and collide with
the real axis at x= 0 for t= tc ∼ 1/α. The motion of the singularities is monotonically towards
the real axis, albeit not at constant speed. Graphs of the singularity locations as functions of
time are shown in figure 11.

The singularities of (15) are simple poles and therefore (15) ceases to be valid close to the
singularities. It is shown in C that in a neighbourhood of the closest singularities,

u(z, t)∼ ϕ(ζ)

t(1−α2t2)
, α→∞, t=O (1/α), (17)

13
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Figure 11. The singularity locations ±iσ as a function of time, as estimated by the
numerical procedure of section 2 (least squares) and the asymptotic estimates (16)
and (19). As can be expected, the higher-order estimate (19) loses accuracy close to
the blow-up time, as it should do; however, in the right frame it is clear that this estim-
ate is more accurate for intermediate times away from blow up than the leading-order
approximation (16).

where ϕ is the ODE solution defined by (11) and (12) and the formula

z= i

[
cosh−1 (1/(αt))+ t

√
1−α2t2

(
2log(α)− 1− 2α2t2

1−α2t2
− 2log(αt)− 2log

(
1−α2t2

)
− ζ

)]
,

(18)

defines ζ. Therefore, as α→∞ with t=O(1/α)

σ (t)∼ cosh−1 (1/(αt))+ t
√

1−α2t2
(
2log(α)− 1− 2α2t2

1−α2t2
− 2log(αt)− 2log

(
1−α2t2

)
− ζ∗

)
,

(19)

where ζ∗ is the location of the first singularity of ϕ on the real axis, which, as stated in section 4,
is ζ∗ ≈ 0.05695.

5.1. Approach to blow up

As the singularities approach the real axis, i.e. in the double limit x→ 0, t→ 1/α, it follows
from (15) that

u∼ α

1−αt+ x2/2
, (20)

holds. Equation (20) might suggest that as blow up is approached, the solution takes the self-
similar form,

u=
1

tc− t
f

(
x√
tc− t

)
, (21)

14
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(21) representing a classical similarity reduction to the NLH. As is well known, there were
early conjectures in related problems that blow-up solutions indeed take such a self-similar
form (see e.g. [32, 33]), although in [8] the appropriate logarithmic corrections had already
been established for a specific form of nonlinearity; see also [9]. Indeed, it is known that
no suitable solution to the resulting ODE in fact exists, see [34, 35]; in related quasilinear
problems classical similarity reductions can play an essential role, however.

In appendix E we apply appropriate modifications to existing approaches (pioneered in [8]
for a closely related PDE) to analyse the approach to blow up. The analysis is valid for all the
types of initial data mentioned in this paper (namely, (2)–(4)).

6. Small-amplitude initial conditions

In appendix D, the NLH solution is analysed for the initial data (2) with 0< α� 1 and it is
found that five different time scales are relevant for the asymptotic analysis. Here we summar-
ise the results on the different time scales. The bottom right frames of figures 1 and 2 show,
respectively, the qualitative behaviour of the solution profile and the singularity dynamics.
Figure 12 illustrates that the α= 0.5 solution in figure 1 appears to blow up uniformly but in
fact it blows up at the point x= 0.

6.1. t=O(1)

On the first timescale, the solution on the real axis is given for α→ 0 and t=O(1) by

u(x, t)∼ αe−t cosx+
α2

4

[
1− e−2 t+

(
e−2 t− e−4 t

)
cos2x

]
+
α3

48

[(
24t+ 6e−2 t+ 3e−4 t− 9

)
e−t cosx+

(
2− 3e−2 t+ e−6 t

)
e−3 t cos3x

]
. (22)

This approximation, as well as other asymptotic estimates in the upcoming sections 6.2–6.4,
will be compared to numerical results in section 6.6.

The closest singularities are at z=±iσ(t), where

σ (t)∼ 2t− log(sinh t)− log(α/2)+ ζ∗ (t) , α→ 0, t=O (1), (23)

and ζ∗(t) is the location of a singularity of a nonlinear backward diffusion PDE (namely, (D.4)
and (D.5)) whose solution is not known explicitly. However, the limiting behaviour of ζ∗(t)
is found to be (i) ζ∗(t)→ 0 as t→ 0 (hence (23) is consistent with (13) as t→ 0) and (ii) as t
becomes large according to t=O(1/α), ζ∗ → ζ̃∗ − log26. Here ζ̃∗ is the location of the first
singularity of the following nonlinear ODE problem:

d2ϕ
dζ2

− dϕ
dζ

= ϕ2, ϕ ∼ eζ , ζ →−∞. (24)

The limiting behaviour (ii) follows because for t=O(1/α), α→ 0 the NLH solution in the
neighbourhood of the singularity, i.e. for ζ =O(1), is

6 The log2 shift arises because (D.4) implies U∼ 2eζ as ζ →−∞, t→∞.
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Figure 12. NLH solution for the initial data u(x,0) = αcosx, with α= 0.5. This is the
same solution displayed in the bottom-right frame of figure 1 but shown here on a dif-
ferent vertical scale.

u(z, t)∼ ϕ(ζ) , z= i(2t− log(sinh t)+ log(1/α)+ ζ) , (25)

where ϕ(ζ) is the solution to (24).
The left frame of figure 13 compares the numerically determined singularity location (as

described in section 2) and the approximation (23), but with ζ∗(t) neglected. The right frame of
the figure shows the difference between these two quantities, which gives an estimate for ζ∗(t).
As predicted by the asymptotic analysis, ζ∗(t) increases from zero and for large t and α→ 0,
ζ∗ → ζ̃∗ − log2, where ζ̃∗ ≈ 1.53767, see the top frame of figure 14. The latter figure shows
that the far-field condition in (24) leads to multiple singularities on the principal Riemann sheet
of the ODE solution, in contrast to the solution in figure 8 corresponding to the condition (12).
This suggests that the NLH solution has multiple singularities that in the small-time limit live
off its principal Riemann sheet but, for small amplitude and large time, move onto its principal
Riemann sheet, a possibility we alluded to above.

Appendix B.4 shows that the far-field solution of (24) can also be expressed to leading order
in terms of the (equianharmonic) Weierstrass function in the variable ξ = eζ/5. Hence the far-
field singularities of the solution in the top frame of figure 14 lie approximately on the same
lattice as the Weierstrass function’s singularities in ξ-plane, as shown in the bottom frame of
the figure.

6.2. t=O(α−2)

On the second timescale, the solution on the real axis is

u∼ 1
tc− t

+
16e−t

α3 (tc− t)2
cosx+

(
128e−4t

α6 (tc− t)2

ˆ t

−∞

e2s

(tc− s)2
ds

)
cos2x, α→ 0, t=O

(
α−2

)
,

(26)

where the leading order estimate of the blow-up time is tc ∼ 4/α2,α→ 0 (see appendix D). For
the solution in figure 12 with α= 1/2, this gives the estimate tc ≈ 16, while the numerically
computed blow-up time is tc ≈ 15.53.
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Figure 13. The left frame shows the numerical (solid lines) and asymptotic (dotted lines)
approximations (with ζ∗(t) = 0 in (23)) for the singularity locations±iσ(t). The differ-
ence between these approximations, shown in the right frame, approaches the predicted
limiting value, ζ̃∗ − log2≈ 0.84452, (indicated by the dotted line) for large t as α→ 0.

Figure 14. Top: Modulus of the solution to (24) with initial conditions given by (B.7),
as computed by the procedure described in appendix B.2. Bottom: Comparison of
the pole locations (B.12) of the Weierstrass function (with α= rexp(iθ), r≈ 0.28910,
θ≈ 0.1066 and ζ0 ≈−0.603− 0.2574i) and the singularity locations on the upper half-
plane in the top frame of the figure after mapping to the ξ-plane (ξ = eζ/5).

Solutions with initial data (2) have a maximum at x= 0 (see figure 1) and, as shown in
appendix B of [24], the peak-to-trough height of the maximum satisfies

u(0, t)− u(±π, t)≈ 4c1 (t) := h(t)

17
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Figure 15. The peak-to-trough height of the solution in figure 12 (solid curve) compared
to the approximation (27) (dashed curve). As expected, the approximation (27) breaks
down close to the blow-up time.

for even solutions, provided t is not close to the blow-up time. Here c1(t) is a Fourier coefficient
of the solution; see (5). From (26) it follows that

h(t) =
32e−t

α3 (tc− t)2
, ⇒ minh(t) = h(tc− 2) =

8e2

α3
e−tc ∼ 8e2

α3
e−4/α2

, (27)

which implies theminimum peak-to-trough height of the solution decreases exponentially with
α. With α= 0.3 it follows that minh(t)≈ 10−16, which means that the solution is completely
flat in double-precision arithmetic and a uniform blow up is computed. This is incorrect since,
as we shall see, point blow up eventually occurs for any α> 0. Consequently, higher preci-
sion or rescaling methods would be required to compute the solution for α< 0.3. Figure 15
compares the asymptotic estimate (27) to the numerically computed peak-to-trough height and
confirms the validity of the estimate away from the blow-up time.

