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Quasicrystal patterns in a neural field model
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Doubly periodic patterns in planar neural field models have been extensively studied since the 1970s for their
role in explaining geometric visual hallucinations. The study of activity patterns that lack translation invariance
has received little, if any, attention. Here we show that a scalar neural field model with a translationally invariant
kernel can support quasicrystal solutions and that these can be understood using many of the theoretical tools
developed previously for materials science. Our approach is constructive in that we consider constraints on the
nonlocal kernel describing interactions in the neural field that lead to the simultaneous excitation of two periodic
spatial patterns with incommensurate wavelengths. The resulting kernel has a shape that is a modulation of a
Mexican-hat kernel. In the neighborhood of the degenerate bifurcation of a homogeneous steady state, we use a
Fourier amplitude approach to determine the value of a Lyapunov functional for various periodic and quasicrystal
states. For some values of the parameters defining a translationally invariant synaptic kernel of the model, we
find that quasicrystal states have the lowest value of the Lyapunov functional. We observe patterns of 12-fold,
10-fold, and 6-fold rotational symmetry that are stable, but none with 8-fold symmetry. We describe some of the
visual hallucination patterns that would be perceived from these quasicrystal cortical patterns, making use of the

well known inverse retinocortical map from visual neuroscience.
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I. INTRODUCTION

One of the most well known success stories in mathe-
matical neuroscience is the theory of geometric visual hal-
lucinations, developed by Ermentrout and Cowan [1] and
subsequently extended by Bressloff et al. [2]. These authors
viewed the cortex as a planar pattern-forming system that
could be described by a neural field equation. Neural fields
are typically cast in the form of integro-differential equations
with a nonlocal spatial interaction term that is specified by
a synaptic kernel function describing anatomical connectiv-
ity. Although at first sight the spatially nonlocal evolution
equation for a neural field is somewhat different from local
partial differential equation (PDE) models of pattern-forming
systems, such as the Swift-Hohenberg equation, it can be
analyzed with many of the same tools. These include linear
Turing instability analysis, weakly nonlinear analysis, and
symmetric bifurcation theory to name just the most com-
mon ones. These have been put to use to determine what
geometric visual hallucinations can tell us about the primary
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visual cortex (V1) [3]. The key observation of Ermentrout and
Cowan was that the geometric shapes, originally classified
by Kliiver, in terms of form constants for (i) tunnels and
funnels, (ii) spirals, (iii) lattices including honeycombs and
triangles, and (iv) cobwebs, could all be described in terms
of periodic patterns of activity occurring in V1. Moreover,
they attributed the emergence of such patterns to a Turing
instability of a homogeneous steady state, arising through the
variation of a control parameter representing the effect of a
hallucinogenic drug such as LSD, cannabis, or mescaline on
the cortex. Thus the problem of understanding hallucinations
was reduced to finding the kernel of a neural field model that
would support the relevant type of Turing instability. Beyond
bifurcation the emergence of striped, square, or hexagonal
patterns of neural activity in V1 induce visual percepts, which
can be understood with further information about how retinal
activity is mapped to cortical activity. As a first approximation
(away from the fovea) this map is conformal and takes the
form of a complex logarithm [4]. When applied to oblique
stripes of neural activity in V1 the inverse retinocortical map
generates hallucinations comprising spirals, circles, and rays,
while lattices like honeycombs or checkerboards correspond
to hexagonal activity patterns in V1. Ermentrout and Cowan
found that patterns of translationally invariant synaptic in-
teraction with short-range excitation and long-range lateral
inhibition were the answer. In reduced versions of their neural
field model that consider only a scalar field (rather than a
pair of coupled fields) on an infinite plane, the effective
interaction kernel can be described using a Mexican-hat func-
tion. Somewhat surprisingly, the search for kernels that can
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support nonperiodic patterns has received very little, if any,
attention. We say surprisingly because of the interest in the
condensed matter communities of finding PDE models that
support such solutions [5]. This has mainly been motivated by
the discovery of physical quasicrystals [6], in which atoms
are ordered over long distances but not in the periodically
repeating arrangement of traditional crystals, for which the
Nobel Prize in chemistry was awarded to Shechtman in 2011.
Dodecagonal quasicrystals in soft condensed matter systems
have also been found experimentally [7,8]. For a very recent
discussion of how multiple spatial scales can lead to the
formation of quasicrystals in soft condensed matter systems,
we refer the reader to [9].

