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Abstract: Modelling and simulation play an increasingly significant role in exploratory studies for informing
policy makers on climate change mitigation strategies. There is considerable research being done in creating
Integrated Assessment Models (IAMs), which focus on examining the human impacts on climate change. Many
popular IAMs are created as steady state optimisationmodels. They typically employ a nested structure of neo-
classical production functions to represent the energy-economy system, holding aggregate views on variables,
and hence are unable to capture a finer level of details of the underlying system components. An alternative
approach that allows modelling populations as a collection of individual and unevenly distributed entities is
Agent-Based Modelling, o�en used in the field of Social Simulation. But simulating huge numbers of individ-
ual entities can quickly become an issue, as it requires large amounts of computational resources. The goal of
this paper is to introduce a conceptual framework for developing hybrid IAMs. This novel modelling approach
allows us to reuse existing rigid, but well-established IAMs, and adds more flexibility by replacing aggregate
stockswith a community of vibrant interacting entities. We provide a proof-of-concept of the application of this
conceptual framework in form of an illustrative example. Our test case takes the settings of the US. It is solely
created for the purpose of demonstrating our hybridmodelling approach; we do not claim that it has predictive
powers.

Keywords: Integrated AssessmentModelling, Climate Change, Agent-BasedModelling, SystemDynamicsMod-
elling, Methodological Advance, Hybridisation, Scalability

Introduction

1.1 Global warming has been a profound indicator of human-induced climate change since the mid-20th century.
According to Intergovernmental Panel onClimateChange (IPCC 2014), eachof the threedecadespreceding2014
has been successively warmer at the Earth’s surface than any prior decade since 1850. This has led to extreme
heat waves and changes in precipitation pattern occurring more frequently. Numerous evidences led IPCC to
conclude that human-induced greenhouse emissions are extremely likely to have been the dominant cause of
the observed warming. Scientific estimates di�er about the intensity of e�ects, but as we allow the warming
to continue, we are facing the risk of the climate crossing the tipping point where any further changes will be
irreversible (Lemoine & Traeger 2014).

1.2 In response, governmental bodies and international organisations have started to promote climate changemit-
igation actions, which involve substantial emissions reduction over the decades succeeding 2014; in addition,
ideas regarding geo-engineering (Craig & Burns 2016; Roshan et al. 2019) have been introduced. Significant
international joint e�orts on this matter include the Kyoto Protocol, which was adopted in 1997, the Cancun
Agreement, which was established in 2010, and the Paris agreement, ratified in 2015. The latter is e�ectively
replacing the Kyoto Protocol. All movements share the common objective of reducing the carbon footprint of
the world. In Paris the participating parties agreed to
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Holding the increase in the global average temperature to well below 2◦C above pre-industrial lev-
els and pursuing e�orts to limit the temperature increase to 1.5◦C above pre-industrial levels, rec-
ognizing that this would significantly reduce the risks and impacts of climate change (EPA 2015,
Article 2a).

1.3 The implementation of the required carbon reduction policy to achieve this goal poses huge technological,
economic, social and institutional challenges, also not to mention the fact that a lot of the carbon quota has
already been released by now (for a lively debate on the topic see CarbonBrief 2018. The dilemma in finding
the right balance between environmental and economic sustainability has proven to be a prevalent problem
among politicians and policy makers.

1.4 Modelling and simulation plays an increasingly significant role in exploratory studies for informing policymak-
ers on climate change mitigation strategies. The growth in computing power allows more comprehensive and
sophisticated models to be produced and to be put into use. In fact, the existing literature in the discipline is
considerablymature, with robust climatemodels capable of forecasting theweather down to the granularity of
hours. There is also considerable research being done in creatingmore accurate Integrated AssessmentModels
(IAMs), which focus on examining the human impacts on climate change. Many popular IAMs, as for example
DICE (Nordhaus 1992, 2017), RICE (Nordhaus& Yang 1996), andC-ROADS (Climate Interactive 2016)were created
as steady state optimisationmodels. They are highly aggregatedmodels that focus on the economics of global
warming by assessing the costs and benefits of steps towards slowing down global warming. From a techni-
cal point of view IAMs typically employ a nested structure of neoclassical production functions to represent the
energy-economy system (Fiddaman 1997). TheDICEmodel, for example, comprises a traditional economic sec-
tor and a novel climate sector, which form a closed-loop interaction. IAMs hold aggregate views on variables
andhenceareunable to capture a finer level of details of theunderlying systemcomponents. This is particularly
true for humans, who are themajor contributors to the natural level of global warming, and are viewed in these
models as an aggregation. In reality, however, humans are independent and discrete beings with diverse be-
haviours. These optimisation models also neglect the non-linear relationships between humans, which could
bring about unpredictable patterns. In addition, the tightly-coupled internal components of the models pre-
vent or discourage dynamic modification to their structure. As such, these models lack flexibility in modelling
di�erent levels of aggregation and scalability, which constitute their major limitations, considering that the
risks and impacts associated with climate change are unevenly distributed, geographically and demograph-
ically. An alternative approach that allows modelling populations as a collection of individual and unevenly
distributed entities is Agent Based (AB) modelling, o�en used in the field of Social Simulation. But simulating
a huge number of individuals (e.g. the whole population of a country) quickly becomes an issue, as it requires
large amounts of computer memory for storing these entities as individual objects and it slows down simula-
tion model execution drastically as all of these objects need to be checked against each other for updates on a
regular basis.

1.5 Current IAMs do not reflect well the underlying dynamics and drivers of people’s changes in behaviour over
time. Amore sophisticated consideration of individual di�erences within the population and their influence on
the overall evolution of the system is required, as people are the true drivers of change— the ones that change
things (Perez et al. 2017). Our research seeks a novel approach to the design of IAMs by combining the top-down
approach used in System Dynamics (SD) modelling, where the overall system behaviour is captured through
complex feedback loops, with the bottom-up approach used in ABmodelling, where a system is modelled as a
collection of autonomous decision-making entities. We aim to drive forward the development of hybrid IAMs
by providing ideas for how to implement suchmodels using a multi-method approach.

