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A B S T R A C T

The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge,
with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion
weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tu-
mours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and
single modality.

The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to
develop machine learning based classifiers to discriminate between three common paediatric tumour types.

The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide
significant features which differ between tumour types, and that combining these features gives the optimal
machine learning classifier with >80% predictive precision. This work represents a step forward to aid in the
non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.

1. Introduction

Brain tumours are the most common solid tumours in children,
accounting for approximately 25% of all childhood cancers. Magnetic
resonance imaging (MRI) is commonly performed for children sus-
pected of having a brain tumour at presentation. Challenges are faced

by paediatric radiologists to diagnose paediatric brain tumour type
using MRI, especially in tumours which do not enhance with gadoli-
nium contrast agent (a significant fraction in paediatric radiology)
(Koob and Girard, 2014). Therefore, if a combination of imaging
methods can be used to quantify tumour cellular microstructure and
perfusion, it may be possible to discriminate between low and high
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grade, as well as key tumour subtypes such as Pilocytic Astrocytoma,
Ependymoma, and Medulloblastoma. Magnetic resonance spectroscopic
methods have been shown to be highly predictive in discriminating
between tumour types, however this technique is challenging to acquire
in regions of the brain with poor magnetic field homogeneity and small
lesions (Faghihi et al., 2017; Lin and Chung, 2014). Therefore, other
more commonly used imaging-based methods, such as diffusion and
perfusion imaging, may be favourable to discriminate between tumour
types in the paediatric brain.

Diffusion weighted imaging (DWI) and dynamic susceptibility con-
trast imaging (DSC) are two advanced magnetic resonance imaging
(MRI) techniques available to understand tissue microstructure and
perfusion on a cellular and tissue level (Goo and Ra, 2017; Shah et al.,
2016; Zhou et al., 2011). These techniques have been used extensively
to understand the role of cellularity and microvascular perfusion, in
both paediatric and adult brain tumours (Hales et al., 2019;
Poussaint et al., 2016), with strong correlations with histology for the
aforementioned. DWI utilises diffusion sensitising preparation gradients
to remove signal from static water compartments in the brain, produ-
cing images weighted by the speed of water motion in a given voxel.
With the assumption of Brownian motion, diffusion weighted images
can be used to calculate an ‘apparent diffusion coefficient (ADC) map’,
with each voxel value corresponding to the ADC in the voxel (mm2s−1)
(Le Bihan, 2003).

DSC is used to spatially image the dynamics of a gadolinium con-
taining contrast agent, using fast imaging techniques such as echo-
planar imaging (EPI) and (PRESTO). Data are processed using non-
linear fitting techniques to extract uncorrected cerebral blood volume
(UCBV), leakage coefficient (K2) and corrected cerebral blood volume
(CCBV) maps. CBV maps can then be analysed to quantify the perfusion
in a given region of the brain (Shiroishi et al., 2015). DSC has shown to
be useful in quantifying perfusion differences between low- and high-
grade tumours, as well as in stroke (Moustafa and Baron, 2007;
Saenger and Christenson, 2010; Sanak et al., 2009).

Supervised machine learning utilises data features (for example
mean ADC or mean CBV) and classes (for example ‘high and low grade’
or tumour types) and to train mathematical algorithms (commonly
based on linear algebra) to automatically assign data sets to classes. The
ability of a learning algorithm to discriminate between classes can be
quantitatively determined using methods such as ‘cross-validation’
(Erickson et al., 2017). Previous results have shown the ability of su-
pervised methods to separate between tumour subtypes and high/low
grade tumours using magnetic resonance spectroscopy, with 1.5T and
3T results showing 79% and 86% balanced accuracy rate (BAR), re-
spectively (Vicente et al., 2013; Zarinabad et al., 2018).

Applications of supervised learning to oncological medical imaging
have commonly utilised single measures of the tumour microenviron-
ment (such as image texture, ADC, perfusion, or spectroscopy) to dis-
criminate between tumour types (Fetit et al., 2018; Gill et al., 2014;
Orphanidou-Vlachou et al., 2014,;2013; Zarinabad et al., 2017). How-
ever, in this study, we hypothesise that combining ADC and perfusion
data from tumour Region of Interest (ROI) and the whole brain, pro-
vides an increased accuracy for discriminating between low- and high-
grade tumours, as well as between tumour sub-types, in comparison to
ROI or whole brain measures alone.