Of course, a great deal of interest in quasicrystals has also
been motivated by mathematics, specifically as it relates to
tiling, with perhaps the most well known result being due to
Penrose for his work in the 1970s on a set of just two tiles that
can tile the plane. These aperiodic tilings were generalized
to three dimensions by Levine and Steinhardt [10] and used
to discuss the structural properties of three-dimensional qua-
sicrystals, including their diffraction patterns [10,11]. From a
pattern-forming perspective, it has been recognised for some
time that one way to make models that support quasicrys-
tal solutions is to consider nonlinearly interacting systems
with two incommensurate spatial scales, as in the Landau
model of Mermin and Troian for quasicrystalline order [5]
or the three-wave (nonlinear) interaction exemplified by the
phenomenological PDE model of Rucklidge et al. [12] for
describing quasicrystal patterns seen in the Faraday wave
experiment. In these experiments strong vertical vibrations of
a viscous liquid layer can elicit spatially complex standing-
wave quasipatterns at parameters where two length scales in
the correct ratio are excited or weakly damped; see work by
Skeldon and Rucklidge for a discussion of their stability [13].
In this paper we build on these general principles to show
how to construct a neural field model that can support stable
quasicrystal patterns of activity.

In Sec. I we describe the simple scalar two-dimensional
neural field model that is the subject of this paper. We also
present a Lyapunov functional for the model. The nonlocality
of the model is encoded in an anatomical interaction kernel
and is the subject of Sec. IIl. Here we introduce a set of
conditions for a translationally invariant kernel to support a
Turing instability that will excite two incommensurate spatial
scales, whose nonlinear interaction may lead to a quasicrystal
pattern. This nonlinearity is represented in the model with a
two-parameter sigmoidal firing rate function. In Sec. IV we
use the Lyapunov functional to construct a phase diagram for
the model showing the most stable states corresponding to do-
decagonal (DDQC), decagonal (DQC), and octagonal (OQC)
quasicrystal solutions, as well as hexagonal (HEX) periodic
patterns. For some choices of the sigmoidal firing rate and
synaptic kernel parameters we find that quasicrystal solutions
have the lowest value of the Lyapunov functional. This is
confirmed with direct numerical simulations of the neural field
model. The perception of these aperiodic patterns is described
in Sec. V, making use of the known inverse retinocortical
map from visual neuroscience. Finally, in Sec. VI we discuss
the shape of the kernel that gives rise to quasicrystal neural
activity patterns and suggest that it may be realized in V1

via a spatially varying modulation of anatomical connection
strengths.

II. NEURAL FIELD MODEL

Neural field models are continuum descriptions of neural
tissue, which aim to capture coarse-grained dynamics for
synaptic neural activity. Since their inception in the 1970s,
they have been used in a variety of neural contexts, to ex-
plain phenomena ranging from visual hallucinations to brain
rhythms. For a recent collection of survey articles about their
use we refer the reader to [14]. Here we will consider one
of the simplest variants of a neural field, namely, one that
describes a single neural population over a flat planar domain.
Introducing the scalar quantity u = u(r,t), with r € R? and
t > 0, the model takes the form of an integro-differential
equation, which we write in the compact form

w=—u+we fu. (1

Here the symbol ® denotes spatial convolution such that
[w® f)r, 1) = / dr'w(r —r')fu',1). (2
R2

The anatomical kernel w is given by a function of Euclidean
distance and the nonlinearity f represents a transduction rule
for converting the neural activity u into a firing rate.

Lyapunov energy functional

For the case that the firing rate f is monotonically in-
creasing and the kernel w is even and decays sufficiently
quickly away from the origin, there is a Lyapunov functional
for (1) [15]. We will assume these properties from now on.
In particular, we will take the firing rate to be a sigmoidal
function

f@u;h, B) =[1+ P! 3)

that depends on two parameters 7 and S. The former is
interpreted as a threshold value (describing when f switches
from a low to a high value) and the latter controls the steepness
of the sigmoid at threshold. We note that for this choice we
have the Riccati relation f'(«) = Bf(u)[1 — f(u)] > O for all
u. Figure 1 shows results of a direct numerical simulation of
an evolving decagonal quasicrystal with a specific choice of
synaptic kernel w. This example nicely illustrates the ability
of neural field models to generate quasiperiodic patterns from
spatially localized initial data. For further details see the
discussion around Eq. (9), as well as Sec. III (for the synaptic
kernel) and Appendix E for details of the numerical scheme.
The Lyapunov functional can be written in the form

1
Eli = —3 / dr / dr'w(lr — ') f (e, D) f (e, 1)

u(r,t)
+ /dr/ ds f'(s)s. 4)
0

It is straightforward to establish that the Lyapunov functional
is decreasing along trajectories such that

d

EE[M] =— / dr f'(u(r, 1)[u; (r, )]* < 0. &)
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(a) (b)
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FIG. 1. Series of plots showing simulations of the integral model (1) at (a) r = 0, (b) t = 40, (c) t = 100, (d) r = 120, (e) t = 140, and (f)
t = 300, posed on a large Euclidean plane with a sigmoidal firing rate function given by Eq. (3) and connectivity function given by Eq. (9).
The simulations are initiated with a localized spot perturbed with a 10-fold symmetric function (see Appendix D for further details). The
parameters are 8 = 0.39, h = 2.371, b; = 0.691, b, = 0.619106, o} = 2.144 141, o, = 0.518 136, 5, = 0.574 835, and 5, = 0.236 861.