1.6 In this paper we present an innovative concept of a scalable hybrid modelling approach for integrated assess-
ment modelling and then show with an illustrative example how this concept can be applied and what a more
sophisticated populationmodel o�ers in terms of potential insight. We use parts of a well-established SD inter-
pretation of the DICE model, developed by Fiddaman (1997) (which we will refer to as the Fiddaman model in
the remainder of the paper) to represent the general environment, including economy and climate. Within this
environment we use an AB modelling approach to represent hierarchical social structures as well as groups of
individuals that can interact with other groups of individuals and the environment. Finally, we use an SDmodel
to represent a conception of the environment inside a collective conscience of those groups of individuals. The
target audience this paper is aimed at are model developers that want to explore new ways of creating IAMs.

1.7 When reading this paper, please keep inmind that the focus of this paper is on amethodological advance rather
than creating a complexmodel for predictivepurposes. Our illustrative example todemonstrate the application
of our conceptual framework takes the settings of the United States (US), a country that contributes to thema-
jority of the global carbon footprints and that is the largest economic power in the world. Themodel considers
the carbon emission dynamics of individual states and its relevant economic impacts on the nation over time.
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Background

The need for amethodological advance in Integrated Assessment Modelling

2.1 There are several papers discussing the usefulness of IAMs. Moss et al. (2010) stress the need for climate change
research and assessment and supports the idea of using IAMs for this purpose, as they “improve the analysis
of complex issues, such as the costs, benefits and risks of di�erent policy choices and climate and socioeco-
nomic futures”. Metcalf & Stock (2015) provide an overview of the more recent debate on the topic and con-
clude that: “the social cost of carbonmust have a numerical value and be associated with numerical measures
of uncertainty, and we cannot see how that can be done credibly without sophisticated computer models that
incorporate climate and economic considerations, that is, without IAMs.”

2.2 Weyant (2017) argues thatmuchof the uncertainty in the use of IAMs represents less the flawsof themodels and
more the fundamental uncertainty in scientific and economic knowledgeof keymodel features and inputs. This
suggests that there is a need for methodological advance in the way IAMs are designed. Another perspective
related to the usefulness of IAMs could be drawn from the statement once made by Box (1979) that “all models
arewrongbut someareuseful”. Even though thenumerical output IAMsproducemight not reflect reality (as the
output depends on assumptions, which may not reflect reality) these types of models are useful for providing
insight and some stimulation for debates, both things that are important for improving our understanding of
climate changes and their economic consequences. In order to support the latter, we introduce a new practice
of integratedmodelling: combining SD and ABmodelling to allow studying the disequilibrium dynamics of the
system over time, and adding more opportunities for integrating theoretical and empirical knowledge related
to human and social behaviour.

Modellingmethods

2.3 SDmodelling, originally developed by Jay Forrester in the 1950s to help corporate managers improve their un-
derstanding of industrial processes is concerned with the non-linear behaviour of complex systems over time
(Forrester 1961). It deals with internal feedback loops and time delays that a�ect the behaviour of the entire
system. A system is composed of networks of interconnected components, with their relationships giving rise
to the aggregate behaviour of the system. There are two di�erent approaches in use for SD modelling: causal
loopdiagrams forqualitativemodellingandstockand flowdiagrams forqualitative andquantitativemodelling.
The mathematical model behind the SD structure is a system of nonlinear, first-order di�erential and integral
equations (Choopojcharoen & Magzari 2012). SD models seek alternatives to the assumptions of optimisation
and equilibrium that are inherent in the traditional IAMs. They focused instead on disequilibrium dynamics
and feedback complexity, with behavioural decision rules and explicit stocks and flows of capital, labour, and
money. The principal purpose of thesemodels is to identify the structural features that have the greatest impli-
cations for policy, and thus are worthy of further pursuit (Fiddaman 1997). For an in depth introduction to SD
modelling see Morecro� (2007).

2.4 In AB modelling a system is modelled as a collection of autonomous decision-making entities called agents
(Kotz & Hiessl 2005). Each agent individually assesses its situation andmakes decisions on the basis of a set of
rules. In AB modelling we describe the system from the perspective of its constituent units (Bonabeau 2002).
Agents are designed to mimic the behaviour of their real-world counterparts. They are discrete entities with a
memory and with their own goals and behaviours. They are capable to adapt and to modify their behaviour
and they can act proactively (where actions depend on motivations generated from their internal state). An
AB model is essentially decentralised; there is no place where global system behaviour is defined. Instead,
the individual agents interact with each other and their environment to produce complex collective behaviour
patterns, capturing emergent phenomena at system level. AB modelling is well suited to modelling systems
with heterogeneous, autonomous and proactive actors. This applies well to human-centred systems (Siebers
et al. 2007). The individual agents are not limited to represent individuals within a system but can also be used
to represent collectives, as for example households, organisations, or even whole nations. For an in-depth
introduction to ABmodelling see Gilbert & Troitzsch (2005).

2.5 While AB modelling and SD modelling are founded on fundamentally di�erent schools of thought, they still
strive for a commongoal: studying the leveragepointsof complex systems (VanDykeParunaket al. 1998; Phelan
1999). Despite that, therehasbeen littlediscussionbetween the twocommunities and it is not commonpractice
to combine these simulation methods (Lättilä et al. 2010). But interest is rising. A good indicator for this is the
growth of the “hybrid track” of the Winter Simulation Conference (WSC 2015). Somemore guidance of when it
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is useful to combine these methods can be found in Lättilä et al. (2010). There are di�erent ways of combining
these twomethods. One can have agents in a SD environment but also individual agent decisionmaking driven
by a SD model (Van Dyke Parunak et al. 1998; Borschev 2013). Such a combination of modelling approaches
allows identifying the structural as well as behavioural features that have the greatest implications for policy
and should specifically be taken into account by policy makers. An example of an application related to the
topic of this paper is Shafiei et al. (2013) who use integrated AB and SDmodelling to study sustainablemobility.
However, we did not find any examples of hybrid IAMs.