In the neighbourhood of the singularity, i.e. for ζ =O(1), the NLH solution is given by

u(z, t)∼ ϕ(ζ) , z= i(t+ 2log(tc− t)+ 3log(α/2)+ ζ) ,

where ϕ is again defined as the solution to (24). Hence an estimate of the singularity location
is

σ = t+ 2log(tc− t)+ 3log(α/2)+ ζ∗, (28)

where ζ∗ is the first singularity of (24) on the real axis, which was found to be ζ∗ ≈ 1.53767
in section 6.1. This estimate for σ, as well as the estimates in the upcoming sections, will be
compared to numerical results in section 6.6.

6.3. tc − t=O(1)

On this time scale, the solution on the real axis is given again by (26). The singularity location
evolves on the imaginary axis according to (cf (28))

σ (t)∼ t+ 2log(tc− t)+ 3log(α/2)+ ζ∗ (t) , α→ 0, tc− t=O (1), (29)
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where ζ∗(t) is the position of the first singularity of another nonlinear backward diffusion PDE
initial-value problem ((D.20) and (D.21)) whose solution is not known explicitly. However, the
limiting behaviour of ζ∗(t) is shown in appendix D.3 to be as follows: for 1� tc− t� 1/α2

with α→ 0, ζ∗(t)→ ζ∗, where ζ∗ is the first singularity of (24) on the real axis, i.e. ζ∗ ≈
1.53767 and therefore (29) tends to (28). For t→ tc, to leading order ζ∗(t)∼− log(tc− t) and
thus

σ (t)∼ t+ log(tc− t)+ 3log(α/2) , t→ tc. (30)

6.4. Fourth time scale

The fourth time scale, which is valid exponentially close to the blow-up time, is defined via

tc− t=
s

α3e4/α2

with s=O(1), and to leading order

u(x, t)∼ α3e4/α
2

s− 16cosx
, α→ 0, s=O (1). (31)

Therefore blow up occurs at s∼ 16 and the modification to the algebraic expansion for tc(α)
resulting from the previous timescales is the exponentially small (and hence in practice irrel-
evant) quantity

−16e−4/α2

/α3.

An approximation for the locations of the closest singularities (which will be used in
section 6.6) is z=±iσ(t) with

σ ∼ cosh−1 (s/16) = log
(
s+
(
s2 − 256

)1/2)− 4log2, α→ 0, s=O (1). (32)

6.5. Fifth time scale

As blow up is approached, s→ 16, x→ 0 apply in (31) and therefore

u∼ α3e4/α
2

s− 16+ 8x2
.

This suggests the self-similar form

u=
α3e4/α

2

s− 16
f

(
x

(s− 16)1/2

)
,

cf (21). Again, the appropriate ODE solution fails to exist, which necessitates the introduction
of a final (doubly exponentially short) time variable to capture the logarithmic corrections. The
approach to blow up is analysed in more detail in appendix E.
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Figure 16. The error of the approximations (22) (first timescale), (26) (second and third
timescales) and (31) (fourth timescale) compared to the numerical solution of the NLH
with u(x,0) = αcosx,α= 0.5. The error is calculated at every time step as theminimum
of the absolute and relative errors on x ∈ [−π,π]. In the right frame, we ‘zoom in’ on
the error close to the blow-up time by showing the error for the last 1000 steps of the
numerical time integrator, which corresponds to the time interval t ∈ [t1, tc], with t1 =
14.87 . . . and tc = 15.53 . . ..

6.6. Comparisons to numerical results

Having derived a large number of estimates for the small amplitude case, we now compare
some of them to numerical approximations. Figure 16 shows the accuracy of the asymptotic
approximations to the solution on the real axis given in (22), (26) and (31) for the case α= 0.5.
We note that the need for a comparatively large value of α reflects the asymptotic structure
whereby the small quantity exp(−4/α2) is prominent: the extent to which u becomes near
uniform is a striking feature of the analysis. In (26), we choose tc to be the numerical blow-
up time and in (31) we choose tc such that the blow-up time of (31), namely s= 16 (i.e. at
t= tc− 16α−3e−4/α2

), coincides with the numerical blow-up time.
Figure 17 compares the asymptotic estimates of the closest singularities at z=±iσ(t)

(see (23), (28)–(30) and (32)) to the numerically computed singularity position. For all these
asymptotic approximations, we let tc be the numerically computed blow-up time. For the estim-
ate (28), we use the value of ζ∗ = 1.53767, while for (29), since the function ζ∗(t) is not known
explicitly, we replace tc and ζ∗(t) with constants7 t̂c and ζ̂∗ such that the local maximum of
the resulting estimate matches that of the numerical singularity position.

7. Blow-up limit

Figure 18 shows a small-amplitude NLH solution at times approaching the blow-up time. Since
the solution is even, it is shown only for x> 0 with x ∈ [10−8,π]. The figure illustrates the well-
known fact that, as the blow-up time is approached, the solution is flat for η =O(1), where
η = x/

√
tc− t; see appendix E.1. That is, for a fixed t with 0< tc− t� 1, the solution is flat

with u∼ (tc− t)−1 for x sufficiently small. More precisely, as shown in appendix E.2, for

7 In figure 17, these constants are t̂c = 15.65 and ζ̂∗ = 1.78.
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Figure 17. The position of the closest singularity on the positive real axis of the small-
amplitude NLH solution with u(x,0) = αcosxwithα= 0.5 compared to the asymptotic
approximations.

x=O((tc− t) log(tc− t)1/2),

u(x, t)∼
[
tc− t+

x2

C− 8log(tc− t)

]−1

, t→ tc, (33)

where C is a constant that depends on the initial data. This approximation is shown as dotted
curves in figure 18 and matches the numerical solution well for sufficiently small x.

As is clear from figure 18, the solution is asymptotically flat on an interval whose width
shrinks to zero as t→ t−c and, as shown in appendix E.3, the solution acquires the blow-up
profile,

u(x, tc)∼
8
x2

(2log(1/x)+ log(log(1/x))+ 4log2+C/8+ 8β1) , x→ 0+, (34)

where the constant β1 is defined in appendix E. This profile is shown as a dashed curve in
the right frame of figure 18, which matches the non-flat part of the numerical solution well for
sufficiently small x. We note that, before the blow-up time, the closest singularities are second-
order poles to leading order with a logarithmic term at fourth order (see (9)); however, in the
blow-up limit, the leading-order behaviour for x→ 0, namely u∼ 16log(1/|x|)/x2, acquires a
logarithmic contribution.

Unlike the asymptotic estimates (33) and (34), the asymptotics of the blow-up profile in [24]
are valid on the entire interval [−π,π] (they are 2π-periodic) and the constants are expressed
explicitly in terms of the initial data considered in that paper, namely (4). For comparison
purposes, we restate the analogue of (33) from [24]: as t→ tc

u(x, t)∼
[
tc− t+ 2ϵe−α sin2 (x/2)+ 2ϵ2 logϵe−2α sin2 x+ ϵ(t− tc)e

−α cosx

+ 2ϵ2 sin2 x

(
e−2α log

(
tc− t
ϵ

+ 2e−α sin2 (x/2)

)
+C1 +C2

)]−1

, (35)
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Figure 18. Left: The five solid curves are NLH solutions with initial data
u(x,0) = αcosx, α= 0.5 corresponding to (from bottom to top) tc− t=
10−3,10−4,10−5,10−6,10−8. The dashed curves show the estimate (31) and the
single dotted curve is the estimate (33). Note the logarithmic scale on the x-axis.
Right: The solid curves show the NLH solution (with the same initial data as in the
left frame) with tc− t= 10−8,10−10,10−12,10−14,10−15. The dotted curves show the
estimate (31) and the single dashed curve is the blow-up profile (34). For the asymptotic
estimates, we use the numerically determined value of tc = 15.530458826185942
and the values C= 92 000 and β1 =−3/32, which were chosen to fit the numerical
solution.

where α and ε are parameters in the initial data (4) and

C1 = e−2α logα, C2 = e−4α
ˆ α

0

e2t− e2α

α− t
dt.