The mean-value theorem can also be used to calculate the
functional derivative of E with respect to u as

5—0 )

. (E[u+ 5p] — E[u]>
lim

= —/dl'[w ®f(u)]f’(u)¢+/dl'f’(u)u¢ (6)

for some smooth test function ¢ = ¢(r, ¢). Thus the critical
points of E[u] satisfy (—w ® f(u) + u)f'(u) = 0, and since
f'(u) # 0 this recovers the steady state of the model (1).

In Fig. 2 we plot the Lyapunov functional from Eq. (4)
throughout the evolution of the growing decagonal quasicrys-
tal, illustrated in Fig. 1. Each layer of growth around a central
localized quasipattern is accompanied by a gradual decrease
in the Lyapunov functional. This also shows that a global
decagonal quasicrystal (covering the whole plane) tends to
a phase with the lowest value of the Lyapunov functional.
In a generic situation we have that the Lyapunov functional
of a solution trajectory decreases as t — 0o, critical points
of the Lyapunov functional are steady-state solutions, and
minima are stable. Thus the Lyapunov functional (4) is well
suited to determining the stability of both spatially periodic
and quasicrystal solutions. The former are well known to
exist in neural field models with kernels exhibiting short-range
excitation and long-range inhibition [1]. The conditions for
the latter to exist in a neural field model do not appear to have
been previously explored, although it is well known for many
physical systems that nonlinear interactions between patterns
at two length scales can stabilize quasicrystalline order. We
now develop a simple Turing analysis to determine the type of
kernel function that can give rise to a pattern with two excited
wavelengths.

III. KERNEL WITH TWO SPATIAL SCALES

In a neuroscience context it is very common to meet tissue
models that respect a balance between excitation and inhibi-
tion. This is readily imposed on the model given by Eq. (1) by
enforcing the condition that f[RZ w(|r|)dr = W = 0. Although
not strictly necessary for the discussion that follows, it does
simplify some of the analysis and in particular enforces a
unique fixed point. To see this, consider a space- and time-
independent homogeneous steady state given by u(r, t) = ug
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FIG. 2. Plot of the Lyapunov functional E[u], given by Eq. (4),
during the evolution of a decagonal quasicrystal in time. Snapshots
of the evolution are recreated for easier referencing. Each layer of
growth around a central localized quasipattern is accompanied by a
significant decrease in E[u]. The parameters are the same as in Fig. 1.
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for all r and ¢. Substitution into (1) gives a nonlinear equation
for uy as uy = f(ug)W. Thus, for the choice W = 0 we can
sidestep the need to find the roots of a nonlinear equation
and have simply that uy = 0. The evolution of perturbations
around uy can be determined by substitution of u(r,t) =
uy + v(r, t), for some small v, into Eq. (1) and expanding to
first order. The linearized equation describing the evolution
of perturbations has a space-time separable solution v(r, ¢) ~
eMe* T with

r=—1+yik), keR? (7)

where y = f’(0) and W(K) is the Fourier transform of w,
w(k) = / dr e ®Tu(r). 8)
[Rz

Since the kernel is an even function w(r) = w(|r|), then
w(k) = W(|k]), and A given by Eq. (7) is a real function of
|k|. If the Fourier transform of w has a maxima away from
the origin, say, at k = |k| = k. > 0, then a Turing instability
to a spatially periodic pattern, with wavelength 2 /k., will
occur when 1/y decreases through Wp,,x = W(k.). Moreover,
if Wmax is doubly degenerate in the sense that W(1) = Wyax =
w(g) for two distinct wave numbers k = 1 and k = ¢, then
the Turing instability analysis would predict the excitation of
a pattern with two distinct spatial scales in the neighborhood
of the bifurcation. This suggests a constructive approach to
find a kernel that would support the generation of quasicrystal
patterns in the model (1), namely, to consider the shape of
the Fourier transform of the kernel function w to enforce both
balance and degeneracy. The former condition is described by
w(0) = 0 and the latter by W (1) = Wmax = W(q), W' (k)|4=1 =
0 = @' (k)|k=g, and @"(k)|x=1,4 < 0. The parameter ¢ is an
irrational number that ensures that the two excited wave
numbers are incommensurate.