2. Methods

2.1. Patient recruitment

49 participants with suspected brain tumours (medulloblastoma
(N = 17), pilocytic astrocytoma (N = 22), ependymoma (N = 10))
were recruited from 4 clinical sites in the United Kingdom (Ethics re-
ference: 04/MRE0/41, Birmingham Children's Hospital (BCH),
Newcastle Royal Victoria Infirmary (NRVI), Queen's Medical Centre
(QMC), Liverpool Alder Hey (LAH)). Participants underwent MRI,

discussed below, before invasive biopsy to confirm diagnosis.
All Ependymoma and Medulloblastoma cases were considered high

grade, and Pilocytic Astrocytoma as low grade.

2.2. Magnetic resonance imaging

The imaging protocol for all participants was performed either at 3
or 1.5T and included standard anatomical imaging (T1-weighted, T2-
weighted, T2-FLAIR, T1-post contrast), as well as diffusion weighted and
dynamic susceptibility contrast, covering the tumour volume (cohort
and imaging sequence details are found in supplementary Table 1A and
B, respectively).

2.3. Image post-processing and analysis

Apparent diffusion coefficient maps were calculated from diffusion
weighted imaging, using a linear fit between the two b-value images.
DSC time-course data were processed using a gamma-variate fit to form
UCBV maps. A leakage correction was undertaken to produce CCBV and
K2 maps (Shiroishi et al., 2015). The root mean squared error of the
gamma variate fit was used to masque noise and masking any absolute
CBV value greater than 3.0 mL 100 g−1 min−1. Brain masking, in-
cluding removal of background and the skull, was performed during the
fitting process. CBV maps were normalised to normal appearing white
matter.

T2- weighted, ADC, and T1-post contrast images were registered to
the first DSC volume with SPM12 (UCL), and tumour regions of interest
drawn on T2 weighted imaging.

Image analysis, performed in Matlab, consisted of calculating the
image mean, standard deviation, skewness, and kurtosis on a volume by
volume basis for diffusion and perfusion imaging maps for regions of
interest and the whole brain. Tumour volume (cm3) was calculated
from the T2 ROI masks.

2.4. Statistical analysis

Imaging features were tested for normality using a Shapiro–Wilk
test in R (3.6.1) with subsequent ANOVA/Kruskal–Wallace and Tukey
post-hoc tests performed to assess for differences in imaging features
between low- and high-grade groups, and between tumour types.
Receiver Operator Curves (ROC) were defined from significant imaging
components for comparison of low versus high-grade tumours, and the
area under the curve (AUC) calculated. Statistical significance was de-
termined at p < 0.05, with Bonferroni correction for multiple com-
parisons performed with all imaging features.

2.5. Machine learning

The discriminant ability of classifiers, described below, was assessed
using the F-statistic (a measure of sensitivity and specificity of the
learner) and the between group average precision (the average preci-
sion of the learner to correctly classify tumour types), after stratified 3-
fold cross validation. Individual tumour group accuracy and F-statistics
were also calculated. A flowchart demonstrating the processing pipeline
is found in Fig. 1.

Tumour volume, ADC and DSC region of interest and whole brain
features were processed using principal component analysis to reduce
dimensionality, aiming for 95% data variance or N-1 components
where not possible (where N is the size of the smallest group).
Supervised machine learning was performed using the Orange toolbox
(Orange) in Python (3.6), using a single layer Neural Network,
AdaBoost (an ensemble of stumps), random forest, a support vector
machine, and k nearest-neighbours (k = square root of the number of
data points in the training set). Iterative hyperparameter optimisation
was performed to optimise for overall classifier AUC on each training
set. To assess the contribution of each individual imaging feature to
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classifier precision was performed by iteratively combining single fea-
tures with ADC mean. This process was undertaken for both ROI and
whole brain features and termed ‘perturbation analysis’.

Learning algorithms were initialised to first discriminate between
low- and high-grade groups, and then between tumour sub-types. The
Balanced Accuracy Rate (BAR), F-statistic, and individual group ac-
curacies were calculated for each learner after stratified cross-valida-
tion.

A further approach to dimensionality reduction was undertaken by
independently performing univariate statistical analysis (described
above in ‘statistical analysis’ section) between each fold in the afore-
mentioned 3-fold cross validation. The imaging features that provided
the highest AUC for each training set were used in testing, on a fold-by-
fold basis. This combination of features is termed here as the ‘uni-
variate’ classifier.

2.6. Data oversampling

Two oversampling methods: data replication and SMOTE
(Chawla et al., 2002; Zarinabad et al., 2018), were used to increase the
ependymoma group size of training sets by 100%. The oversampled
data was processed, with supervised learning, as above and results
compared with no oversampling.

3. Results

Example DSC and DWI imaging is shown in Fig. 2: T2-weighted (A),
ADC(B), Uncorrected CBV (C), K2 (D), and Corrected CBV (E).