Setting t= tc in (35), we obtain as ε→ 0 with α=O(1)

u(x, tc)∼
[
2ϵe−α sin2 (x/2)+ 2ϵ2 sin2 x

(
e−2α log

(
2ϵe−α sin2 (x/2)

)
+C1 +C2

)]−1
. (36)

As shown in [24], at the blow-up time and for x exponentially small with respect to ε, the
following analogue of (34) holds,

u(x, tc)∼
8
x2

(
2log(1/x)+

(
4ϵe−α

)−1
)
, x→ 0. (37)

The left frame of figure 19 shows the accuracy of the asymptotic approximations (35)–(37) and
the right frame compares the small-amplitude NLH solution with tc− t= 10−15 in figure 18
with another NLH solution with tc− t= 10−15 but subject to the initial data (4).

As discussed in the introduction, for an even initial condition with two local maxima, blow
up of the type we have discussed here (generic blow-up) can occur simultaneously at two
points (see the left frame of figure 5) or at a single point (right frame of figure 5). In the former
case, two singularities collide on the real axis at both blow-up points and in the latter case (see
figure 20), a pair of singularities coalesces in each of the upper and lower half-planes before
the resulting singularities collide on the real axis at blow-up. The borderline case, in which
two singularities from the upper half-plane and two singularities from the lower half-plane
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Figure 19. Left: The solid curves show NLH solutions subject to (4) with α= 1,
ε= 0.001 and tc− t= 10−3,10−5, . . . ,10−13,10−15,10−16; the dotted curves are
defined by (35) and the red and pink dashed curves are given by, respectively, (36)
and (37). Right: the solution on the left with tc− t= 10−15 (red curve) and the small-
amplitude solution in the right frame of figure 18 with tc− t= 10−15 (blue curve).

Figure 20. Modulus plot of the solution in the right frame of figure 5 in the upper half-
plane. In the latter figure, the maxima (shown as red dots) coalesce at t≈ 0.855, whereas
the singularities above collide t≈ 1.006.

collide on the real axis at the same point at the blow-up time (see figure 21) is a type of non-
generic blow up for which the leading-order behaviour at blow up is u∼ C/x4, x→ 0, where
C depends on the initial data. (See appendix E.5 and figure 22.)
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Figure 21. Modulus plot of an NLH solution exhibiting non-generic blow up due to
four singularities colliding at x= 0 at the blow-up time. This solution has initial data
u(x,0) = αexp(µcos(x+ δx)−µ)+αexp(µcos(x+ δx)+µ)with α= 6, µ= 50 and
δ = 0.4363π. Note that there is a factor of 10 difference between the colour maps (indic-
ating the modulus of the solution) in this figure and in figure 20.

Figure 22. The (non-generic) blow-up profile of the solution in the bottom-right frame
of figure 21(solid line) and a curve that grows as O(x−4), x→ 0 (dotted line).

8. Conclusion

For the NLHwe have given asymptotic descriptions (alongwith numerical confirmation) of: its
branch-point-type singularities, the solution in the neighbourhood of the closest singularities
in the complex plane, the complex-plane dynamics of the closest singularities and the solution
in the small-time, large-amplitude, small-amplitude and blow-up limits.
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Numerous generalisations suggest themselves; perhaps the most immediate is the quasilin-
ear power-law case

∂u
∂t

=
∂

∂x

(
um
∂u
∂x

)
+ up,

with m 6= 0, p> 1, for which the blow-up behaviour is well-known to differ from that for
the semilinear case m= 0 with which we have been concerned here; indeed, the latter can
be viewed as the borderline case between two distinct classes of behaviour, the logarithmic
terms that are prevalent in the above being associated with this borderline status. Higher-
dimensional cases are also of interest, but raise obvious challenges when complexifying the
spatial variables.

We related the NLH solution in the complex spatial plane to nonlinear ODE solutions
(which have interesting properties in their own right) in certain limits and found the singu-
larity locations of the ODE solutions numerically (via the pole field solver) and asymptot-
ically. A possible direction for future research is to develop numerical methods for solving
the NLH (and other nonlinear time-dependent PDEs) directly in the complex spatial plane.
One approach could be based on a high-order finite difference method in the complex plane
through use of the complex finite difference formulas in [36]. Another approach would be to
develop an analogue of the pole field solver for PDEs. Just as the pole field solver can accur-
ately compute multivalued ODE solutions by using the ODE and adaptive Padé approximation
to continue analytically the solution onto multiple Riemann sheets, so a pole field solver for
PDEs might be able to compute, for a fixed time t, the NLH solution on multiple Riemann
sheets in the complex x plane. The numerical analytic continuation method for the NLH that
we used in this paper (Padé and quadratic Padé approximation using the Fourier expansion of
the solution) is accurate in a neighbourhood of the closest singularities of the NLH. However,
it rapidly loses accuracy as one moves further away from the real axis. A pole field solver for
PDEs would presumably maintain accuracy much further away from the real axis and also
onto neighbouring Riemann sheets.
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Appendix A. Analysis of the small-time limit

The Taylor expansion of the NLH in t with initial condition (2) yields

u= αcosx+ t

(
−αcosx+ 1

2
α2 (1+ cos2x)

)
+O

(
t2
)
, (A.1)

which holds sufficiently close to the real x axis and for small values of t. Setting x= iy with
y→∞, the terms αcosx∼ 1

2αe
y and 1

2 tα
2 cos(2x)∼ 1

4 tα
2e2y come into balance, leading to a

non-uniformity in (A.1) when Y=O(1), where

y=− log(αt/2)+ Y. (A.2)

Setting u= U/t, (A.1) implies the matching condition

U∼ eY+ e2Y− teY, as t→ 0,Y→−∞. (A.3)

The PDE becomes backward parabolic when specified on the imaginary axis, with both bound-
ary conditions given on y= 0 via the real-line solution. Because the initial data (2) and (3) are
even, the solution u is real on the imaginary axis between the singularities nearest to the real
axis. Such backward parabolic problems raise worthwhile questions for analysis.

In the variables U and Y, the NLH becomes

∂U
∂Y

−U−U2 + t

(
∂U
∂t

+
∂2U
∂Y2

)
= 0.

Letting U∼ U0(Y)+ tU1(Y), as t→ 0 with Y=O(1) we find that U0 and U1 must satisfy

dU0

dY
= U0 +U2

0,
dU1

dY
− 2U0U1 =−d2U0

dY2
. (A.4)

Given (A.3), the required solutions are

U0 =
eY

1− eY
, U1 =

eY+ 2 log
(
1− eY

)
(1− eY)2

. (A.5)

Note that U0 has a simple pole at Y = 0, which does not match the type of singularity of the
NLH found in section 3, while U1 has a double pole at Y = 0 (with an additional logarithmic
dependence), which implies a further non-uniformity for small Y. Since

U1 ∼
1+ 2 log(−Y)

Y2
, asY→ 0−, (A.6)

the resulting inner rescalings are

Y= 2t log(1/t)+ ζt, U=
V
t
, (A.7)

and, in these variables, the NLH becomes

∂2V
∂ζ2

+
∂V
∂ζ

−V2 + t

(
(2log t+ 2− ζ)

∂V
∂ζ

− 2V

)
+ t2

∂V
∂t

= 0.
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Setting V(ζ, t)∼ V0(ζ) as t→ 0 with ζ =O(1), V0 satisfies

d2V0

dζ2
+
dV0

dζ
= V2

0. (A.8)

In order to match the behaviour (A.6) for ζ →−∞, we require that V0 satisfies the far-field
condition

V0 ∼−1
ζ
+

2log(−ζ)
ζ2

+
1
ζ2
, as ζ →−∞; (A.9)

prescribing the coefficient of the 1/ζ2 term (which reflects the translation invariance of (A.9))
specifies V0 uniquely (as can be confirmed by a phase-plane analysis, see figure B1). Making
the change of variables ζ 7→ −ζ − 1 and relabelling V0 7→ ϕ, (A.8) and (A.9) is equivalent
to (11) and (12). Unlike the first equation in (A.4), the singularities of (A.8) have the same form
as that of the NLH equation, see (14) and (9). Hence, no further rescalings are required. Finally,
we note that combining u= U/t, (A.2), (A.7) and ζ 7→ −ζ − 1, V0 7→ ϕ, one obtains (10).

Appendix B. A nonlinear ordinary differential equation

The ODE

d2ϕ
dx2

− dϕ
dx

= ϕ2 (B.1)

arises (sometimes in a slightly different guise) in the analysis of the small-time limit (see (11)),
the large-amplitude limit, the small-amplitude limit (see (D.7) and (D.16)) and in the blow-up
limit (see appendix E.4). Here we elaborate on some of its properties.