As a candidate choice for w let us consider a kernel model
for short-range excitation and long-range inhibition, but with
some degree of modulation. For ease of computing Fourier
transforms we make the explicit radially symmetric choice

w(r) = a1 p(r, by, s1, 1) + aap(r, ba, 52, q), ©
where
p(r, b, s, q) = e *"[cos(gr) + bsin(gr)]. (10)

After introducing the function

F(K,s, q)=/ dr e kTS glar an

R2

we may write W(k) as

2(k) = a1[(1 —iby)F (K, s1, 1) + (1 + ib))F(k, s1, —1)]

+ao[(1 —iby) F (K, 52, q) + (1 + ib2) F(K, 52, —¢)].

In Appendix A we show that

2mm

Fk,s,q) = &1 myn

12

m=s—iq

A numerical optimization can now be used to find the param-
eter values of oy, o, by, by, 51, and s, to obtain the required

a b
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FIG. 3. Connectivity function and its Fourier transform for the
neural field model (1). (a) Radially symmetric connectivity kernel
given by Eq. (9) as a function of distance r, with the parame-
ters B =9, h =0.06, by = 0.681, b, = 0.655, «; = 0.08036, a; =
0.016238, s; = 0.572 164, and s, = 0.211759. (b) Fourier trans-
form as a function of wave number k, showing global maxima at
the two critical wave numbers k = 1 and k = q.

shape of W(k). Here the parameters b; and b, are set in such
a way that w(1) and W(g) are numerically extremely close.
Then five simultaneous equations @' (k)|=1,4 = 0, W(0) =0,
and W(k)|x=1,§ — Wmax = O are solved for the parameters o,
oo, S1, §2, and Wy so that the balance and degeneracy
conditions for the kernel (9) can be satisfied for particular
values of «y, oy, by, by, 51, and 5. An example is shown
in Fig. 3 for the choice g = 2 cos(;r/5), demonstrating the
shape of the kernel in real and Fourier space. The function w
plotted in Fig. 3(a) describes how neurons a distance r apart
influence one another and is in the form of a Mexican hat with
a modulated tail. In Fig. 3(b) we also show a zoom around the
two wave numbers k = 1 and k = g illustrating the degener-
acy in the maxima of W(k) such that a quasicrystal with two
length scales can be excited when Wp,x = 1/y. In Fig. 4 the
patterns of dodecagonal [Fig. 4(a)], decagonal [Fig. 4(b)], and
octagonal [Fig. 4(c)] quasicrystals and their corresponding
Fourier transform power spectra [Figs. 4(d)—4(f)] are shown.
It should be noted, from the power spectra, that the two
basic length scales of the model are determined from wave
vectors lying in the annuli centered around the circles k = 1
and k = g. The type of emergent pattern is determined with
the proper choice of the second length scale g, for which
q =2cos(m/12), g =2cos(w/5), and g = 2cos(wr/8) are
considered for dodecagonal [Fig. 4(a)], decagonal [Fig. 4(b)],
and octagonal [Fig. 4(c)] quasicrystal patterns, respectively.
The real space and Fourier space of these structures present
12-fold, 10-fold, and 8-fold rotational symmetries. Here do-
decagonal and decagonal quasicrystal patterns evolve from
a localized perturbed spot, while the octagonal quasicrys-
tal is initiated with an 8-fold rotationally symmetric pat-
tern. Initial data for each candidate structure are given in
Appendix D by Eq. (D1). Note that the initial configuration
for an octagonal structure with a desired 8-fold symmetry ulti-
mately converges to other states, more commonly hexagonal,
though its Lyapunov functional evolves slowly. Figure 4(c)
shows an octagonal pattern at time r = 1000. Similarly, for the
Lifshitz-Petrich soft condensed matter model, Jiang ez al. have
also found that octagonal structures with 8-fold symmetry are
metastable, with higher free energies than other structures
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FIG. 4. Space-time profiles of the field u(r, ) at a fixed large time showing (a) dodecagonal, (b) decagonal, and (c) octagonal quasicrystal
structures for the planar neural field model (1) (on a large domain [—L, L] x [—L, L] where L = 36x) and (d)—(f) the corresponding Fourier
transforms. (d)—(f) show two critical circles in the power spectra for (a)-(c). The parameters are (a) g = 2cos(xw/12), 8 =7.9, h = 0.07,
by = 1.1, b, =0.69, a; = 0.05, o, = 0.183, 5y = 0.4931, and 5, = 0.7711; (b) g = 2cos(/5), B =9, h = 0.06, b, = 0.681, b, = 0.655,
a; = 0.08036, 0, =0.016238, 51 = 0.572 164, and s, = 0.211759; and (c) ¢ = 2cos(/8), B = 4.1,h = 0.09, b, = 0.76, b, = 0.675, ) =

0.1692, o, = 0.1215, 5y = 0.5812, and 5, = 0.4172.

including dodecagonal, decagonal, and hexagonal patterns
[16,17].