Conceptual Framework of a Hybrid IAM

3.1 Conceptualisation encompasses defining the purpose of the model and its boundaries as well as identifying
key variables and describing the behaviour of themodel. While going through the conceptualisation process it
is important to keep inmind that amodel has to be built at the right level of description for every phenomenon;
we should not model all we can but what has an impact on the result, at a level of detail that is su�icient for
the purpose at hand (Couclelis 2002). We should aim for transparency in order to increase trust in our models
(Axelrod 1997). For ourmodelweuse the Fiddamanmodel as a basis, and add apopulation consisting of groups
of individuals. When it comes tomodelling these, we go beyond rationality and bounded rationality and create
actorswith habits andmemory thatwill influence their response to certain political interventions. These actors
also have the ability to learn di�erently, depending on their experiences and initial habits. In order to support
the understanding of the behavioural models described in Sections 3.16-3.24 it might help to have a look at the
Appendix where their implementation is shown.

Aim

3.2 Our Hybrid Climate Assessment Model (HCAM) concept aims to represent the behaviours of groups of individ-
uals under the influence of climate change and external policy makings. In its current state it supports the de-
velopment of exploratorymodels rather than predictivemodels. Certain sub components (e.g. the behavioural
models embedded in the agents) might seem to be conceptualised in a simplistic way, but we were aiming
to keep things simple for the sake of transparency. Such sub components can be replaced by more complex
variants in the future. As such, the model could serve two purposes: enhancing the general understanding on
human-induced climate change and stimulating debates amongst policy makers regarding strategies for tack-
ling climate change.

Feedback structure

3.3 In SDmodels, in order to define themodel boundary, one separates the relevant components into two groups:
endogenous and exogenous. The components involved in the feedback loops of the system are endogenous
whereas those not directly a�ected by the system are exogenous. In our case some of the endogenous com-
ponents of standard IAMs become part of the integrated AB model, and can therefore be seen as exogenous
components in relation to the SDmodel, and vice versa. Here we considered our idea of a hybrid model where
the population ismodelled as a collection of individual agents, which then becomes an exogenous component
to the SD model, while the CO2 emissions of those agents are part of the SD model and therefore an endoge-
nous component. Governmental policies are enforced by policy makers at di�erent levels in the hierarchy of
the geographic structure (from national to local), and are therefore exogenous to the SDmodel.

3.4 To represent the feedback structure of the HCAM we use sector mapping. This requires dividing the model
into smaller sectors with each sector complementing the overall feedback structure of the model. In our case
this feedback structure is formed by the coupling between an AB model layer and a SD model layer, as well
as the causal links between di�erent sectors. As a basis we have used the sector boundary map presented in
Fiddaman (1997), which is based on the DICE model. Because our focus is on transparency, we have reduced
Fiddaman’s original sector boundary map, making sure that our resulting boundary map still follows the prin-
ciple IAM schematic presented inMetcalf & Stock (2015). However, it has reduced complexity due to a reduction
in scope and level of detail. We have added an ABmodel layer tomake it a hybrid sector boundarymap. Figure
1 illustrates the sector boundaries in the feedback structure of our HCAM and clarifies the distinction between
the AB and the SDmodel layers.
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Figure 1: Sector Map of HCAM (SDmodel layer based on Fiddaman 1997.

3.5 The sectors of Economy, CO2 Emissions, Carbon Cycle and Climate Change, which are generally members of the
climate-economy system, make up the portion of the feedback structure in the SD model layer, while the au-
tonomous and decision-making entities, such as People and Government, belong to the AB model layer. The
crossing of the AB-SDmodel boundary occurswhen the economic outputs in the SDmodel layer are distributed
to the people in the form of income. The consumption of the people in the ABmodel layer is driven by their in-
come levels and their consumptions produce emissions. These emissions flow back into the SD model layer
and trigger a series of feedback processes, which result in temperature rise. This rise in temperature creates
negative Impacts on the economy through climate change damages, resulting in reduced economic output.
Furthermore, changes in temperaturewill trigger the awareness level of the people concerning climate change.
The awareness level of the people plays an important role in determining their emission rates. An assumption
has been made that emissions choices do not directly influence economic output. In reality the choice of an
agent to be environmentally friendly may come at economic cost, resulting in a less crisp AB-SDmodel bound-
ary.

Basemodel

3.6 The HCAM incorporates a simplified version of the coupled Climate-Economy SDmodel described in Fiddaman
(1997), who utilised the DICE model developed by Nordhaus (1992) for his model. Equations presented in this
section are based on Fiddaman (1997). Figure 2 depicts the overall causal structure of the HCAM in form of a
stock and flow diagram. The original Population stock has been replaced by a composite variable Population
[. . . ] for storing a disaggregated collection of agents and the government is represented as an autonomous
decision-making entity that influences peoples’ behaviour through governmental policies.
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Figure 2: Overall causal structure of the HCAM.

3.7 The Carbon Cycle (box A in Figure 2) is a segment of the natural system, which links human economic activities
with climate change. Here atmospheric CO2 accumulates with inflows of CO2 emissions and outflows of CO2 to
thenatural carbonsink. As theHCAMgrantsusers theautonomyof climatepolicy control, theemissions-control
rate is excluded from the feedback loop of the carbon cycle. Instead, it is introduced as an exogenous user input
variable. Moreover, as the atmospheric carbon dioxide is simulated at a global scale, the inflows of emissions
must represent that of the entire world in order to balance the equation. Hence, we have two variables which
amount to the totalworld emissions: PopulationEmissionsandOtherEmissions. PopulationEmissions is a control
variable which contains the aggregate emissions of the total agent population (which can represent a subset of
the world population) while OtherEmissions includes the emissions from the rest of the world as an exogenous
component.