3.1. Tumour region of interest and whole brain analysis reveals features
which differ between low- and high-grade tumours and some tumour types

Region of interest and whole brain features analysis revealed a
number of imaging features that were significantly different between
low- and high-grade tumours. With ADC mean having the highest AUC
of 0.8, with a range of 0.37 to 0.78 AUC for other features.

Further to distinguishing between low- and high-grade tumours,
significant differences in ADC features were observed between Pilocytic
Astrocytomas and Medulloblastomas: ADC ROI mean (1.5 ± 0.3 vs

0.9 ± 0.2 mm2 s−1, p < 0.001, ACU = 0.75), ADC ROI skewness
(0.9 ± 1.0 vs 1.9 ± 0.9, p= 0.006), and ADC ROI kurtosis (5 ± 3 vs
9 ± 5, p = 0.045, ACU = 0.65). A significant difference in tumour
volume between Pilocytic Astrocytomas and Ependymomas was ob-
served (2.3 ± 3.1 vs 9.0 ± 11.2 cm3, respectively, p = 0.02,
AUC = 0.67).

Whole brain analysis revealed a significant difference between high
and low grade tumours; ADC mean (0.68 ± 0.24 vs 0.9 ± 0.2 mm2

s−1, p = 0.001, AUC = 0.77), and uncorrected CBV whole brain mean
(0.11 ± 0.03 vs 0.13 ± 0.02 mL 100 g−1 min−1, p = 0.002,
AUC = 0.62). Pilocytic Astrocytomas and Medulloblastomas also dif-
fered in the whole brain features such as corrected CBV mean
(1.1 ± 0.3 vs 1.2 ± 0.2 mL 100 g−1 min−1, respectively, p = 0.009,
AUC = 0.62 and ADC mean (0.9 ± 0.2 vs 0.7 ± 0.3 mm2 s−1, re-
spectively, p < 0.001, AUC = 0.78). Full tumour subtype results are
shown in Table 1.

3.2. Supervised learning can distinguish between low- and high-grade
tumours and different tumour types with a combination of region of interest
and whole brain features

To discriminate between tumour types, the univariate classifier
performed the best (using an AdaBoost learner (precision = 85%, F-
statistic = 0.84). Excluding ADC whole brain kurtosis from the above
classifier resulted in a reduction to 79% precision F-statistic = 0.75.

Utilising PCA to reduce dimensionality did not perform as well as
the univariate classifier, with BAR ranging from 66%–64% (all imaging
features and all ROI features, respectively). All results including in-
dividual class precision are detailed in Tables 2A and B.

A combination of all ROI features had the highest precision to dis-
criminate between high- and low-grade tumours with a support vector
machine (86% precision, 11 principal components). All other results for
high-low grade classification are shown in supplementary Table 3.
Observation of misclassified cases showed that there was no obvious
bias toward a single centre or field strength.

Perturbation analysis showed a number of features that, when
combined with ADC mean, had a large effect in elevating classifier
precision. In particular, Tumour Volume (81%) and UCBV (81%) pro-
vided the highest classifier precision (total range = 67–81%, see

Fig. 1. Data processing pipeline used in this study.
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supplementary Tables 4A and B).

3.3. Oversampling increases learner accuracy for some classifiers

Oversampling increased classifier precision for PCA based classi-
fiers, as demonstrated by large increase in BAR, results shown in
Table 3A, however, it did not increase BAR for the univariate classifier
(85% vs 85% vs 86%, no oversampling vs data replication vs SMOTE,
respectively). Indeed, using oversampling methods with the univariate
classifier showed an increase in the classification accuracy for Epen-
dymomas, but little change for medulloblatomas and a decreased ac-
curacy for pilocytic astrocytomas. All group precision and F-statistic

results are presented in Table 3B.

4. Discussion

This study has demonstrated that a combination of multiparametric
MRI, univariate analysis, and machine learning techniques can be em-
ployed to distinguish between both high- and low-grade paediatric
brain tumours, as well as enabling tumour type classification with high
accuracy (achieving 85% BAR).

Previous studies have commonly focused on the use of a single data
type (for example ADC or DSC perfusion measures) to discriminate
between high- and low-grade tumour types as well as common tumour
histological diagnoses, with results in this study agreeing with previous
findings(Bull et al., 2012).

Studies of diagnostic classifiers for tumours based on imaging have
concentrated on using data from regions of interest drawn around the
tumour or regions of abnormality on the conventional MRI. Here we
have also investigated imaging features selected from the whole brain
and shown that these are significantly different between the tumours. In
addition we found that these features can improve the accuracy of the
diagnostic classifier when included in it.