IV. FOURIER AMPLITUDE DESCRIPTION

The stability of quasicrystals is expected to be promoted by
nonlinear wave interactions between three or more waves (see
[12] for further discussion). In a physical context, for either
hard materials such as metallic alloys or soft condensed matter
systems, the use of a free-energy functional has proven espe-
cially useful in clarifying the role of nonlinear interactions. A
case in point is the free energy of the Lifshitz-Petrich model
[16,18], itself a modified version of the Swift-Hohenberg
model constructed to develop quasicrystalline patterns, for
which decagonal and dodecagonal quasicrystals can be stable
whereas the octagonal quasicrystal state is metastable. Thus,
given that the neural field model (1) possesses a Lyapunov
functional given by (4), we may naturally employ techniques
from soft condensed matter systems to study phase diagrams
of the system. In particular, the Lyapunov functional (4) has
much in common with that used to describe block copoly-
mers [19], for which a cut-and-project method can be used
to calculate the free-energy functional of quasicrystals. This
method was originally proposed by Meyer [20] and projects
the higher-dimensional periodic lattice points within a stripe
onto a lower-dimensional space to obtain a quasicrystal. For
a recent discussion of this approach in the context of soft
condensed matter physics we refer the reader to the recent
work of Jiang er al. [17]. They show that with this ap-
proach the computation of the free energy can be readily
carried out in Fourier space and gives a unified framework
for studying both periodic crystals and quasicrystals. To
exploit the cut-and-project methodology we first consider a

useful approximation of our Lyapunov functional valid in the
neighborhood of an instability of the homogeneous steady
state.

A. Logit approximation

The sigmoidal firing rate function has a logit function
inverse g = f~!, where

g(u):h—l—%ln(

In the neighborhood of u = a we may expand g(u) as a Taylor
series

), 0<u<l. (13)
1—u

g(u) =no +m@u —a)+m@u—a) +n3u—ay, (14)
where 1o = gla), m =g(a), m=g"(@)/2, and n; =
¢"(a)/6. A simple calculation gives g(x)=1/8x(1 —
x), &' (x) = (2x — 1)/Bx*(1 — x)?, and g"(x) = (—2 + 6x —
6x2)/Bx3(x — 1)3. It is now convenient to introduce z(r, t) =
f(u(r, t)) and write (4) as

Elz] = —%/dr/dr’w(lr—r’|)z(r,t)z(r’,t)

glz(r,1)]
+/dr/ ds f'(s)s. (15)
0

Under a change of variables the second term on the right-hand
side of (15) can be written as

z(r,t)
/dr/ ds f~1(s), (16)
f©O
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so that if z(r, t) remains in the neighborhood of f(0) we may
use the expansion of the logit function to obtain

Elz]l = —%/dr/dr’wﬂr —1'Dz(r, Hz(x', 1)
+ / ohr[%[z(m)—f(on2
+ 2l - FOP + %[z(r,t)—f(O)]“}, (17)

where we use the result that g(f(0)) = 0 (so that in this case
no = 0). For a balanced kernel we have that E[zy] = 0, with a
homogeneous steady state zo = f(0).

B. Projection method

From a mathematical perspective, quasicrystals can be
viewed as projections of a higher-dimensional lattice. To
be more specific, the Fourier transform of a d-dimensional
quasicrystal is nonzero only at a dense set of points spanned
by integer multiples of a finite set of basis vectors (which are
the projections of the primitive reciprocal lattice vectors) of an
n-dimensional lattice, with n > d [21]. The n-dimensional re-
ciprocal vectors can be spanned by a set of bases b;, which are
the primitive reciprocal vectors in the n-dimensional recipro-
cal space, with integer coefficients. Hence, an n-dimensional
reciprocal vector H can be written as H= "7, ib; € R”,
with h; € Z and b; € R" (canonical basis vectors). Introducing
a d x n projection matrix S allows the construction of a
physical d-dimensional wave vector k as k = SH. Here n and
S are chosen in a problem-specific manner, and projections
for generating 12-fold, 10-fold, and 8-fold symmetric qua-
sicrystals are given in Appendix B. Using the n-dimensional
periodic lattice and the projection matrix S, the expansion of
any d-dimensional quasiperiodic function ¥ (r), r € R?, can
be written