3.8 Mathematically, the Carbon Cycle can be captured with the following set of equations:
• CO2 Emissions = Output per Capita× CO2Intensity

• CO2 Net Emission = CO2 Emission × Atmospheric Retention

• CO2 Storage = Atmospheric CO2 × CO2 Transfer Rate

• ∆Atmospheric CO2 = CO2 Net Emission− CO2 Storage

• Radiative Forcing = CO2 Rad. Forcing Coe�icient(log2
AtmosphericCO2
Pre-Industrial CO2

)
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3.9 The Climate Subsystem (box B in Figure 2) takes into account the radiative forcing e�ects of the atmospheric
CO2 and the coupled feedback loops of the heat flux between the surface and deep ocean temperature.

3.10 Mathematically, the Climate Subsystem can be captured with the following set of equations:

• Feedback Cooling = Atmos. Upper Ocean Temp.× Climate Feedback Parameter

• ∆Atmospheric Upper Ocean Temperature = Radiative Forcing−Feedback Cooling−Heat Transfer
Atmospheric Upper Ocean Heat Capacity

• Deep Ocean Heat Capacity = Heat Capacity Ratio× Heat Transfer Coe�icient

• Heat Transfer = Temperature Di�erence×Deep Ocean Heat Capacity
Heat Transfer Coe�icient

• ∆Deep Ocean Temperature = Heat Transfer
Deep Ocean Heat Capacity

• Climate Damage Fraction = 1 + Climate Damage Scale 1(
Atmos. Upper Ocean Temperature

Reference Temperature

)Climate Damage Nonlinearity
3.11 The EconomySubsystem (box C in Figure 2) consists of two feedback loopswhich facilitate capital accumulation

through reinvestment and depreciation. The rate of output generation from capital accumulation is dictated
by an exogenous input of factor productivity and the cost incurred by climate change. The economic outputs
contribute to the CO2 emissions and complete the primary feedback loop of the model.

3.12 Mathematically, the Economy Subsystem can be captured with the following set of equations:

• Gross Output = Factor Productivity× Capital Elastic Output

• Climate Damage Cost = Gross Output× Climate Damage Fraction

• Output = Gross Output− Climate Damage Cost

• Investment = Output× Investment Fraction

• ∆Capital = Investment− Depreciation

3.13 The Exogenous Drivers (box D in Figure 2) reveal the second order feedback structures of two exogenous factors
that have been introduced previously: CO2Intensity and FactorProductivity.

3.14 Mathematically, the Exogenous Drivers can be captured with the following set of equations:

• ∆CO2 Intensity Decline Rate = CO2 Intensity Decline Rate× Decline Rate

• ∆CO2 Intensity = CO2 Intensity× CO2 Intensity Decline Rate

• ∆Factor Productivity Growth Rate = Fact. Prod. Growth Rate× Decline Rate

• ∆Factor Productivity = Factor Productivity× Factor Productivity Growth Rate

3.15 The Fiddaman model, by default, derives the emissions from outputs in an aggregated fashion. However, the
HCAM takes a di�erent approach by outsourcing the computation to the pool of disaggregated agents (labelled
E in Figure 2).

Capturing large populations through collective person agents

3.16 Simulation of agents based on raw population sizes of countries or even the entire world proves computation-
ally extremely demanding. As a solution, the population of a model can be scaled down (e.g. to a ratio of
250,000 to 1), so that the simulation can run at an acceptable speed while still representing the entire popula-
tion. This featureconveniently enables systemrequirements tobe tailored forawide rangeof computingpower.
The idea (inspired by Köehler et al. 2009 is to create Collective Person Agents (CPAs) that represent groups of
likeminded people based on similarity in their potential behaviour. The assumptions held under such scheme
are that a CPA now represents a group of people and the people within each group are homogeneous. The
downside of this is the decrease in granularity and precision in the model performance. For gaining a better
understanding of these high level descriptions it might help to refer to the Appendix.
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Classifications of collective person agents

3.17 Humans can be represented collectively as CPAs. The activities of such CPAs are to consume energy, produce
emissions, and networkwith other CPAs. They are classified into di�erent stereotypes, based on their emission
levels; these range from "green" to "polluter". The thresholds to determine the stereotypes are parameterised
in order to allow the users to create multiple variations of stereotypes. Stereotypes are expressed as states in a
state machine diagram (Figure 3) that is automatically created within each individual CPA. For an introduction
to the topic of state machine diagrams for social simulation see Siebers & Onggo (2014). As the simulation
progresses, the agents will transit into the appropriate states according to their projected emission levels and
switch their representative colours to that of the new state (stereotype).

Figure 3: CPA state machine diagram.

Mental model of collective person agents

3.18 A mental model represents a CPA’s knowledge about the surrounding world as well as its perception about its
ownactions and their consequences. Hereweareusing an intuitivementalmodel thatwedevelopedourselves,
following a very simple reflex agent architecture. It could be replaced by a more complex one (for an overview
of such architectures see Balke &Gilbert (2014) in the future. A CPA possesses fourmental attributes: obstinacy,
awareness,motivation and sensitivity, the values of which are initially randomly assigned. The welfare status is
indicated by its income. All five attributes together shape the behaviour of a CPA: the CPA’s emission rate.