A particularly interesting result of this study showed that feature
selection, informed by univariate statistics, provided a classifier that
outperformed other methods. This emphasises the importance of opti-
mising the way in which features are selected for input to the machine
learning classifier. Large numbers of features cannot be used due to the
risk of over-fitting and, consequently, obtaining over optimistic esti-
mates of the accuracy of the classifier. However, methods, such as
principal component analysis, which select features by how much

Fig. 2. Example anatomical, perfusion and diffusion maps of an Ependymoma.
A) T2-weighted imaging, B) Apparent Diffusion Coefficient map, C) Uncorrected Cerebral Blood Volume map, D) K2 map, E) Corrected Cerebral Blood Volume map.

Table 1
Univariate tumour separation results.

Feature Pilocytic
astrocytoma

Ependymoma Medulloblastoma

ADC ROI Mean (mm2s−1) 1.5 ± 0.4* 1.2 ± 0.1 0.9 ± 0.2
ADC ROI Skewness 0.9 ± 1.0* 2.0 ± 1.0 1.9 ± 0.9
ADC ROI Kurtosis 5 ± 3* 8 ± 5 9 ± 5
ADC WB Mean (mm2s−1) 0.9 ± 0.2* 0.7 ± 0.3 0.6 ± 0.2
ADC WB Skewness 1.2 ± 0.3* 1.5 ± 0.5 1.6 ± 0.5
ADC WB Kurtosis 5 ± 1* 6 ± 2 7 ± 2
cCBV WB Mean (ml 100

g−1 min−1)
1.1 ± 0.3* 1.2 ± 0.2 1.3 ± 0.2

Tumour Volume (cm3) 2.3 ± 3.1 ** 9.0 ± 11.2 3.3 ± 2.3

A number of imaging features were found to be significant (* = Pilocytic
Astrocytoma vs Medulloblastoma at p < 0.05, ** = Pilocytic Astrocytoma vs
Ependymoma at p < 0.05).

Table 2A
Supervised learning results for tumour type discrimination.

Average Learner All features (9 PCs) ROI features (9 PCs) Whole brain features (9 PCs) Univariate ROI Univariate all features

AdaBoost 62%, 0.61 70%, 0.67 66%, 0.62 76%, 0.76 85%, 0.84
Random Forest 64%, 0.64 71%, 0.72 54%, 0.55 75%, 0.72 75%, 0.73
Support Vector Machine 62%, 0.60 67%, 0.73 54%, 0.55 62%, 0.67 77%, 0.75
K Nearest Neighbors 66%, 0.58 55%, 0.55 50%, 0.46 79%, 0.75 82%, 0.72
Neural Network 56%, 0.55 68%, 0.66 50%, 0.49 60%, 0.64 75%, 0.74
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variability exists in the data, may not select the most discriminatory
features but those that vary most throughout the data set used in this
study.

Previous MR spectroscopic studies at 1.5 and 3T utilising supervised
machine learning have achieved similar results as demonstrated here
(Vicente et al., 2013; Zarinabad et al., 2017) and it would be interesting
to determine the added value of combining these modalities. Challenges
are faced in the acquisition of DSC data, particularly the injection of
gadolinium in a highly regulated manner in children and the use of
arterial spin labelling. These may present an alternative option for
utilising perfusion imaging in the future (Novak et al., 2019;
Radbruch et al., 2015).

Challenges are faced in paediatric oncological studies with low re-
cruitment rates, due to the low disease incidence in the population.
Therefore, multi-centre approaches present an opportunity to both
collect the data sets required to undertake machine learning ap-
proaches, as well as increasing the statistical power of the study itself.
Here we have also shown that multi-parametric data from multiple
centres can be combined to form powerful classifiers in the study of
paediatric brain tumours. Encouragingly, misclassified cases were not
biased toward a single centre – which is in line with previously pub-
lished results showing that both diffusion and perfusion imaging can be
studied reliably on a multi-centre basis (Grech-Sollars et al., 2015;
Withey et al., 2019).

Work beyond this study could focus on the expansion to other less
common brain tumour sub-types, such as such as genetic subtypes of
Medulloblastomas, to extend the relevance and scope of this work. This,
in turn, will aid in the radiological classification and diagnosis of many
other tumour types beyond the main three represented in this study.
Furthermore, the addition of other microstructure data, such as diffu-
sion kurtosis and intra-voxel incoherent motion, may provide further
information regarding the tumour microenvironment, and, therefore,
further aid in the discrimination between tumour types.

Limitations of this study include low participant numbers in the
Ependymoma group, a common challenge in paediatric imaging stu-
dies. This was mitigated, to some extent, by the use of oversampling in
the machine learning classifiers, although further numbers in this group
should be obtained. Overall, classifier results have shown the power of
machine learning to distinguish between tumour types.

In conclusion, this study has demonstrated the power of combining
advanced MRI methods with machine learning to provide a non-in-
vasive diagnosis of paediatric tumour types.
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