Y=Y ph)elSEr (18)

hez"

where B = (by,...,b,) € R"™" and h= (hy, ..., h,) € 7".
The terms ¢ (h) are recognized as Fourier coefficients, though
it is important to remember that (18) is a d-dimensional
quasiperiodic function determined as a slice of an n-
dimensional periodic structure whose orientation is deter-
mined by S. It is natural to assume that close to a bifurcation
from a homogeneous steady we may write

art) =z =€y p(hye*r, (19)

hez"

where k is a vector generated from a high-dimensional peri-
odic lattice according to k = )", h;Sb; and € « 1. Using
(19), we may now evaluate the Lyapunov functional given
by (17) close to a bifurcation, in terms of the Fourier am-
plitudes ¢(h). Choosing a scaling of parameters such that
y~!1 ~ 0(e?) ~ n; and n, ~ O(€), then all terms in (17) con-
tribute equally. Considering a set of new parameters £ = €*E,
D = €2, n = 62771, Ny = €72, and n3 = 73, the Lyapunov

46 47 48 49 50
m

FIG. 5. Phase diagram of the lowest value of the Lyapunov
functional steady-state solution of the neural field model (1) for g =
2 cos(mr/5). Here DQC and HEX represent decagonal and hexagonal
structures, respectively; the DDQC, DQC, OQC and HEX patterns
have the same (zero) energy in the black region. The parameters
are b; = 0.681, b, = 0.655, oy = 0.08036, ar; = 0.016238, 5, =
0.572164, s, = 0.211759, and € = 0.1.

functional now takes the succinct form
E 1 R
—_— = = h)|*[7, — @ (h
a2 Eh lp()|" [ — w(h)]

> ¢h)ph)p(hs)
h;+hy+h;=0
n3
+ >

h;+hy+h3;+hy=0

¢ (hy)p(hy)@(hz)é(hy).  (20)

With a minor modification of the approach used by Jiang et al.
[16], we may now easily compute the Lyapunov functional
for various quasicrystal and periodic patterns in terms of
the Fourier amplitudes on the circles of |h| =1 and |h| =
q, respectively. Denoting these amplitudes by ¢ and ¢,,
respectively, we may then minimize £ = E(¢, ¢,) for a
given pattern type. The forms of the Lyapunov functional
for dodecagonal, decagonal, and octagonal quasicrystals are
given in Appendix C, together with that of a periodic hexag-
onal pattern. By comparing the minimum of the Lyapunov
functional for each pattern configuration at a given point in
parameter space we may also determine a phase diagram.
Here we do this for the two scaled parameters (7, 7j») (see
Appendix C). For fixed values of «, oy, by, by, s1, $2, and
q in the synaptic kernel, the phase diagram over a range of
1,2 values is shown in Fig. 5, where the most stable states
for DQC and HEX patterns are shown as an example. In the
black region, e.g., fj; > 50.63, all patterns mentioned above
have the same (zero) energy [using the approximation given
by (17)], as does the homogeneous steady state. In simulations
of the full nonlinear model we typically see the evolution
to the homogenous steady state in the black region. As #;
is decreased, the decagonal structure is favored, and with a
further decrease, e.g., #j; < 46.9, the hexagonal phase has the
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FIG. 6. Perception of (a) dodecagonal, (b) decagonal, and (c) oc-
tagonal quasicrystals patterns of neural activity in V1, as presented
in Fig. 4, constructed via the inverse retinocortical map.

lowest value of the Lyapunov functional for all #, values. It
can be seen from Fig. 5 that the decagonal pattern is stable
over a narrow range of 7j; for large values of #,. Considering
the parameter setting of the kernel for 10-fold quasicrystals
in Fig. 4(b), stable dodecagonal and octagonal quasicrystal
patterns are not found for any choice of 7; and #, values in
Fig. 5. Repeating the energy comparison among the candi-
date structures with parameters from the 12-fold pattern in
Fig. 4(a), only hexagonal and dodecagonal symmetric patterns
are observed (not shown). A stable octagonal pattern is not
found for any choice of parameters. Note that an increase in
the 7, value corresponds to a decrease in & and 8 values in the
sigmoidal firing rate function (3), whereas larger values of 7;
correspond to smaller 8 and larger 4.