3.19 TheCPAs inHCAMare subject toexternal influencesofdi�erent sources (Figure4). Thesemayalter their internal
attributes which are influential on their overall behaviour (motivation, awareness and income). Themotivation
is sourced from the implementation of external policies. It mimics the sense of obligation one undertakes in or-
der to conform to the policy regulations. The economy takes its value from the economic output and is shared
evenly among the CPAs, which forms their incomes. The awareness is subject to three types of external influ-
ences: campaigns, word-of-mouth, and temperature anomaly. These influences have to undergo certain extent
of impedance before being able tomake concrete changes to the awareness attribute. The e�ects of campaigns
and word-of-mouth belong to the category of human influence, while the temperature anomaly is of a natural
influence. Human influencewill accumulate in an influence variable within the receiving CPA until it overcomes
the obstinacy (or stubbornness) score, in order to change the CPA’s awareness value. The temperature anomaly
challenges the sensitivity limits of the agents. Once the temperature change exceeds the limit that one can tol-
erate, it increments the awareness value of the CPA.

Figure 4: Mental model attributes (blue boxes) with external influences (white boxes).
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Behaviour model of collective person agents

3.20 Producing emissions is the primary behaviour of the CPAs. It is modelled continuously in time by using an SD
model inside the CPA. The SDmodel fragment in Figure 5models the emission rate of each CPA by using a stock
and a flow, the former being the emission rate and the latter being its rate of change. The flow of the stock
is driven by the discrepancy between the BaseEmission and the TargetEmission as perceived by the CPA. The
EmissionFraction is proportional to the sum of the agent’s awareness and motivation indices. The motivation
considers if a policy is applied or not. A RevisedEmission value is then passed to the statemachine of a CPA (Fig-
ure 3). If the value is above or below a certain threshold, the stereotype (expressed as a state) of the concerning
CPA will change.

Figure 5: Emission rate SDmodel inside the CPAs.

3.21 Mathematically, the emission dynamics can be captured with the following set of equations:

• Base Emission = Income× CO2 Intensity

• Emission Fraction = Awareness+ Motivation(PolicyActiveOrNot)

• Target Emission = Base Emission× Emission Fraction

• Target Rate = Target Emission
Base Emission

• ∆Emission Rate = Target Rate−Emission Rate
Time to Change Rate

• Revised Emission = Base Emission× Emission Rate

Multi-level modelling of social structures

3.22 The social structure of the human population in HCAM is partitioned into social units of ascending aggregation
levels. Social units have some kind of goal related to climate-change policies at their administrative level and
can be classified under a nested hierarchy ordered by their aggregation levels: CPA⊂ State⊂ Region⊂Nation.
Deducing from the formula, the unit from each level is encompassed by its parent unit, all the way to the outer-
most parent. Nations can be divided into clusters of regions, whereby each region embodies a set of adjacent
states, and each state contains a population of CPAs. In the HCAMwe use a hierarchical AB approach for repre-
senting each of the social units, i.e. each social unit is represented by an individual agent. For gaining a better
understanding of these high level descriptions it might help to refer to the Appendix.

Networking

3.23 As a CPA communicates with another CPA, it is transmitting a certain amount of “influence” to the receiving
CPA, which might alter the way the receiving CPA behaves in regards to emissions. All CPAs are equipped with
networkingmodules, enabling them to communicatewith each other by passing time-stamped InfluenceAction
objects to each other. Such an InfluenceAction object simply consists of three variables: start, duration, and vol-
ume. While start and duration define the start and duration of the influence, volume defines the strength of
it. This communication is equivalent to what is commonly known as spreading the word-of-mouth. CPAs are
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restricted to only communicate with the other CPAs that are in the same state. The objective of a communica-
tion process is to influence the engaged CPAs, either positively or negatively. Intuitively, a CPA with a positive
awareness index will spread a positive influence and the opposite goes for a CPA with a negative awareness
index. The influence cycle is guarded by two dynamic events, one for launching an influence action and an-
other for terminating it. When the cycle terminates, a portion of the influence remains as memory while the
rest is deducted from the agent’s “influence” variable. Influences can also be controlled during simulation run-
time by an authority (nation; region; state) in form of campaigns. A campaign influences the “strength” of the
message passed between CPAs during communications. For gaining a better understanding of these high level
descriptions it might help to refer to the Appendix.

Policies

3.24 There are two di�erent policies we consider: Carbon Reduction Policy and Awareness Campaign Policy. A Car-
bon Reduction Policy inducesmotivation on CPAs to cut down on their emissions. As the enforcement of policy
is o�en obligate and oppressive, the motivation that it creates generally reflects more of a fear factor of ex-
ceeding the carbon quota rather than a genuine commitment from the public. Nonetheless, it is e�ective as it
can drive the carbon intensity down in a short period of time. This policy can be implemented at national or
regional level. An Awareness Campaign Policy seeks to solve the problem from a di�erent angle, by tackling
the root cause of the problem. As uncontrolled carbon emissions are due to ignorance of the public, the or-
ganisation of campaigns aims to raise public awareness on environmental issues, which in the long run would
cultivate more sustainable lifestyles among the public. It works by fundamentally altering the mental states of
people (or CPAs in our case), which causes them to reduce their emissions. This campaign can be implemented
at national or regional level. The “Spreading theWord-of-Mouth” activity is related to the information exchange
resulting from the interactions betweenCPAs. This information exchange aims to spread environmental aware-
ness among the public and eventually changing the behaviours of the CPAs in producing emissions. Influences
received by the CPAs can be positive or negative depending on the nature of the sender. Also, the CPAs all have
varying levels of resistance against the word-of-mouth influences. Therefore, some CPAs may be easily per-
suaded to decrease (or increase) their emissions while for some this may not be as easy. For gaining a better
understanding of these high level descriptions it might help to refer to the Appendix.

Output

3.25 The outputs coming from such a HCAM are multifaceted and in the form of dynamic observables (measurable
characteristics of interest) at systemand individual level and statistics. Theydi�er from thoseprovidedby tradi-
tional IAMs (i.e. steady state optimisationmodels) in that they provide insights at di�erent levels of granularity.
Their primary role is not to drive the model’s dynamics, but to help understand the dynamics inherent in the
system under study.