B.1. Phase plane

The phase plane of real solutions on the real line is immediately instructive (see the left frame
of figure B1).

There are precisely three exceptional trajectories, each of which is relevant to our analysis,
with the following behaviour:

ϕ ∼ aex, x→−∞, (B.2)

(a is a positive constant),

ϕ ∼−aex, x→−∞, (B.3)

and

ϕ ∼ 1
x
+

2logx
x2

+
x0
x2

+O
(
x−3
)
, x→∞. (B.4)

For the latter case, x0 is arbitrary and corresponds to a translation of x. Notice that (B.2)
and (B.4) characterise the solutions that arise in the analysis above (cf (12), (D.8) and (D.16)).
The solutions specified by (B.2)–(B.4) blow up on the real axis (see the right frane in figure B1)
and in particular the singularities of (B.2) and (B.4) on the real line are of interest since these are
used in the asymptotic estimates of the NLH singularity locations in (13), (19), (23) and (28).
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Figure B1. Left: phase plot of (B.1) for real-valued solutions on the real axis. The excep-
tional trajectories are indicated in red by a dashed line (B.2), a dotted line (B.3) and a
thick solid line (B.4). Right: the solutions corresponding to the exceptional trajector-
ies with a= 1 and x0 = 0. The singularity locations are indicated by the dashed lines
and occur at x= 1.53767 . . . (for (B.2)), x= 4.53879 . . . (for (B.3)) and x= 0.05695 . . .
(for (B.4)).

As noted in (14), the ODE (B.1) has movable logarithmic branch point singularities (which
have the behaviour of second-order poles to leading order, however) and thus it fails the
Painlevé test.

B.2. Computing asymptotic boundary conditions

To compute initial conditions for the solutions (B.2) and (B.4) accurately, we generate higher-
order terms in their asymptotic boundary conditions for fixed x�−1 or x� 1, respectively,
and truncate the expansion when the first omitted term is below the level of machine precision.
For (B.2), the asymptotic expansion takes the form

ϕ ∼
∞∑
k=1

cke
kx, x→−∞,

where c1 is arbitrary (for the solution we require, c1 = 1 (see (24)) and

ck+1 =
1

k(k+ 1)

k∑
j=1

cjck+1−j, k⩾ 1. (B.5)

For (B.4), the expansion takes the form

ϕ ∼
∞∑
j=1

(
j−1∑
k=0

ck,j (logx)
j−1−k

)
(−x)−j

, x→∞. (B.6)
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Figure B2. The magnitude of the terms ck,j(logx)
j−1−k(−x)−j in the asymptotic expan-

sion (B.6) for x= 50. The terms are plotted in the same order in which they appear in
the series (B.6).

Comparing this expansion to the first few terms in (B.4), one gets

c0,1 =−1, c0,2 = 2, c1,2 = x0,

where x0 is arbitrary (for the solution we require, x0 = 0, see (12)) and for j = 4,5, . . ., k=
0, . . . , j− 2,

ck,j−1 =
1

3− j
[bk,j− (j− 1)(j− 2)ck−1,j−2 − (j− 1− k)ck−1,j−1

+ (2 j− 3)(j− 1− k)ck−2,j−2 − (j− 1− k)(j− k)ck−3,j−2] ,

where

bk,j =
j−2∑
r=2

min(k,r−1)∑
p=max(0,k−j+r+1)

cp,rck−p,j−r.

Figure B2 gives an example of the number of terms of (B.6) that is required to compute a
truncated expansion to an accuracy of roughly 10−15.

B.3. Intial-value problem I

The first initial-value problem for (B.1) with whichwe are concerned has initial condition (B.2)
with a= 1 (we impose this as Rex→−∞ for all Imx). On rays Imx= 2Nπ for integer N the
solution is given by (B.2); ϕ is again real on Imx= (2N+ 1)π and (B.3) applies on these rays.
Indeed, ϕ is 2π-periodic in x. Note from figure B1 that if (B.2) applies, the first singularity
is encountered at x0 = 1.53767 . . ., whereas for (B.3), x0 = 4.53879 . . . and hence the same
applies on the rays Imx= 2Nπ and Imx= (2N+ 1)π.

Figure 14 shows the solution satisfying (B.2) with a= 1 in the complex plane, which was
computed with the pole field solver [30, 31]. The initial conditions for the solution, computed
in the manner described above using (B.5), are
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ϕ(−5) = 6.760698048065327 · 10−3, ϕ ′ (−5) = 6.783500281706220 · 10−3. (B.7)

To understand better the singularity structure shown in figure 14 we now analyze the beha-
viour as Rex→+∞, which is expedited by the change of variables

ξ = ex/5, ϕ =
1
25

e2x/5v, (B.8)

to give

d2v
dξ2

− 6
ξ2
v= v2, v∼ ξ3 as |ξ | → 0. (B.9)

Two remarks about this change of variables are in order. Firstly, it was identified on application
of Kuzmak’s method to determine the far-field asymptotic behaviour of (B.1); once identified,
it seems more transparent to apply it at the onset. Secondly, disregarding the second term
in (B.9) and reversing the transformation gives

d2ϕ
dx2

− dϕ
dx

+
6
25
ϕ = ϕ2 (B.10)

so x=−5z/
√
6, ϕ = 6u/25 yields

d2u
dz2

+
5√
6

du
dz

+ u(1− u) = 0

i.e. the transformation (B.8) corresponds to the inverse of that identified by [37] in constructing
explicit solutions to Fisher’s equation; the resemblance of (B.1) and (B.10) for large ϕ is clear.

The solution to (B.9) satisfies

v∼ 61/3

α2
℘

(
ξ + ξ0
61/3α

;0,1

)
− 3
ξ2

+O
(

1
ξ4

)
, as |ξ | →∞, (B.11)

where ℘(z;0,1) denotes the equianharmonic case of the Weierstrass elliptic function [29,
chapter 23]. In (B.11) the constants ξ0 and α require numerical calculation and provide the
requisite two degrees of freedom in the far-field behaviour. Thus the far-field singularities are
given by those of the doubly periodic function ℘ which lie on the lattice

ξ =−ξ0 + 61/3α [2Nω1 + 2Mω3] , N,M ∈ Z, ω1 =
[Γ(1/3)]3

4π
,ω3 = eπ i/3ω1.

(B.12)

The only singularities of ℘ are second-order poles, hence (14) shows that the singularities of
℘ match those of ϕ (which are branch points) only to the leading order. Nevertheless, con-
sistent with (B.11), the bottom frame of figure 14 shows that the singularity locations of ℘
approximate those of ϕ shown in figure 14 .
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B.4. Initial-value problem II

We now consider solutions satisfying (B.4). Figure 8 depicts the solution in the complex x-
plane with x0 = 0. The initial conditions for this solution are

ϕ(50) = 2.359876891765835 · 10−2, ϕ ′ (50) =−5.332816483593814 · 10−4, (B.13)

and were computed using more than 800 terms from the expansion (B.6), see figure B2. The
singularity at x∗ = 0.05695 is the only singularity on the initial Riemann sheet. Integrating
clockwise around the branch point onto the next sheet of the Riemann surface of the solution,
however, we find more singularities, as shown in figure 10.

To clarify the singularity structure shown in figures 8 and 10, we follow the trajectory (B.4)
through decreasing x. The Liouville–Green (or JWKB) method implies that for x real, again
up to translations in x (translating out x0 for brevity),

ϕ ∼ 1
x
+

2logx
x2

+ · · ·+ ax2ex, as x→−∞, (B.14)

wherein a is an arbitrary constant and the ellipsis denotes a divergent series in the usual way
(the associated Stokes phenomenon will play an important role below).