V. VISUAL HALLUCINATIONS

One of the main structures of the visual cortex is that of
retinotopy, a neurophysiological projection of the retina to
the visual cortex. The log-polar mapping [4] is perhaps the
most common representation of the mapping of points from
the retina to the visual cortex and is key to understanding
some of the visual hallucinations that can be induced by
hallucinogenic drugs and in particular their geometry. These
can be categorized by the Kliiver form constants: tunnels and
funnels, spirals, lattices including honeycombs and triangles,
and cobwebs. It was the great insight of Ermentrout and
Cowan [1] that these could be recovered after an application
of the inverse retinocortical map to spatially periodic activity
arising from a Turing instability in V1. The action of the
retinocortical map turns a circle of radius r in the visual
field into a vertical stripe at x = In(r) in the cortex and also
turns a ray emanating from the origin with an angle 6 into
a horizontal stripe at y = 6. Simply put, if a point on the
visual field is described by (r, 6) in polar coordinates, the
corresponding point in V1 has Cartesian coordinates (x, y) =
(In(7), 6). Thus to answer how a quasicrystal pattern would be
perceived we need only apply the inverse log-polar mapping.
Figure 6 shows how neural activity patterns for dodecagonal,

decagonal, and octagonal quasicrystals in V1 are mapped to
various exotic percepts in the visual field and extend slightly
the class of visual hallucinations that can be captured by
neural field models.

VI. DISCUSSION

In this paper we have considered a simple scalar two-
dimensional neural field model and shown how one can
construct a translationally invariant anatomical interaction
kernel to guarantee the emergence of quasicrystalline activity
patterns beyond a Turing instability. In line with current
thinking of how quasipatterns can be generated in physical
systems, this requires an interaction between two incommen-
surate spatial scales whose ratio is given by the parameter g
in the synaptic kernel. We have shown that one such kernel
that achieves this is a form of modulated Mexican hat. To
determine the stability of emergent quasiperiodic patterns we
have made use of the existence of a Lyapunov functional
for the neural field model. This has allowed us to tap into
approaches previously deployed for theoretical studies of con-
densed matter systems exhibiting quasicrystal structure and in
particular those for the determination of phase diagrams (via
minimizing the Lyapunov functional of the system). Similarly
to many soft condensed matter systems, we have found there
are regions in parameter space that support stable dodecagonal
and decagonal quasicrystals, while octagonal quasicrystals
invariably have a higher value of the Lyapunov functional and
are metastable.

The modulated Mexican hat has been shown to robustly
support stable quasicrystals with an n-fold rotational sym-
metry with n =10,12 (and an 8-fold solution only be-
ing metastable). However, in principle, there is nothing to
preclude the construction of quasipatterns with other de-
grees of rotational symmetry. The projection method that we
have used here, for so-called rank-4 quasicrystals (describing
8-fold, 10-fold, and 12-fold symmetric quasicrystals projected
from a four-dimensional space), can also be deployed to
generate other n-fold symmetric quasicrystals by projection
from higher-dimensional spaces, for example, 7-fold, 9-fold,
and 18-fold symmetric quasicrystals from a six-dimensional
space. However, it is worth noting that in many physical
systems there are often geometrical constraints which impede
the formation of quasicrystals with other than 5-fold or 10-
fold symmetry (see, e.g., [22]).

Interestingly, kernels described by periodically modulated
exponentials have previously been invoked as models for
interaction in the prefrontal cortex [23] (motivated by la-
beling studies showing that approximate periodic stripes are
formed by coupled groups of neurons). Moreover, given the
known periodic modulation of primary visual cortex on the
millimeter scale, as reviewed in some detail by Bressloff
[24], it is not unreasonable that a modulated Mexican-hat
shape is more representative of interactions in primary vi-
sual cortex than an unmodulated one. The question about
whether quasicrystal patterns are in fact ever observed in
drug-induced hallucinations or as a result of certain classes of
visual stimuli is a fascinating one, worthy of further attention
by the psychophysics community. The work presented here
has focused on the spontaneous generation of patterns and not
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ones induced directly by sensory stimuli. However, given that
quasipatterns in physical (Faraday) systems can be excited by
periodic temporal forcing [25], this motivates a protocol for
human studies. Indeed, flicker-induced hallucinations were
previously studied from a theoretical perspective in neural
fields with time periodic forcing by Rule et al. [26], and it
would be very natural to extend the work here to include
models of spatiotemporal sensory drive.

Looking forward, it would be interesting to use techniques
described by Rankin et al. [27], for numerical bifurcation and
continuation for homoclinic snaking, to better understand how
quasipatterns can grow by adding structure to the outside of a
central localized quasipattern, as illustrated in Fig. 1. Finally,
itis worth mentioning that the techniques presented here could
also be developed to study superlattice patterns that display
periodic spatial structures having two separate scales [28].
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APPENDIX A

Here we show how to evaluate the integral representation
of the function F(Kk, a, o) given by (11). Using plane polar
coordinates, we have that

2 00 ' ,
FK,a,0)= / do / rdr e~ ikreost ,—r(a—io)
0 0

d 2 %)
—_ d@/ dr e—r(ikrcos@+m)| .
dm 0 0 m=a—io
B d 2w 1 (Al)
©dm o m+ikrcos® |,_, .