3.26 Throughout the runtime of a simulation we have access to all stocks and flow values inside the SD layer of our
HCAMandcancreate timeseriesoutputs related to thedynamicsof theeconomicandclimate systemover time.
As we have a social structure represented by a hierarchical AB model, we can also collect information about
the impact of policies on specific geographical units (e.g. regions or states). As in AB models the evolution of
system-level observables does emerge from the interactions of the individual elements within the model, we
will be able to observe phenomena and pattern at system level that have properties that are decoupled from
the properties of the elements contributing to it.

3.27 The representationofCPAsallowsus tocollectbehavioural related information, e.g. whensomeoneofa specific
character type would change its opinion, and how that timing di�ers from someone with a di�erent character
type. But we can also analyse more theoretical (e.g. through extreme case simulation experiments) how CPAs
evolve over timewhen they start with the same settings, but are under di�erent influences (e.g. due to di�erent
regulations and campaigns in di�erent states). There are many more opportunities the AB layer o�ers to the
modeller. Again, wewould also expect to be able to see some emergence of phenomena andpatterns at system
level.

3.28 Thismultitude of simulation outputs allows us to gain deeper insight into the causes of climate change, depen-
dencies, and the impact of di�erent policies.
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An Illustrative Example

4.1 The main purpose of this illustrative example is to demonstrate how to use the novel features of the HCAM
described above. It shows how such amodel could providemore insight and stimulate debate, through amore
granular control of the system and a more granular level of outputs (from national to CPA level). The results of
experiments with the current implementation are useful for relative comparisons (as all scenario outputs are
based on a model with the same assumptions) and therefore to support understanding. Its purpose is not to
produce meaningful results for policy advice. For that purpose, it would need to be extended, by li�ing some
of the assumptions (e.g. implementing a population growth model). We want to encourage researchers to use
the illustrative example as a playground to test out their own ideas. The simulation model is implemented in
AnyLogic and is available at https://www.comses.net (see Model Documentation for details). Our test case
takes the settings of theUS, as this country contributes to themajority of the global carbon footprints and is the
largest economic power in the world. This creates a good opportunity to investigate the carbon emissions and
its relevant economic impacts on the nation. We consider the US as a whole, as well as on a state and regional
basis and look at the following question: “Given a constant amount of capital allocated for climate mitigation
sector, what is/are the most e�ective policy(s) that the federal government can invest the funds in to leverage
the available resources?”.

Model design

4.2 The design of our model is using the base model presented in Section 3.6 as a starting point. In order to be
able to represent a regional disaggregation of the Economy Subsystem [box C in Figure 2 for the USwe used the
idea of a multi-layered SD model, as presented in Kim & H (1997). This method allows using SD as a modelling
platform for multi-agent systems. In our case we use it to represent US regions and states.

4.3 The global CO2 emissions are the sum of emissions from the US and those from the rest of the world. As the
model simulates policy analysis of the US emissions control, non-US emissions are set to change in proportion
to changes in US levels, while the carbon abatement policy is designated as an exogenous input. Other exoge-
nous variables include the factor productivity growth rate (which represents change in the level of technological
sophistication that drives the economy) and CO2 intensity (which determines the emission levels of individu-
als based on their income). The source of the population factor takes the inputs from a population of human
agents in the AB model. The assumptions that the model holds are (1) that the factor productivity increases
exponentially, which causes the economic output to increase exponentially as well, (2) that the population size
remains constant, without any birth or death rate, (3) that CPAs are able to adjust their emissions without di-
rect economic impact should they be inclined to do so, and (4) that all nations other than the US are treated
as following US trends in carbon output, moving proportionally to changes in US emissions rates. All of these
assumptions simply the models but can be removed by modular addition of models. For example, a system
dynamics model could be used to model population growth without e�ecting the running model. Similarly,
exogenous emissions can bemodelled as growing at a first or second order rate, or even generated with an ad-
ditional HCAMmodel parameterised for other countries and run in parallel. The advantage of amodular design
allows for these subcomponent extensions where important.

Data sources

4.4 Thedataweused for themodel come frommultiple sources. The information of EPA (Environmental Protection
Agency) regions individual states belong to come from the EPA website (EPA 2018). The population data for
individual states come from the US Census Data website (Census 2018). The GDP (Gross Domestic Profit) data
for individual states come from the Bureau of Economic Analysis website (BEA 2018) and the Net Capital Stock
data for individual states come from Yamarik (2013). As the latter is only available for 2007, we decided to use
2007 as the base year for all data. Other data we used is either taken from the DICE model (Nordhaus 1992) or
derived from consultation of colleagues working in the relevant fields.

Model implementation

4.5 For the implementation of our model, we used AnyLogic 7.12, and later we updated the implementation to run
in AnyLogic 8.5 (AnyLogic 2019). AnyLogic is a commercial multi-paradigm simulation IDE that supports using
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di�erent simulation modelling paradigms in one model. It allows combining SD model components with AB
model components and vice versa (making this a hybridmodelling tool). AnyLogic is (relatively) easy to use, yet
not restrictiveas it includesahigh-level graphicalmodelling languageandalsoallowsusers toextend themodel
with custom low-level Java code. Another of its features is that it allows creating multi-layered SD models,
which has been used in our case for implementing a regional disaggregation of the Economy Subsystem. Alike
other SD tools, AnyLogic supports arrays for representing elements within SD models and collecting statistics.
This is useful for defining a set of subsystems with the same model structure (in our case the US states) but
di�erent numerical parameters (in our case the population data for the di�erent states, e.g. name; population
size). Arrays allow creating a single diagram for all the layers. Therefore, the model remains compact, and
changes one makes when implementing the model will a�ect the whole model, not just a single layer. Details
about the implementation of the dynamics inherent in the behaviour change models presented in Sections
3.16-3.24 can be found in the Appendix. The screenshots there provide an overview of all relevant functions
and events within the behavioural change models.