Now despite the finite x blow up at x∗, (B.4) holds as |x| →∞ for all arg(x) on the initial
Riemann sheet8 and, as noted above, the numerical results in figure 8 suggest that x= x∗ is
the only singularity on that Riemann sheet on which we let the branch cut be (−∞,x∗). The
Stokes line on which the exponential in (B.14) (wherein a requires numerical calculation and
will be imaginary) is turned on thus coincides with the branch cut, with the jump across the
cut being balanced by the Stokes phenomenon. However, one can use (B.14) in transitioning
to the far field on the next Riemann sheet; hence we now impose (B.14) with a treated as given
and rotate in the far field of that Riemann sheet to the anti-Stokes line, |x| →∞, arg(x) = π

2 ;
thus we perturb about the location x= ir with r ∈ R in the form

x= ir− log
(
−ar3

)
− i(rmod(2π))+ X̂ (B.15)

to give the matching condition

ϕ ∼ 1
r

(
−i+ eX̂

)
, as X̂→−∞, r→∞. (B.16)

The intermediate terms in (B.15) are included to attain this balance with the exponential hav-
ing a coefficient of unity. The leading-order behaviour for X̂=O (1) is straightforward: since
ϕ =O(1/r) the right-hand side of (B.1) is negligible, so the leading-order solution simply
reproduces (B.16); the important scaling thus involves a further translation of x,

X̂= logr+X

so the first terms in (B.14) and (B.16) become negligible and we are left with

d2ϕ
dX2

− dϕ
dX

= ϕ2, asX→−∞,ϕ ∼ eX

8 Indeed, the exponential term in (B.14) is present only in the Stokes lines about arg(x) =±π wherein it is exponen-
tially subdominant.
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at leading order and the above analysis associated with (B.2) can be reused, albeit only at
leading order. These results are consistent with the numerical solutions on the second Riemann
sheet, see figure 10, which shows that the singularities are distributed according to those of the
(equianharmonic) Weierstrass function in the variable ξ.

Appendix C. Analysis of solutions with large-amplitude initial data

The rescaling t= α−1T, u= αU, with 0< α−1 � 1 transforms (1) and (2) into

∂U
∂T

= α−1 ∂
2U
∂x2

+U2, (C.1)

and

U(x,0) = cosx.

The zeroth-order approximation is therefore

U0 =
cosx

1−Tcosx
, (C.2)

with leading-order singularity locations x=±iy=±iσ(T), where σ(T)∼ cosh−1(1/T),
α−1 → 0. Moreover,

∂U1

∂T
=
∂2U0

∂x2
+ 2U0U1

leads to

U1 =−
cosx

(
1+ 2tan2 x

)
T

(1−Tcosx)2
− 2tan2 x log(1−Tcosx)

(1−Tcosx)2
. (C.3)

The singularities of (C.2) are simple poles after a single rescaling and the estimate therefore
ceases to be valid close to the singularities. Since (C.2) and (C.3) imply

U0 ∼
1

T
√
1−T2 (−Y)

, U1 ∼
2log(−Y)
(−Y)2

+
1− 2T2 +

(
1−T2

)
log
(
1−T2

)
(1−T2)(−Y)2

,

as Y→ 0, where Y= y− cosh−1(1/T), it follows that the inner scalings required to repro-
duce (11) and (12) at leading order read

Y= α−1T
√
1−T2

(
2log(α)− 1− 2T2

1−T2
− 2logT− 2log

(
1−T2

)
− ζ

)
U∼ α

T(1−T2)
ϕ(ζ) .

Converting these expressions to the original variables, we obtain (17) and (18).
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Appendix D. Analysis of solutions with small-amplitude initial data

With 0< α� 1, the rescaling u= αw gives

∂w
∂t

=
∂2w
∂x2

+αw2,

with

w(x,0) = cosx.

There are five time scales that need to be considered.

D.1. t=O(1)

Setting w= w0 +αw1 +α2w2 + · · · , where w0(x,0) = cosx, wk(x,0) = 0, k⩾ 0, one obtains
a sequence of linear PDEs:

∂w0

∂t
=
∂2w0

∂x2
,

∂w1

∂t
=
∂2w1

∂x2
+w2

0,
∂w2

∂t
=
∂2w2

∂x2
+ 2w0w1.

Solving these, we find as α→ 0 with t=O(1)

w∼ e−t cosx+
α

4

[
1− e−2 t+

(
e−2 t− e−4 t

)
cos2x

]
+
α2

48

[(
24t+ 6e−2 t+ 3e−4 t− 9

)
e−t cosx+

(
2− 3e−2 t+ e−6 t

)
e−3 t cos3x

]
. (D.1)

Setting x= iy and moving up the imaginary axis, a non-uniformity occurs at

α
(
e−2 t− e−4 t

)
cos2x

4e−t cosx
∼ α

2
ey−2 t sinh t=O (1) .

This motivates the change of variable

y= 2t− log(sinh t)− log(α/2)+ ζ. (D.2)

In this variable, the expansion (D.1) yields

u∼ eζ+t

sinh t
+

(
e2 t− 1

2sinh2 t

)
e2ζ +

(
2e3 t− 3e t+ e−3 t

12sinh3 t

)
e3ζ

+
α2

4

[(
1− e−2t

)
+

(
8 te t− 3e t+ 2e− t+ e−3 t

4sinh t

)
eζ
]
, (D.3)

which will provide matching conditions as ζ →−∞.
Setting u∼ U(ζ, t) in the NLH gives

∂U
∂t

− (2− coth t)
∂U
∂ζ

=−∂
2U
∂ζ2

+U2. (D.4)

From (D.3), the initial and boundary conditions are

U∼ eζ

t
, as t→ 0+, ζ =O (1) , U∼ et

sinh t
eζ , as ζ →−∞, t=O (1) . (D.5)
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A leading-order approximation for the location of the singularity is

σ (t)∼ 2t− log(sinh t)− log(α/2)+ ζ∗ (t) , α→ 0, (D.6)

where extracting ζ∗(t), the first singularity of (D.4) and (D.5) on the real axis, would require
the numerical solution to this backward–diffusion problem, which, in some respects, is more
involved than numerically solving the NLH equation. We note that the approximation (D.6) is
consistent with (13) (i.e. σ ∼ log(2/(αt))) in the small-t limit.

The limiting behaviour of ζ∗(t) can be determined as follows. As t→ 0+,

U∼ eζ

t(1− eζ)
,

for ζ =O(1), in accord with the analysis of appendix A (cf (A.5)), so that ζ∗(0) = 0. As t→∞
according to t=O(1/α), U, and hence ζ∗, becomes independent of t, so that

∂2U
∂ζ2

∼ ∂U
∂ζ

+U2, (D.7)

and ζ∗ is determined from the solution to this ODE subject to the initial data

U∼ 2eζ , as ζ →−∞. (D.8)

Changing variables according to ζ 7→ ζ − log2 andU 7→ ϕ in (D.8) and (D.6), one obtains (24)
and (25).

D.2. t=O
(
α−2

)
The secular term in (D.1) suggests the introduction of the long timescale t= T/α2. From (D.1)
it also implies the matching condition u∼ α2/4. Hence, we set t= T/α2, u= α2v to give

α2 ∂v
∂T

=
∂2v
∂x2

+α2v2. (D.9)

Since matching back into the expansion (D.1) implies that the solution is uniform in x up to
terms exponentially small in α (making tracking non-uniformities numerically challenging)
we have

v∼ 1
Tc−T

, (D.10)

as T→ Tc with Tc ∼ 4, so a leading order approximation to the blow-up time is t∼ 4/α2. Next
including the first Fourier mode via v∼ 1/(Tc−T)+ a1(T)cosx (cosx being associated with
the slowest decaying exponential term in (D.1)) implies

α2ȧ1 ∼−a1 +
2α2a1
Tc−T

, so that a1 ∼
16
α

e−T/α2

(Tc−T)2
, (D.11)

in keeping with the above asserted exponential smallness, the arbitrary constant in the general
solution of a1 being determined at leading order by matching back to the cosx term on the
previous timescale in (D.1).
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Proceeding further to the next Fourier mode in the solution expansion, a2(T)cos2x, one
finds

α2 ȧ2 ∼−4a2 +
α2

2
a21 +

2α2a2
Tc−T

,

with solution on matching back as T→ 0+,

a2 ∼
128
α2

e−4T/α2

(Tc−T)2

ˆ T

−∞

e2T̃/α
2(

Tc− T̃
)2 dT̃,

which implies via integration by parts that

a2 ∼
64

(Tc−T)4
e−2T/α2

, (D.12)

for T=O(1), matching back correctly to (D.1). Hence, the solution expansion takes the form

v∼ 1
Tc−T

+

(
16e−T/α2

α(Tc−T)2
+ · · ·

)
cosx+

(
64e−2T/α2

(Tc−T)4
+ · · ·

)
cos2x. (D.13)

Setting x= iy and moving up the imaginary axis, this expansion becomes non-uniform where
a1 cosx and a2 cos2x are of the same order (which is why we have included the cos2x terms
in the above calculation), implying the rescalings,

y=
T
α2

+ log

(
(Tc−T)2

8α

)
+Y, v∼ U(Y)

α2
. (D.14)

In this variable, the matching condition

U∼ eY+
1
2
e2Y, asY→−∞, (D.15)

pertains, the a1 cosx and a2 cos2x terms dominating a0 = 1/(Tc−T). By (D.9) and (D.15), U
satisfies

U ′ ′ = U ′ +U2, withU∼ eY asY→−∞. (D.16)

This is the same ODE as in (D.7), but with a different boundary condition, cf (D.8).