The last integral can be evaluated with the change of variable
7 = ¢, performing a contour integral around the unit circle,
and noting that there is a single contribution from a pole at

i(m — Vk* + m?)/k. This gives the result (12).

APPENDIX B

The 12-fold symmetric DDQC is obtained by choosing a
structural parameter ¢ = 2 cos(xr/12), n = 4, and projection

matrix
1
S= [0

The 10-fold symmetric DQC is obtained by choosing a struc-
tural parameter g = 2 cos(rr/5), n = 4, and projection matrix

1
5=

The 8-fold symmetric OQC is obtained by choosing a struc-
tural parameter g = 2 cos(mr/8), n = 4, and projection matrix

1
-t

cos( /6)

cos(r/3) O
sin(x /6) ] ®D

sin(w/3) 1)

cos(m/9)
sin( /5)

cos(2m /5)
sin(2m /5)

cos(37/5)
sin(3rr /5)]‘ (B2)

cos(m/4)
sin(r /4)

cos(m/2)
sin(r /2)

cos(3m /4)
sin(3n/4)i|' (B3)

APPENDIX C

Here ¢ and ¢, are real amplitudes on the circles of |h| =1
and |h| = g, respectively. We use the result that vectors on the
[h| = g circle are sums of two neighboring reciprocal vectors
on the |h| = 1 circle. Absorbing a factor of (2)? within the
energy functional, we adapt the calculations in [16] (with
minor modification) to find

Eppoc = 6{71 (47 + ¢;) — [ ()7 + (q)e; ]}
+ 240 (¢1 g + D167) + 812 (87 + ¢;)
+ 9973 (41 + ¢;)
+ 144713 (p1¢, + $i¢g) + 360Mpi¢;,  (C1)
Epqe = 5{ii(¢1 + ¢7) — [ + b(9)e; ]}
+ 2072 (¢1 ¢y + ¢16;)
+ D713(9¢1 + 8679, + 28079, + 819, + 9¢;),
(€2)

Eoqe = 4{in(#7 + ¢;) — [0 (1)o7 + (g)¢; ]}
+ 1672070, + 6713 (1971 + 344762 +747).  (C3)

Enpx = 3l — W(D]g] + 4ing; + Liise1, (C4)

where ¢; and ¢, are real amplitudes on the circles of [h| =1
and |h| = g, for which g = 2 cos(x /12), g = 2 cos(ir /5), and
q = 2cos(m/8) respectively determine the type of pattern.
Here the label HEX refers to a hexagonal periodic pattern.

APPENDIX D

Initial data for the neural field model (1) are chosen in the
form

N
u(r, 0) = e/t Z}(e”‘f" +VT), k= [Z?S 3}’}
j=

(D)
Here the vectors k;, j =1, ..., N, are equally spaced around
the circle with [k| = 1 and we set q; = gk;. Figure 1(a) shows
the initial condition for a 10-fold quasicrystal with a = 2,
L =36, N =10, and ¢ = 2cos(r/5), by which a local-
ized spot is perturbed with a 10-fold quasiperiodic pattern.
Figures 1(b)-1(e) show a transient state after 40, 100, 120,
and 160 time units, respectively, and the equilibrium state
after 300 time units. Note that we set a = 0 for an octagonal
quasicrystal so that the domain is initially filled with an 8-
fold pattern with L = 307x. To visualize quasicrystal patterns
better, the domains in Figs. 1, 4, and 6 have been truncated to
[—247,247] x [—24m, 247].

APPENDIX E

The numerical simulation of the full model (1) was per-
formed in the plane by discretizing (1) in space on a reg-
ular square mesh and solving the resultant set of ordinary
differential equations using MATLAB. In our simulations, a
pseudospectral evaluation of the convolution w ® f(u) is
performed using a fast Fourier transform (FFT), followed
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by an inverse FFT on a large square computational do-
main. The Fourier transform of w ® f(u) takes the product
form w(|k|)f(k), and this provides substantial computational
speedup over quadrature-based numerical methods for calcu-
lating w ® f(u). We set a grid of N = 2'0 equally spaced
points along each spatial dimension and used MATLAB’S in-
built ODE45 algorithm to evolve the system forward in time.

Quasicrystals are ordered structures that fill the space with-
out spatial periodicity. Hence, the main limitation of using
the FFT algorithm is that small errors may arise from the
choice of a periodic computational domain. To overcome
this limitation and enable the efficient use of the FFT algo-
rithm, direct numerical simulations are performed on a large
domain.
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