4.6 The model has been implemented as a visual interactive simulation. This means that it produces a dynamic
display of the system model, and allows the user to interact with the running simulation(M 1987). In our case
the simulationmodel has a setup screen todefine the scenario (Figure 6) and someopportunities tomanipulate
initial scenario settings during runtime to imitate policy implementations (Figure 7). It also produces visualisa-
tions of output data (state of the system and stats) during runtime (Figures 8-13).

Figure 6: Simulation setup screen with sliders for defining the scenario.
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Figure 7: National outputs during runtime with sliders for manipulating the scenario.

Figure 8: Compartmentalised model view during runtime (including exogenous driver states).
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Figure 9: Carbon cycle view during runtime.

Figure 10: Multi-layered economy subsystem view during runtime (the symbol [..] indicates where arrays are
used).

JASSS, 23(1) 10, 2020 http://jasss.soc.surrey.ac.uk/23/1/10.html Doi: 10.18564/jasss.4209



Figure 11: Climate subsystem view during runtime.

Figure 12: Random CPA view during runtime.
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Figure 13: Overall statistics view during runtime.

Model validation and calibration

4.7 We implemented twomodel versions for our illustrative example: a simplified version of the original Fiddaman
model (using SDmodelling only) and a HCAM (using SD and ABmodelling jointly), both tuned for the question
to be investigated. We validated the output of the simplified version against the original DICE results (as pub-
lished in Nordhaus 1992) and then calibrated the HCAM against the simplified version, to create a base case in
which both behave the same (considering practical rather than statistical significance). For the comparison we
used time plots of the following key indicators: CO2 Emissions, Atmospheric CO2, Temperature Anomaly, and
Climate Impact on Economy. We ended up with a conformance su�icient for our purposes. Figure 14 shows a
comparison of the Emissions observed in the outputs of the two with the national government attempting a
carbon reduction policy of 40%.

Figure 14: Comparing carbon emissions output of a pure SD implementation with a hybrid implementation
under 40% carbon reduction goals.

Experimentation

4.8 As stated in Section 3.24 , there are two general policies we can consider: carbon reduction policy and aware-
ness campaign policy. We defined four scenarios to be tested: Baseline (BL): “as-is” scenario that assumes no
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Figure 15: Simulation model output of key indicators in form of time series.

mitigation actions to be taken, Balanced (BA): assumes evenly-split spending on carbon reduction and cam-
paigning, in which the carbon reduction target of 17% (per 5 years) is based on the target set by the previous US
President Obama in 2015 for 2020, Extreme Campaign (EC): all funding is spent on organising campaigns, and
Extreme Reduction (ER): all funding is invested in carbon abatement. A summary of scenarios can be found in
Table 1. For population scaling we used a ratio of 250,000 to 1 during the experiments.

Scenario Policy

Carbon reduction (%) Campaigns (per year)

Baseline (BL) 0 0
Balanced (BA) 17 4
Extreme Campaign (EC) 0 8
Extreme Reduction (ER) 34 0

Table 1: Summary of experimental scenarios

4.9 To compare the impact of applying the di�erent policies, we collected the following simulation outputs as key
indicators: CO2 Emissions, Atmospheric CO2, Temperature Anomaly, and Climate Impact on Economy. We col-
lected the data in form of time plots for 80 years (from 2015 till 2095). The results of the experiment are pre-
sented in Figure 15.

4.10 According to the CO2 Emission, time series EC emerges as the best-performing scenario, with a more balanced

JASSS, 23(1) 10, 2020 http://jasss.soc.surrey.ac.uk/23/1/10.html Doi: 10.18564/jasss.4209



Figure 16: Emission rate of a random CPA.

and toned-down policy approach. It is, however, only slightly better than BA, with a di�erence of 0.2 GtCO2
in their final emissions. As for the rest of the indicators, atmospheric CO2, temperature anomaly and climate
damage, there is not much interesting information to deduce from them, although ER outperformed the other
interventions, likely due to the more immediate emissions reductions compared with campaign based inter-
ventions. The resulting trends of the scenarios are as expected, that atmospheric CO2 concentration and tem-
perature anomaly of each scenario are generally correlated with their corresponding compounded emissions
level. Besides, thedi�erencesbetween scenarios are relatively slight, likely due to the relatively reservednature
of these interventions. When considering the global results, specifically temperature anomaly andatmospheric
CO2 levels, it is worth remembering the built in assumption that non-US emissions vary proportionally to US
levels. In practice this assumes that other countries perform similar interventions through a mechanism such
as international climate agreements.

4.11 As we model the population (in form of CPAs with specific stereotypes) and the social structures (states and
regions) using anagent-basedapproachwecangain additional lower level insight. Figure 16 shows the changes
within an individual CPA during a simulation run. The temperature threshold for that agent, whereupon they
became aware of the e�ect of emissions on the climate, occurred in 2031 of the simulation model. In this run,
the government was scheduled to instigate an aggressive carbon reduction policy in the year 2050, attempting
to reduce emissions 10%below the initial base year. This allows analysis of behaviour at an individual levelwith
asymmetric stereotypes.

4.12 A use case for the agent hierarchy in this model could be that populations of di�erent states may have di�er-
ent sensitivities to changes in climate. For example, states with a large amount of tourism and agriculture may
be much more sensitive to temperature changes than other states. This is demonstrated in Figure 17, where
states were randomly assigned a "sensitive to temperature changes" value of either 0.1◦C (sensitive) or 1◦C (in-
sensitive). It can be seen that in the model agents in sensitive states reduce emissions earlier and to a greater
degreewhen comparedwith insensitive states. Parametrising this “sensitive to temperature changes” value us-
ingmethods such as survey data would therefore allow for granular analysis of emissions on a state or regional
level.