D.3. T= Tc +α2τ

For τ =O(1), the expansion (D.13) implies that the terms we need to take account of here
take the form

u= α2ϕ ∼ 1
(−τ)

+
16e−Tc/α

2
e−τ

α3 (−τ)2
cosx+A(τ)

e−2Tc/α
2

α6
cos2x. (D.17)

Substituting this into the NLH, the modulation factor A(τ) satisfies

Ȧ=−4A+
2

(−τ)
A+

128

(−τ)4
e−2τ ,
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and the solution that matches back to the expansion (D.13) is

A= 128
e−4τ

(−τ)2

ˆ τ

−∞

e2 τ̃

(τ̃)
2 dτ̃ .

The large- and small-τ behaviour of A read

A∼ 64e−2τ

(−τ)4
, as τ →−∞, A∼ 128

(−τ)3
, as τ → 0−.

The rescaling needed to capture the nearest singularity in y> 0 is thus

y=
Tc
α2

+ τ − log

(
8

α3 (−τ)2

)
+Y, (D.18)

because (D.17) then becomes

u∼ 1
(−τ)

+ eY+
A(τ)
128

(−τ)4 e2Y+2τ , (D.19)

and (D.15) is recovered in the limit τ →−∞. What makes this τ time scale a distinguished
limit is the fact that all three terms in (D.19) are of the same order, whereas on the previous
time scale only two of the terms were. With the change of variables (D.18), the NLH becomes

∂U
∂τ

+

(
2

(−τ)
− 1

)
∂U
∂Y

=−∂
2U
∂Y2

+U2, (D.20)

so that a full balance in the PDE again occurs for τ =O(1) and we require that the solution
satisfy

U∼ 1
(−τ)

+ eY, asY→−∞. (D.21)

As τ →−∞, steady state behaviour is required to match the previous timescale, i.e. (D.16)
again applies.

In the limit τ → 0−, the change of variables

Y=− log(−τ)+ z, U=
V

(−τ)
, (D.22)

brings the two terms in (D.21) into balance, so that

dV0

dz
+V0 = V2

0, V0 =
1

1− ez
. (D.23)

We note that (D.23) implies the presence of a finer scale to capture the double-pole nature of
the singularity. Indeed, the rescalings

z= (−τ)(−Z) , V=W/(−τ)

imply the leading-order balance

∂2W
∂Z2

− ∂W
∂Z

∼W2, W∼ 1/Z, asZ→∞,
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equivalent to (11) and (12) but requiring the calculation of higher-order terms to fix the trans-
lation invariance with respect to Z, which we shall not pursue (but which will, as usual, involve
a logarithmic contribution).

Combining (D.18) and (D.22) with z= 0 (the singularity location of V0 in (D.23)) and
converting to the original variables, we obtain the estimate (30).

D.4. τ = e−Tc/α
2

α3 τ̂

In the limit τ → 0− as the blow-up time is approached, the expansion (D.17) becomes

u∼ 1
(−τ)

+
16e−Tc/α

2

α3 (−τ)2
cosx+

128e−2Tc/α
2

α6 (−τ)3
cos2x. (D.24)

Under the rescalings

τ =
e−Tc/α

2

α3
τ̂ , u= α3eTc/α

2

û, (D.25)

the expansion (D.24) implies

û∼ 1
(−τ̂)

+
16

(−τ̂)2
cosx+

128

(−τ̂)3
cos2x. (D.26)

while the NLH becomes

∂û
∂τ̂

=
e−Tc/α

2

α3

∂2û
∂x2

+ û2.

To leading order,

∂û0
∂τ̂

= û20,

so that

û0 =
1

−τ̂ − 16cosx
, (D.27)

in view of (D.26), which represents a matching condition in the limit τ̂ →−∞.
The fifth time scale is discussed in section 6.5.

Appendix E. Generic and non-generic blow-up behaviour

In order to keep our analysis self-contained we here re-derive well-known results (see the
review articles cited in section 1), though some aspects of what follows are novel (including
the extension into the complex plane) and the perspective may at times differ.

We start from the well-established observation that blow up is generically close, in a sense
that becomes explicit in what follows, to the scale-invariant self-similar reduction of the NLH;
i.e. choosing the origins of space and time such that blow up occurs at (x, t) = (0,0), we set

u=
f(η,τ)
−t

, η =
x

(−t)1/2
, τ = log(1/(−t)) , (E.1)
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to give the τ -translation-invariant PDE

∂f
∂τ

+ f +
1
2
η
∂f
∂η

=
∂2f
∂η2

+ f 2

that we wish to analyse in the limit τ →+∞. This will require us to consider three different
scales, namely η =O(1), η =O(τ 1/2) and logη =O(τ).

E.1. η =O(1)

On the first scale we exploit the known property (that we further evidence below) that to leading
order the blow-up profile for η =O(1) is flat, f ∼ 1, by writing

f = 1+F (E.2)

with F→ 0 as τ →∞ and

∂F
∂τ

−F+
1
2
η
∂F
∂η

=
∂2F
∂η2

+F 2. (E.3)

Since F→ 0 it is natural first to discard the nonlinear term in (E.3) and consider the role of the
Hermite polynomial solutions to the heat equation, the first two of which (the zeroth and first
eigenmodes),

eτ , eτ/2η,

are inadmissible since their growth in τ would invalidate the assumption implicit in (E.2) (they
in any case simply represent, respectively, shifts in the time and location of blow up). The next
three eigenmodes are

1− η2/2, e−τ/2
(
η− η3/6

)
, e−τ

(
1− η2 + η4/12

)
. (E.4)

The first of (E.4) (i.e. the second eigenmode) is borderline (‘neutrally stable’) with respect
to (E.2) and it is this borderline property that is responsible for the algebraic dependence upon
τ that arises in and complicates what follows. The first in the hierarchy of non-generic blow up
scenarios occurs when the second mode is absent, in which case the third must also be since
η =O(1) is required to contain the maximum of u, and a multiple of the third expression
in (E.4) then dominates F, with the second term in (E.2) exponentially smaller than the first
as τ →+∞; the need for such a non-generic blow up scenario can be clarified by considering
two-peaked initial data symmetric about x= 0: for sufficiently widely spaced peaks generic
blow up will occur simultaneously at two locations (see the left frame of figure 5), while for
closely spaced ones diffusion will result in generic blow up at x= 0 only (as in the right frame
of figure 5). Non-generic blow up occurs as the borderline between these two scenarios and
we return to such matters below.

Focusing now on the generic case, in light of the above insights we seek a solution to (E.3)
of the form

F∼ a0 (τ)
(
1− η2/2

)
+ a1 (τ)F1 (η) , τ →+∞, (E.5)

with a1 � a0 � 1 in that limit. Hence

a1

(
d2F1

dη2
− 1

2
η
dF1

dη
+F1

)
=
da0
dτ

(
1− η2/2

)
− a20

(
1− η2/2

)2
. (E.6)
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The requirement that F1 not grow exponentially as η→±∞ leads to a solvability condition
on a0(τ), namely

da0
dτ

=−4a20, (E.7)

so that

a0 =
1

4(τ + τ0)
∼ 1

4τ
, τ →+∞,

for some constant τ 0 that reflects the scale invariance of the NLH and is dependent on the
initial data; the solution to (E.6) then takes the form

a1 (τ)F1 (η) =− 5

32(τ + τ0)
2 η

2 +
1

64(τ + τ0)
2 η

4 + â1 (τ)

(
1− 1

2
η2
)

(E.8)

where the calculation of â1(τ) requires a similar solvability condition at the next order of the
expansion and, without pursuing those details, it can readily be shown that

â1 =
α1

(τ + τ0)
2 , (E.9)

with α1 constant.

E.2. η =O(τ1/2)

We turn next to the outer region ζ =O(1), where9

ζ =
η

(τ + τ0)
1/2

Hence

∂f
∂τ

− ζ

2(τ + τ0)

∂f
∂ζ

+ f +
1
2
ζ
∂f
∂ζ

=
1

τ + τ0

∂2f
∂ζ2

+ f 2 (E.10)

and the expansion

f ∼ f0 (ζ)+
1

τ + τ0
f1 (ζ)

pertains. Therefore

f0 +
1
2
ζ
df0
dζ

= f20

9 We remark that as τ →+∞ the constant τ 0 contribution can be disregarded in such expressions, but since τ appears
throughout only in the combination τ + τ0 there is value in consistently retaining it, reflecting as it does the scaling
invariance of the PDE, this invariance not here leading to the blow-up behaviour taking the form of a scaling similarity
reduction.
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and

f0 =
1

1+α0ζ2/2
, α0 =

1
4
, (E.11)

follows on matching into (E.7) and (E.5). Combining (E.11) and (E.1) and converting to the
original variables with blow up occurring at t= tc, one obtains (33).

We proceed to next order, in part because the solvability condition that determines α0 is
sometimes derived on this outer scale instead, so it seems helpful to clarify its presence. At
next order (E.10) implies

1
2
ζ
df1
dζ

+ f1 − 2f0 f1 =
d2f0
dζ2

+
ζ

2
df0
dζ
,

with solution

f1 =

(
4α2

0 −α0
)
ζ2 logζ +α0 − 2α2

0ζ log
(
1+α0ζ

2/2
)
+β1ζ

2

(1+α0ζ2/2)
2 (E.12)

for constant β1. Appealing to analyticity again implies α0 = 1/4 (indeed, (E.7) can be derived
in this fashion without pre-specification of the dependence on τ ), but such an appeal is ques-
tionable given that the non-analyticity could in principle be smoothed over the inner scale: the
issue can conveniently be clarified by differentiating (E.8) twice and introducing G1 =

1
a1

d2F1
dη2

to give

d2G1

dη2
− 1

2
η
dG1

dη
=−da0

dτ
+
(
2− 3η2

)
a20.

Setting

G1 = 3a20η
2 −
(
da0
dτ

+ 4a20

)
H (E.13)

implies

d2H
dη2

− 1
2
η
dH
dη

= 1

even solutions to which satisfy

dH
dη

=
√
πeη

2/4erf(η/2)∼
√
πeη

2/4 − 2/η, η→+∞,

so that H contains contributions as η→+∞ of both the forms

2
√
π

η
eη

2/4, −2logη; (E.14)

eliminating the former by requiring a0 in (E.13) to satisfy (E.7) necessarily simultaneously
removes the latter. Accordingly, analyticity in (E.12) is subsidiary to, and predicated upon,
solvability in the inner region, the latter eliminating the highly problematic exponentially
growing term in (E.14), to which the logarithmic term is inextricably tied. Such comments
have implications for the various concise derivations of the form of the blow up in [15] that
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adopts 1/u as the dependent variable and derives a low-dimensional representation via a Taylor
expansion (cf (E.5))10: this approach implicitly involves the outer scale only and its success
is again indirectly a (fortuitous) consequence of the fact that suppressing the second term
in (E.14) necessarily suppresses the first also. Finally, matching (E.12) with (E.9) and (E.8)
implies

β1 =− 3
32

− α1

2
, (E.15)

the η4 term in (E.8) already being captured by expanding (E.11) in its inner limit. Hence eval-
uation of β1 requires the higher-order calculation necessary to determine α1.

E.3. logη =O(τ)

The third and final real-line scaling we need to pursue sets

f(η,τ) =
ϕ(σ,τ)

η2
, σ = logη

to give

∂ϕ

∂τ
+

1
2
∂ϕ

∂σ
= e−2σ

(
∂2ϕ

∂σ2
− 5

∂ϕ

∂σ
+ 6ϕ +ϕ2

)
(E.16)

the relevant scaling is σ =O(τ), σ> 0, so the right-hand side of (E.16) is exponentially small,
corresponding to

u∼ u(x,0)

applying as t→ 0− away from the blow-up point x= 0, and we now obtain the local behaviour
of u(x,0). Matching into (E.11) and (E.12) (with α0 = 1/4) implies the matching condition

ϕ ∼ 8(τ + τ0)− 16σ+ 8log(8(τ + τ0))+ 64β1,

so disregarding the right-hand side of (E.16) gives

ϕ ∼ 8(τ + τ0)− 16σ+ 8log(8(τ + τ0)− 16σ)+ 64β1;

since u= ϕ/x2, σ = logx+ τ/2 this implies that

u(x,0)∼ 8
x2

(2log(1/x)+ log(log(1/x))+ 4log2+ τ0 + 8β1) , x→ 0+. (E.17)

The τ 0 dependence of (E.17) captures the leading-order dependence on the initial data (except
of course for the time and location of blow up).

10 We remark in passing that truncating the Taylor expansion at higher order gives a certain amount of insight into
non-generic blow up of the type we discuss below.
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E.4. Complex-plane behaviour

One further region is needed to complete the complex-plane analysis in the current context.
The relevant terms from (E.11) and (E.12) for the purposes of matching give, as ζ2 →−8 that

f ∼ 1
1+ ζ2/8

+
1

τ + τ0

log
(
1+ ζ2/8

)
+ 1/4− 8β1

(1+ ζ2/8)2
.

The inner scalings

ζ = i

[
2
√
2+

√
2log(τ + τ0)+

1√
2
log2− 1

4
√
2
+ 4

√
2β1 + ξ

τ + τ0

]
, f = (τ + τ0)ρ,

then furnish the leading-order initial-value problem

√
2
dρ0
dξ

=−d2ρ0
dξ2

+ ρ20,

ρ0 ∼
√
2

−ξ
+

2log−ξ
(−ξ)2

+O

(
1

(−ξ)2

)
, ξ →−∞,

equivalent up to a rescaling to that discussed in appendix B, with the complex-singularity
structure uncovered in figures 8 and 10 being present for ξ =O(1).

E.5. Higher modes and non-generic blow up

Two final issues are worth briefly noting here. Firstly, the generic blow-up behaviour should
by definition be stable up to t and x translations, which respectively provide the zeroth and
first modes in the associated linear stability problem. The constant τ 0 embodies the second
mode, leading to an algebraically decaying contribution of relative size τ0/τ as τ →+∞. The
remaining modes (providing a complete set) are exponentially decaying but are also (in this
generic case) algebraically modulated for the same reason. Specifically, on the inner scale one
obtains within the linearisation

AMe
−(M−2)τ/2HM (η/2)/τM, M= 3,4, . . . ,

for constant AM, as the leading order representation of the Mth mode, the algebraic factor
being determined from a solvability condition akin to that arising from (E.8) above, a calcu-
lation facilitated by the fact that only the two highest powers in the Hermite polynomials HM

contribute to each solvability condition.
Finally, we revisit the non-generic form of blow up associated with the third expression

in (E.4) (the even more non-generic cases can be analysed in a similar fashion), whereby on
the inner scale

f ∼ 1−Ae−τ
(
1− η2 + η4/12

)
(E.18)

for some constant A> 0 that depends on the initial data. The outer variable is then ζ = η/eτ/4

so that

f0 +
1
4
ζ
df0
dζ

= f20
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giving

f0 =
1

1+Aζ4/12
, (E.19)

and

u(x,0)∼ 12
Ax4

, x→ 0. (E.20)

From (E.19) it follows that four complex singularities collide at the blow-up time, giving fur-
ther (and specifically complex-plane) insight into the non-generic nature of this scenario. We
have given above an interpretation of its status as a borderline case, upon which we can now
expand: given a solution symmetric about x= 0 with x= 0 being a local minimum at t= 0, we
can expect there initially to be four singularities nearest to the real axis, one in each quadrant.
In the case of two-point blow-up the pairs in the left and right half planes will simultaneously
collide with the real axis. In the generic single-point blow-up case the pairs in the upper and
lower half planes separately and simultaneously collide on the imaginary axis prior to blow up,
with singularities subsequently propagating down that axis to collide on the real axis at blow
up; see figure 20 and the right frame of figure 5. In these figures, the local maximum of the real-
line solution at x= 0 is converted to a maximum before the singularities collide and coalesce
in the complex plane. The case (E.18) is exceptional in that the loss of the local minimum
coincides with blow up. Figures 21 and 22 illustrate this case and confirm the fourth-order
blow up in (E.20).