Conclusions and Further Work

5.1 In this paper we have introduced a hybrid climate assessment modelling concept called HCAM and we have
demonstrated its application by providing an illustrative example. The HCAM concept allows to reuse compo-
nentsof existing rigid, butwell-established IAMs, andaddingmore flexibility through replacingaggregate stocks
with a scalable community of vibrant interacting entities. Furthermore, by combining top-down SDmodelling
and bottom-up ABmodelling approaches, we can create IAMs that allow studying the disequilibrium dynamics
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Figure 17: Comparison of sensitive and insensitive states emissions.

of the system over time. Our illustrative example for demonstrating the application of HCAM focused on pro-
viding some insight into carbon emission dynamics of individual stateswithin the US and its relevant economic
impacts on the nation over time. By using CPAs for representing large groups of like-minded people we were
able to use an ABmodelling approach to represent the whole of the US population, and still run the simulation
on a normal PC in a reasonable amount of time.

5.2 Applying a hybrid modelling approach and multi-level modelling allowed us to not only look at system level
outputs, but to study local di�erences and analyse the influences of political decisions at di�erent levels of
abstractions. We could, for example, look at individuals and groups and see if political changes have stronger
or weaker influences at specific groups of people (which share the same stereotype) and if these influences
change over time. All of this helps us to better understand the dynamics of the system and its components over
time and adds transparency. Further benefits are the ability to interact with the model during runtime (e.g.
by adding ad-hoc interventions and observing their e�ect over time) and to get away from a steady state to a
dynamicmodel that allows capturing non equilibrium scenarios. Our HCAM considers a lot of (behavioural and
mental) details within the agents which is o�en missing in other AB models. Also, the interactive environment
invite to explore the solution space by providing interactive componentswhose settings can be changed during
runtime and outputs at di�erent levels of granularity. Due to its GUI and real-time output presentation it also
stimulates group communication as the simulation can be run as part of a team exercise.

5.3 Regarding limitations, one should be aware that we are providing a proof-of-concept illustrative example here
that is based on a long list of assumptions and simplifications (for more details see Section 4.1). In addition,
the behavioural models embedded in the agents are somewhat simplistic. However, having a modular object
oriented design allows for replacing relevant sub-systems once more sophisticated behavioural models are
found.

5.4 There are many possibilities to move forward from here. So far we have deliberately tried to keep it simple
and to focus on demonstrating a methodological advance (i.e. how to use the conceptual ideas of the HCAM
in practice). From a modelling point of view, the CPA decision making would definitely benefit from being im-
proved. Currently emissions are processed inside the CPA using a SD model instead of using more realistic
discrete decision making events. Therefore, it is di�icult to introduce reasoning and intelligence to the emis-
sion decision making. An alternative approach would be to borrow from Artificial Intelligence community and
to use a Belief-Desire-Intention (BDI) approach for the decision making process. The integration of a BDI ap-
proach within HCAM would enhance the current agent model with more realistic behaviours, driven by their
beliefs (awareness, income, energy price, climate, etc.), desires (to be in green or polluter state) and intentions
(consume or conserve). This could also be extended to social structure agents. From a computational point of
view it would be interesting to work out what the impact of the scaling is (i.e. using CPAs) and how far we could
go with this approach.

5.5 Overall, we hope that we have provided some stimulation for others to consider this hybrid approach to in-
tegrated assessment modelling in the future and that we will see some real world applications of our HCAM
concept in the near future.
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Model Documentation

The HCAM model was updated and tested to run in AnyLogic PLE 8.5 and the code is available at: https://
www.comses.net/codebases/e0c890e9-599f-4539-ad48-f59130083b31/releases/1.0.0/.

Appendix

Below we provide somemore details about the dynamics inherent in the behaviour change models presented
in Sections 3.16-3.24. Table 2 provides an overviewof all relevant parameters to be set before the actual simula-
tion starts. Thesewill then be used in the code snippets provided in the following screenshots. The screenshots
provide an overview over all relevant functions and events within the behavioural change models in a hierar-
chical order: From Nation to CPA.

• Before execution the following relevant parameters are set:

Parameters Explanation

Sensitivity Responsiveness to temperature anomaly
CarbonReduction Target percentage reduction in carbon emission
CampaignRate Campaigns organised per year
CampaignDuration Duration of campaign in weeks
BaseYear Year to start implement policy
CampaignInfluence Influence weight of campaign
GreenThreshold Upper emission boundary for Green archetipe
PolluterThreshold Upper emission boundary for Polluter archetipe
PolicyInfluence Influence weight of policy
ContactRate People contacted per month
ContactDuration Duration of contact in days
ContactInfluence Influence weight of contact

Table 2: Overview of parameters

• At national level

– Carbon policy setup is defined for all regions during simulation start up
∗ Parameters used: sendPolicy(carbonReduction,baseYear)

– Campaigns are organised for all regions at a certain rate

Figure 18:

JASSS, 23(1) 10, 2020 http://jasss.soc.surrey.ac.uk/23/1/10.html Doi: 10.18564/jasss.4209

https://www.comses.net/codebases/e0c890e9-599f-4539-ad48-f59130083b31/releases/1.0.0/
https://www.comses.net/codebases/e0c890e9-599f-4539-ad48-f59130083b31/releases/1.0.0/


Figure 19:

• At regional level

– Carbon policy setup for region is altered during runtime when slider is moved
∗ Parameters used: sendPolicy(carbonReduction,baseYear)

– An InfluenceAction object is send to all states within a region at irregular intervals (campaignRate
times per year) to update their campaignInfluence variable (i.e. the intensity of influences)
∗ InfluenceAction is an object that just consists of three parameters: start, duration, volume; the
parameter volume refers to the intensity of the influence

Figure 20:

Figure 21:
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• At CPA level

– Awareness is updated as a result of word-of-mouth communications when influence through com-
munication is high enough to overcome stubbornness

– Awareness is increased when temperature rise in atmosphere and ocean has exceeded CPA’s sensi-
tivity limits

– An InfluenceActionobject is send toa randomCPAwithinastateat irregular intervals (state.ContactRate
times per year) to update their volume variable (i.e. the intensity of influences)
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