Appendix F. More general initial data

F.1. Preliminaries

We now concisely generalise to the initial data

u(x,0) = αcosx+β, (F.1)

our purpose being twofold: firstly, to illustrate themodifications needed for more general initial
data (indeed, some of our comments will concern arbitrary even and 2π-periodic11 initial data,
namely

u(x,0) = U(x) (F.2)

when such further generality does not meaningfully complicate the discussion) and, secondly
and more specifically, to highlight a transition that can occur in the ultimate behaviour for
β < 0. Defining 〈ψ 〉 to be the mean of a function ψ(x) on [−π,π], we have

d
dt
〈u〉= 〈u2〉> 0

and if 〈u〉⩾ 0 at t= 0, then blow up necessarily ensues. However, for 〈u〉< 0 two generic
outcomes are possible, namely finite time blow up (as above) and

u∼−1
t
, t→∞, (F.3)

11 Both of these restrictions are important in what follows.
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for all x; these are divided by the separable solution

u∼ Ae−t cosx (F.4)

of the heat equation, wherein A is an arbitrary constant (this solution is singly unstable; as
usual, there is a subsequent hierarchy of less and less stable such solutions, the next

u∼ Be−4t cos(2x)

being doubly unstable and separating the cases A> 0 and A< 0 in (F.4).
It is instructive to consider a two-mode approximation to the solution. That is, if one sets

u= β (t)+α(t)cosx,

in the NLH and ignore higher-order modes (which gives accurate approximations provided
|α|, |β| � 1, a limit we shall consider below), then one obtains

β̇ = β2 +
α2

2
,

α̇= (2β− 1)α. (F.5)

Figure F1 shows the trajectories of this system.

F.2. Small-time limit

In the case of (F.1),

u∼ αcosx+β+ t

(
β2 +

1
2
α2 +(2β− 1)αcosx+

1
2
α2 cos2x

)
holds as t→ 0 sufficiently close to the real axis, this expansion disordering for x= i log t+
O(1), with the β terms then playing no further leading-order role for small t, eliminating the
need for any further discussion of this limit.

F.3. |α|, |β| � 1

In capturing this case we set α= ϵa, β = ϵb, and

U(x) = ϵV(x)

in (F.2) with 0< ϵ� 1. Setting

u∼ ϵv(x, t) , v∼ v0 (x, t)+ ϵv1 (x, t)

yields

∂v0
∂t

=
∂2v0
∂x2

so that

v0 ∼ b+ ae−t cosx, t→∞,
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Figure F1. Trajectories of solutions of the two-mode approximation (F.5) to the NLH.
The trajectories are symmetric about theα-axis becauseα 7→ −α corresponds to a trans-
lation of the solution (x 7→ x±π). The trajectories to the right of the exceptional traject-
ories (the thick black curves) are those of blow-up solutions, while the trajectories to the
left asymptote to 0 according to (F.3). The magenta-coloured dashed curve is defined by
β =−α2/4, which, for |α|, |β| � 1, is not only the borderline case between solutions
that blow up and those that do not for the two-mode system (F.5), but also for the NLH
(see appendix F.3). The red dots indicate numerically calculated values of α and β in the
initial data (F.1) for the NLH that are at the threshold between solutions that blow up and
solutions that tend to 0 (i.e. those that ‘extinguish’ resulting in ‘heat death’) according
to (F.3). For example, the red dot in the top-left corner corresponds to the values of α
and β used for the initial data of the ‘heat-death’ solution in the left frame of figure 3.
A perturbation of these initial data leads to a blow-up solution, as in the right frame of
figure 3. As expected, the distance between the red dots and the exceptional trajectories
of the two-mode system decreases as β→ 0.

where

b= 〈V〉, a= 2〈Vcosx〉

in the general case. Moreover,

∂v1
∂t

=
∂2v1
∂x2

+ v20
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so that

v1 = b2t+
1
4
a2
(
1− e−2t

)
+ 2abte−t cosx+

1
4
a2
(
e−2t− e−4t

)
cos2x

in the case of (F.1), to which we now revert (similar results apply more generally as t→∞—
most notably, the deviation from spatially uniform is exponentially small in t—but we shall not
pursue this further here). Unless b= 0 (the special case analysed in detail above, highlighting
its important status) the above becomes non-uniform for t= T/ϵ, for which

v∼ k(ϵ)
1− k(ϵ)T

+ exponentially small terms

where

k∼ b+
1
4
ϵa2, ϵ→ 0.

Hence if k> 0, finite-time blow up occurs, the previously exponentially small non-uniform
terms ultimately coming into play in a manner akin to that described in section 6, while (F.3)
(heat death) holds for k< 0. The borderline case (F.4) applies for

b∼−1
4
ϵa2,

and, in general, in the current limit the sign of 〈V(x)〉 is the key determinant of the ultimate
outcome.

F.4. |α|, |β| � 1

Here it suffices to consider the general case with

U(x) =
1
ϵ
V0 (x)+

1
ϵ1/2

V1 (x) ,

the reasons for the inclusion of the V1 term being apparent shortly; we take U(x) to have a
single global maximum, at x= 0. Setting t= ϵT, u= v/ϵ and

v∼ v0 (x,T)+ ϵ1/2v1 (x,T)

gives

v0 =
V0 (x)

1−TV0 (x)
, v1 =

V1 (x)

(1−TV0 (x))
2 .

Hence (F.3) ensues if V0(0)< 0, while finite-time blow up (as analysed in section 5) occurs for
V0(0)> 0, a point worth emphasis being that, while the borderline criterion in appendix F.3 is
dominated by the average ofV(x), here it is the maximum ofV(x) that is critical. The borderline
is thus associated with V0(0) = 0; we then set

V0 (x)∼ ν0x
2, x→ 0, V1 (0) = µ1,
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ν0 > 0, µ1 =O(1) then capturing the transition via the rescalings

T= ϵ−1/2τ, x= ϵ−1/4ξ, v= ϵ1/2ϕ (F.6)

whereby

∂ϕ0
∂τ

=
∂2ϕ0
∂ξ2

+ϕ20,

at τ = 0, ϕ0 = µ1 − ν0ξ
2, for ξ =O (1) , (F.7)

this leading-order formulation applying on the whole real line (and amenable to continuation
into the complex plane, of course) because of the spatial rescaling in (F.6). By rescaling, one
can set ν0 = 1 in (F.7), leaving a single parameter µ1, and we conjecture that the initial-value
problem (F.7) then has the following properties.

(I) ϕ0 ∼− 1
τ as |ξ | →∞ with

ϕ0 ∼− ξ2

1+ ξ2τ
as τ → 0+ with ξ =O

(
τ−1/2

)
.

(II) For µ1 < µ∗ for some µ∗ < 0, ϕ0 ∼− 1
τ as τ →+∞ for all ξ.

(III) For µ1 > µ∗ finite-time blow up occurs.
(IV) For µ1 = µ∗,

ϕ0 ∼
1
τ
f(η) , η =

ξ

τ 1/2
as τ →∞ with η =O (1) , (F.8)

where f(η) satisfies the boundary value problem

−f − 1
2
η
df
dη

=
d2f
dη2

+ f 2, f ′ (0) = 0, f →−1 as |η| →∞,

this similarity reduction being singly unstable. It is noteworthy that a scaling similarity
reduction is conjectured to play a role here.

We leave the calculation of the critical value µ∗ as a worthwhile open problem. For τ =
O(ϵ−1/2) (i.e. t=O(1)) the formulation (F.8) will break down, spatial periodicity coming
into play and necessitating a further (higher-order) refinement of the borderline.

F.5. |α| � 1, β =O(1)

This is the final regime that seems to warrant separate treatment here. We set α= ϵ so that

u0 =
β

1−βt
, u1 =

1

(1−βt)2
e−t cosx

for t< 1/β; incidentally, the algebraic convenience of such calculations provides a motivation
for our specific choice of initial conditions. The subsequent timescale sets

t=
1
β
+ ϵT, u=

1
ϵ
v
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with

v0 =
1

−T− 1
β2 e−β cosx

so blow up occurs at

T∼− 1
β2

e−1/β

having non-monotonic dependence upon β. The final approach to blow up parallels that of
section 6.

The main observation arising from this regime relates to the exponential dependence on β,
which points towards the role of exponentially small terms in the preceding analysis.

F.6. Complex-plane singularities

The behaviour of the singularities closest to the real axis has been explored in detail above
for β= 0 and no qualitatively new effects arise in the finite-time blow up case for β 6= 0.
When (F.3) or (F.4) apply instead, the singularities unsurprisingly move away from the real
axis, at least for sufficiently large t. For (F.4) the behaviour

σ (t) = t+O (1) , t→∞, (F.9)

follows immediately from the criterion that u be ofO(1); for (F.3) we need the correction term

u∼−1
t
+
A
t2
e−t cosx, t→∞,

in inferring that

σ (t) = t+ 2log t+O (1) , t→∞, (F.10)

which is consistent with the linear increase of the blue curve in figure 4. It is noteworthy
that (F.9) and (F.10) coincide at leading order.
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